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Arnold Johannes Wilhelm Sommerfeld (1868-1951) was responsible for the 
quantum mechanical free electron theory of metals covered in Chapter 4. Sommer¬ 
feld was the Director of Institute of Theoretical Physics, specially established for 
him, at Munich University. 

I SOURCE: AIP Emilio Segre Visual Archives, Physics Today Collection. 
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Felix Bloch (left) and Lothar Wolfgang Nordheim (right). Nordheim 
(1899-1988) received his PhD from the University of Gottingen. 
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PREFACE 

THIRD EDITION 

The textbook represents a first course in elec¬ 
tronic materials and devices for undergraduate 
students. With the additional topics in the accom¬ 
panying CD, the text can also be used in a gradu¬ 
ate introductory course in electronic materials for 
electrical engineers and material scientists. The 
third edition is an extensively revised and ex¬ 
tended version of the second edition based on re¬ 
viewer comments, with many new and expanded 
topics and numerous new worked examples and 
homework problems. While some of the changes 
appear to be minor, they have been, nonetheless, 
quite important in improving the text. For exam¬ 
ple, the intrinsic concentration n, in Si is now 
taken as 1 X 1010 cm-3, instead of the usual value 
of 1.45 X 1010 cm 3 found in many other text¬ 
books; this change makes a significant difference 
in device-related calculations. A large number of 
new homework problems have been added, and 
more solved problems have been provided that 
put the concepts into applications. Bragg’s dif¬ 
fraction law that is mentioned in several chapters 
is now explained in Appendix A for those readers 
who are unfamiliar with it. 

The third edition is one of the few books on 
the market that has a broad coverage of electronic 
materials that today’s scientists and engineers 
need. I believe that the revisions have improved 
the rigor without sacrificing the original semi- 
quantitative approach that both the students and 
instructors liked. Some of the new and extended 
topics are as follows: 

Chapter 1 Thermal expansion; atomic 
diffusion 

Chapter 2 Conduction in thin films; inter¬ 
connects in microelectronics; 
electromigration 

Chapter 3 Planck’s and Stefan’s laws; atomic 
magnetic moment; Stem-Gerlach 
experiment 

Chapter 4 Field emission from carbon nan¬ 
otubes; Griineisen’s thermal 
expansion 

Chapter 5 Piezoresistivity; amorphous semi¬ 
conductors 

Chapter 6 LEDs; solar cells; semiconductor 
lasers 

Chapter 7 Debye relaxation; local field in 
dielectrics; ionic polarizability; 
Langevin dipolar polarization; 
dielectric mixtures 

Chapter 8 Pauli spin paramagnetism; band 
model of ferromagnetism; giant 
magnetoresistance (GMR); mag¬ 
netic storage 

Chapter 9 Sellmeier and Cauchy dispersion 
relations; Reststrahlen or lattice 
absorption; luminescence and 
white LEDs 

Appendices Bragg’s diffraction law and X-ray 
diffraction; luminous flux and 
brightness of radiation 

ORGANIZATION AND FEATURES 

In preparing the text, I tried to keep the general 
treatment and various proofs at a semiquantitative 
level without going into detailed physics. Many 
of the problems have been set to satisfy engineer¬ 
ing accreditation requirements. Some chapters in 
the text have additional topics to allow a more de¬ 
tailed treatment, usually including quantum me¬ 
chanics or more mathematics. Cross referencing 
has been avoided as much as possible without too 
much repetition and to allow various sections and 

XI 
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chapters to be skipped as desired by the reader. 
The text has been written to be easily usable in 
one-semester courses by allowing such flexibility. 

Some important features are 

• The principles are developed with the mini¬ 
mum of mathematics and with the emphasis 
on physical ideas. Quantum mechanics is part 
of the course but without its difficult mathe¬ 
matical formalism. 

• There are more than 170 worked examples or 
solved problems, most of which have a prac¬ 
tical significance. Students learn by way of 
examples, however simple, and to that end 
nearly 250 problems have been provided. 

• Even simple concepts have examples to aid 
learning. 

• Most students would like to have clear dia¬ 
grams to help them visualize the explanations 
and understand concepts. The text includes 
over 530 illustrations that have been profes¬ 
sionally prepared to reflect the concepts and 
aid the explanations in the text. 

• The end-of-chapter questions and problems 
are graded so that they start with easy concepts 
and eventually lead to more sophisticated 
concepts. Difficult problems are identified 
with an asterisk (*). Many practical applica¬ 
tions with diagrams have been included. 
There is a regularly updated online extended 
Solutions Manual for all instructors; simply 
locate the McGraw-Hill website for this text¬ 
book. 

• There is a glossary, Defining Terms, at the end 
of each chapter that defines some of the con¬ 
cepts and terms used, not only within the text 
but also in the problems. 

• The end of each chapter includes a section Ad¬ 
ditional Topics to further develop important 
concepts, to introduce interesting applications, 
or to prove a theorem. These topics are in¬ 
tended for the keen student and can be used as 
part of the text for a two-semester course. 

• The end of each chapter also includes a table 
CD Selected Topics and Solved Problems to 

enhance not only the subject coverage, but 
also the range of worked examples and 
applications. For example, the selected topic 
Essential Mechanical Properties can be used 
with Chapter 1 to obtain a broader coverage 
of elementary materials science. The selected 
topic Thermoelectric Effects in Semiconduc¬ 
tors can be used with Chapters 5 and 6 to un¬ 
derstand the origin of the Seebeck effect in 
semiconductors, and the reasons behind volt¬ 
age drift in many semiconductor devices. 
There are numerous such selected topics and 
solved problems in the CD. 

• The text is supported by McGraw-Hill’s text¬ 
book website that contains resources, such as 
solved problems, for both students and in¬ 
structors. Updates to various articles on the 
CD will be posted on this website. 

CD-ROM ELECTRONIC 
MATERIALS AND DEVICES: 
THIRD EDITION 

The book has a CD-ROM that contains all the fig¬ 
ures as large color diagrams in PowerPoint for 
the instructor, and class-ready notes for the stu¬ 
dents who do not have to draw the diagrams dur¬ 
ing the lectures. In addition, there are numerous 
Selected Topics and Solved Problems to extend 
the present coverage. These are listed in each 
chapter, and also at the end of the text. I strongly 
urge students to print out the CD’s Illustrated 
Dictionary of Electronic Materials and Devices: 
Third Student Edition, to look up new terms and 
use the dictionary to refresh various concepts. 
This is probably the best feature of the CD. 

ACKNOWLEDGMENTS 
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CHARTER 

1 

Elementary Materials 
Science Concepts1 

Understanding the basic building blocks of matter has been one of the most intriguing 
endeavors of humankind. Our understanding of interatomic interactions has now 
reached a point where we can quite comfortably explain the macroscopic properties of 
matter, based on quantum mechanics and electrostatic interactions between electrons 
and ionic nuclei in the material. There are many properties of materials that can be ex¬ 
plained by a classical treatment of the subject. In this chapter, as well as Chapter 2, we 
treat the interactions in a material from a classical perspective and introduce a number 
of elementary concepts. These concepts do not invoke any quantum mechanics, which 
is a subject of modem physics and is introduced in Chapter 3. Although many useful 
engineering properties of materials can be treated with hardly any quantum mechanics, 
it is impossible to develop the science of electronic materials and devices without 
modem physics. 

1.1 ATOMIC STRUCTURE AND ATOMIC NUMBER 
The model of the atom that we must use to understand the atom’s general behavior 
involves quantum mechanics, a topic we will study in detail in Chapter 3. For the pres¬ 
ent, we will simply accept the following facts about a simplified, but intuitively satis¬ 
factory, atomic model called the shell model, based on the Bohr model (1913). 

The mass of the atom is concentrated at the nucleus, which contains protons and 
neutrons. Protons are positively charged particles, whereas neutrons are neutral particles, 
and both have about the same mass. Although there is a Coulombic repulsion between 
the protons, all the protons and neutrons are held together in the nucleus by the 

1 This chapter may be skipped by readers who have already been exposed to an elementary course in materials 
science. 

3 
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Figure 1.1 The shell model of the carbon atom, 

in which the electrons are confined to certain shells 

and subshells within shells. ls22s22p2 or [He]2s22p2 

strong force, which is a powerful, fundamental, natural force between particles. This 
force has a very short range of influence, typically less than 10-15 m. When the protons 
and neutrons are brought together very closely, the strong force overcomes the elec¬ 
trostatic repulsion between the protons and keeps the nucleus intact. The number of 
protons in the nucleus is the atomic number Z of the element. 

The electrons are assumed to be orbiting the nucleus at very large distances com¬ 
pared to the size of the nucleus. There are as many orbiting electrons as there are pro¬ 
tons in the nucleus. An important assumption in the Bohr model is that only certain or¬ 
bits with fixed radii are stable around the nucleus. For example, the closest orbit of the 
electron in the hydrogen atom can only have a radius of 0.053 nm. Since the electron 
is constantly moving around an orbit with a given radius, over a long time period 
(perhaps ~10-12 seconds on the atomic time scale), the electron would appear as a 
spherical negative-charge cloud around the nucleus and not as a single dot represent¬ 
ing a finite particle. We can therefore view the electron as a charge contained within a 
spherical shell of a given radius. 

Due to the requirement of stable orbits, the electrons therefore do not randomly 
occupy the whole region around the nucleus. Instead, they occupy various well- 
defined spherical regions. They are distributed in various shells and subshells within 
the shells, obeying certain occupation (or seating) rules.2 The example for the carbon 
atom is shown in Figure 1.1. 

The shells and subshells that define the whereabouts of the electrons are labeled 
using two sets of integers, n and i. These integers are called the principal and orbital 
angular momentum quantum numbers, respectively. (The meanings of these names 
are not critical at this point.) The integers n and l have the values n = l,2,3,..., and 
l = 0,1, 2,..., n — 1, and l < n. For each choice of n, there are n values of i, so higher- 
order shells contain more subshells. The shells corresponding to n = 1,2, 3,4,... 

2 In Chapter 3, in which we discuss the quantum mechanical model of the atom, we will see that these shells and 
subshells are spatial regions around the nucleus where the electrons are most likely to be found. 
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Table 1.1 Maximum possible number of electrons in the shells and 

subshells of an atom 

Subshell 

t = o 1 2 3 

n Shell S P d / 

i K 2 

2 L 2 6 

3 M 2 6 10 

4 N 2 6 10 14 

are labeled by the capital letters K, L, M, N,..., and the subshells denoted by 
l — 0,1, 2, 3,... are labeled s, p,d, /.... The subshell with l = 1 in the n = 2 shell is 
thus labeled the 2p subshell, based on the standard notation ni. 

There is a definite rule to filling up the subshells with electrons; we cannot simply 
put all the electrons in one subshell. The number of electrons a given subshell can take 
is fixed by nature to be3 2{2l + 1). For the s subshell (C = 0), there are two electrons, 
whereas for the p subshell, there are six electrons, and so on. Table 1.1 summarizes the 
most number of electrons that can be put into various subshells and shells of an atom. 
Obviously, the larger the shell, the more electrons it can take, simply because it contains 
more subshells. The shells and subshells are filled starting with those closest to the 
nucleus as explained next. 

The number of electrons in a subshell is indicated by a superscript on the subshell 
symbol, so the electronic structure, or configuration, of the carbon atom (atomic num¬ 
ber 6) shown in Figure 1.1 becomes \s22s22p2. The K shell has only one subshell, 
which is full with two electrons. This is the structure of the inert element He. We can 
therefore write the electronic configuration more simply as [He]2s22p2. The general 
rule is put the nearest previous inert element, in this case He, in square brackets and 
write the subshells thereafter. 

The electrons occupying the outer subshells are the farthest away from the nucleus 
and have the most important role in atomic interactions, as in chemical reactions, be¬ 
cause these electrons are the first to interact with outer electrons on neighboring 
atoms. The outermost electrons are called valence electrons and they determine the 
valency of the atom. Figure 1.1 shows that carbon has four valence electrons in the 
L shell. 

When a subshell is full of electrons, it cannot accept any more electrons and it 
is said to have acquired a stable configuration. This is the case with the inert ele¬ 
ments at the right-hand side of the Periodic Table, all of which have completely 
filled subshells and are rarely involved in chemical reactions. The majority of such 
elements are gases inasmuch as the atoms do not bond together easily to form a 

I 3 We will actually show this in Chapter 3 using quantum mechanics. 
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Virial 

theorem 

liquid or solid. They are sometimes used to provide an inert atmosphere instead of 
air for certain reactive materials. 

In an atom such as the Li atom, there are two electrons in the Is subshell and one 
electron in the 2s subshell. The atomic structure of Li is \s2lsx . The third electron is 
in the 2s subshell, rather than any other subshell, because this is the arrangement of 
the electrons that results in the lowest overall energy for the whole atom. It requires 
energy (work) to take the third electron from the 2s to the 2p or higher subshells as 
will be shown in Chapter 3. Normally the zero energy reference corresponds to the 
electron being at infinity, that is, isolated from the atom. When the electron is inside 
the atom, its energy is negative, which is due to the attraction of the positive nucleus. 
An electron that is closer to the nucleus has a lower energy. The electrons nearer the 
nucleus are more closely bound and have higher binding energies. The ls22s* con¬ 
figuration of electrons corresponds to the lowest energy structure for Li and, at the 
same time, obeys the occupation rules for the subshells. If the 25 electron is somehow 
excited to another outer subshell, the energy of the atom increases, and the atom is 
said to be excited. 

The smallest energy required to remove a single electron from a neutral atom 
and thereby create a positive ion (cation) and an isolated electron is defined as the 
ionization energy of the atom. The Na atom has only a single valence electron in 
its outer shell, which is the easiest to remove. The energy required to remove this 
electron is 5.1 eV, which is the Na atom’s ionization energy. The electron affinity 
represents the energy that is needed, or released, when we add an electron to a neu¬ 
tral atom to create a negative ion (anion). Notice that the ionization term implies the 
generation of a positive ion, whereas the electron affinity implies that we have cre¬ 
ated a negative ion. Certain atoms, notably the halogens (such as F, Cl, Br, I), can 
actually attract an electron to form a negative ion. Their electron affinities are neg¬ 
ative. When we place an electron into a Cl atom, we find that an energy of 3.6 eV is 
released. The Cl- ion has a lower energy than the Cl atom, which means that it 
is energetically favorable to form a Cl- ion by introducing an electron into the 
Cl atom. 

There is a very useful theorem in physics, called the Virial theorem, that allows 
us to relate the averageJdnetic energy KE, average potential energy PE, and average 
total or overall energy E of an electron in an atom, or electrons and nuclei in a mole¬ 
cule, through remarkably simple relationships,4 

~E = KE + PE and KE = -\~PE [1.1] 

For example, if we define zero energy for the H atom as the H+ ion and the 
electron infinitely separated, then the energy of the electron in the H atom is —13.6 
electron volts (eV). It takes 13.6 eV to ionize the H atom. The average PE of the electron, 
due to its Coulombic interaction with the positive nucleus, is —27.4 eV. Its average KE 

turns out to be 13.6 eV. Example 1.1 uses the Virial theorem to calculate the radius of 
the hydrogen atom, the velocity of the electron, and its frequency of rotation. 

4 While the final result stated in Equation 1.1 is elegantly simple, the actual proof is quite involved and certainly not 
trivial. As stated here, the Virial theorem applies to a system of charges that interact through electrostatic forces only. 
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VIRIAL THEOREM AND THE BOHR ATOM Consider the hydrogen atom in Figure 1.2 in which 
the electron is in the stable Is orbit with a radius r0. The ionization energy of the hydrogen atom 
is 13.6 eV. 

EXAMPLE 1.1 

a. It takes 13.6 eV to ionize the hydrogen atom, i.e., to remove the electron to infinity. If the 
condition when the electron is far removed from the hydrogen nucleus defines the zero 
reference of energy, then the total energy of the electron within the H atom is —13.6 eV. 
Calculate the average PE and average KE of the electron. 

b. Assume that the electron is in a stable orbit of radius r0 around the positive nucleus. What 
is the Coulombic PE of the electron? Hence, what is the radius r0 of the electron orbit? 

c. What is the velocity of the electron? 

d. What is the frequency of rotation (oscillation) of the electron around the nucleus? 

SOLUTION 

a. From Equation 1.1 we obtain 

~E = PE + KE = \~PE 

or ~PE = 2E = 2 x (—13.6 eV) = —27.2 eV 

The average kinetic energy is 

KE = -\PE= 13.6 eV 

b. The Coulombic PE of interaction between two charges Q\ and Q2 separated by a distance 
r0, from elementary electrostatics, is given by 

PE~ Q'®2 _ (~g)(+g) _ g2 
4 7ts0r0 4jt e0r0 4 ne0ro 

where we substituted Q\——e (electron’s charge), and Q2 — +e (charge of nucleus). 
Thus the radius r0 is 

(1.6 x 10-19 C)2 

r° ~ _4tt(8.85 x 10-12 Fm-')(-27.2eV x 1.6 x 10~19 J/eV) 

= 5.29 x 10-11 m or 0.0529 nm 

which is called the Bohr radius (also denoted a0). 

Stable orbit has radius r0 Figure 1.2 The planetary model of the hydrogen atom in which 

the negatively charged electron orbits the positively charged 

nucleus. 

v 
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c. Since KE = ~mev2, the average velocity is 
2 

V = 
KE 

\me 

13.6 eV x 1.6 x 10~19 J/eV 

4(9.1 x 10"31 kg) 
= 2.19 x 106ms -l 

d. The period of orbital rotation T is 

T = 
2nr0 2tt(0.0529 x 10-9 m) 

v 2.19 x 106 m s-t 

The orbital frequency v = l/T = 6.59 x 1015 s-1 (Hz). 

= 1.52 x 10 16 seconds 

1.2 ATOMIC MASS AND MOLE 

We had defined the atomic number Z as the number of protons in the nucleus of an 
atom. The atomic mass number A is simply the total number of protons and neutrons 
in the nucleus. It may be thought that we can use the atomic mass number A of an atom 
to gauge its atomic mass, but this is done slightly differently to account for the exis¬ 
tence of different isotopes of an element; isotopes are atoms of a given element that 
have the same number of protons but a different number of neutrons in the nucleus. 
The atomic mass unit (amu) u is a convenient atomic mass unit that is equal to -L of 
the mass of a neutral carbon atom which has a mass number A = 12 (6 protons and 
6 neutrons). It has been found that u = 1.66054 x 10-27 kg. 

The atomic mass or relative atomic mass or simply atomic weight Mat of an 
element is the average atomic mass, in atomic mass units, of all the naturally occurring 
isotopes of the element. Atomic masses are listed in the Periodic Table. Avogadro’s 
number NA is the number of atoms in exactly 12 grams of carbon-12, which is 
6.022 x 1023 to three decimal places. Since the atomic mass A/at is defined as ^ of the 
mass of the carbon-12 atom, it is straightforward to show that NA number of atoms of 
any substance has a mass equal to the atomic mass Mat in grams. 

A mole of a substance is that amount of the substance which contains exactly 
Avogadro’s number NA of atoms or molecules that make up the substance. One 
mole of a substance has a mass as much as its atomic (molecular) mass in grams. 
For example, 1 mole of copper contains 6.022 x 1023 number of copper atoms and 
has a mass of 63.55 grams. Thus, an amount of an element which has 6.022 x 1023 
atoms has a mass in grams equal to the atomic mass. This means we can express 
the atomic mass as grams per unit mole (g mol-1). The atomic mass of Au is 
196.97 amu or g mol-1. Thus, a 10 gram bar of gold has (10 g) / (196.97 g mol-1) 
or 0.0507 moles. 

Frequently we have to convert the composition of a substance from atomic per¬ 
centage to weight percentage, and vice versa. Compositions in materials engineering 
generally use weight percentages, whereas chemical formulas are given in terms of 
atomic composition. Suppose that a substance (an alloy or a compound) is composed 
of two elements, A and B. Let the weight fractions of A and B be wA and wB, respec¬ 
tively. Let nA and nB be the atomic or molar fractions of A and B; that is, nA represents 
the fraction of type A atoms, n B represents the fraction of type B atoms in the whole 
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substance, and nA + = 1. Suppose that the atomic masses of A and B are MA and 
Mq. Then nA and ns are given by 

nA = 
u)A/Ma 

wa/Ma + wb/Mb 
and = 1 — nA [1.2] 

where wA + wB = \. Equation 1.2 can be readily rearranged to obtain wA and wB in 

terms of nA and nB. 

Weight to 

atomic 

percentage 

COMPOSITIONS IN ATOMIC AND WEIGHT PERCENTAGES Consider a Pb-Sn solder that is 
38.1 wt.% Pb and 61.9 wt.% Sn (this is the eutectic composition with the lowest melting point). 
What are the atomic fractions of Pb and Sn in this solder? 

EXAMPLE 1.2 

SOLUTION 

For Pb, the weight fraction and atomic mass are respectively wA = 0.381 and MA = 207.2 g 
mol-1 and for Sn, wB = 0.619 and MB = 118.71 g mol-1. Thus, Equation 1.2 gives 

wa/Ma (0.381)/(207.2) 

Ha ~ wa/Ma + wb/Mb ~ 0.381/207.2 + 0.619/118.71 

= 0.261 or 26.1 at.% 

and 
wb/Mb (0.619)/( 118.71) 

wa/Ma + wb/Mb ~ 0.381/207.2 + 0.619/118.71 

= 0.739 or 73.9 at.% 

Thus the alloy is 26.1 at.% Pb and 73.9 at.% Sn which can be written as Pb0.26i Sno.739. 

1.3 BONDING AND TYPES OF SOLIDS 

1.3.1 Molecules and General Bonding Principles 

When two atoms are brought together, the valence electrons interact with each other 
and with the neighbor’s positively charged nucleus. The result of this interaction is 
often the formation of a bond between the two atoms, producing a molecule. The 
formation of a bond means that the energy of the system of two atoms together must 
be less than that of the two atoms separated, so that the molecule formation is ener¬ 
getically favorable, that is, more stable. The general principle of molecule formation 
is illustrated in Figure 1.3a, showing two atoms brought together from infinity. 
As the two atoms approach each other, the atoms exert attractive and repulsive 
forces on each other as a result of mutual electrostatic interactions. Initially, the at¬ 
tractive force Fa dominates over the repulsive force FR. The net force FN is the sum 
of the two, 

Fn — FA + Fr 

and this is initially attractive, as indicated in Figure 1.3a. 

Net force 
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Net force and 

potential 
energy 

Net force in 

bonding 

between 

atoms 

The potential energy E(r) of the two atoms can be found from5 

dE 

by integrating the net force FN. Figure 1.3a and b shows the variation of the net force 
FN(r) and the overall potential energy E(r) with the interatomic separation r as the 
two atoms are brought together from infinity. The lowering of energy corresponds to 
an attractive interaction between the two atoms. 

The variations of FA and FR with distance are different. Force FA varies slowly, 
whereas FR varies strongly with separation and is strongest when the two atoms are 
very close. When the atoms are so close that the individual electron shells overlap, 
there is a very strong electron-to-electron shell repulsion and FR dominates. An equi¬ 
librium will be reached when the attractive force just balances the repulsive force and 
the net force is zero, or 

Fn = FA + Fr = 0 [1.3] 

In this state of equilibrium, the atoms are separated by a certain distance r0, as 
shown in Figure 1.3. This distance is called the equilibrium separation and is effec¬ 
tively the bond length. On the energy diagram, Fn = 0 means dE/dr = 0, which 
means that the equilibrium of two atoms corresponds to the potential energy of the 

I 5 Remember that the change dE in the PE is the work done against the force, dE = Fn dr. 
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system acquiring its minimum value. Consequently, the molecule will only be formed 
if the energy of the two atoms as they approach each other can attain a minimum. This 
minimum energy also defines the bond energy of the molecule, as depicted in Fig¬ 
ure 1.3b. An energy of E0 is required to separate the two atoms, and this represents the 

bond energy. 
Although we considered only two atoms, similar arguments also apply to bonding 

between many atoms, or between millions of atoms as in a typical solid. Although the 
actual details of FA and FR will change from material to material, the general princi¬ 
ple that there is a bonding energy E0 per atom and an equilibrium interatomic separa¬ 
tion r0 will still be valid. Even in a solid in the presence of many interacting atoms, we 
can still identify a general potential energy curve E(r) per atom similar to the type 
shown in Figure 1.3b. We can also use the curve to understand the properties of the 
solid, such as the thermal expansion coefficient and elastic and bulk moduli. 

1.3.2 Covalently Bonded Solids: Diamond 

Two atoms can form a bond with each other by sharing some or all of their valence 
electrons and thereby reducing the overall potential energy of the combination. The co¬ 
valent bond results from the sharing of valence electrons to complete the subshells of 
each atom. Figure 1.4 shows the formation of a covalent bond between two hydrogen 
atoms as they come together to form the H2 molecule. When the Is subshells overlap, 
the electrons are shared by both atoms and each atom now has a complete subshell. As 
illustrated in Figure 1.4, electrons 1 and 2 must now orbit both atoms; they therefore 
cross the overlap region more frequently, indeed twice as often. Thus, electron sharing, 

H atom 
Electron shell 

H atom 

Is 

Figure 1.4 Formation of a covalent bond 

between two H atoms, leading to the H2 molecule. 

Electrons spend a majority of their time between the 

two nuclei, which results in a net attraction between 

the electrons and the two nuclei, which is the origin 

of the covalent bond. 

Covalent bond 

H-H molecule 
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(b) (c) 

Figure 1.5 

(a) Covalent bonding in methane, CH4, which involves four hydrogen atoms sharing electrons with one carbon 
atom. 

Each covalent bond has two shared electrons. The four bonds are identical and repel each other. 

(b) Schematic sketch of CH4 on paper. 

(c) In three dimensions, due to symmetry, the bonds are directed toward the corners of a tetrahedron. 

on average, results in a greater concentration of negative charge in the region between 
the two nuclei, which keeps the two nuclei bonded to each other. Furthermore, by syn¬ 
chronizing their motions, electrons 1 and 2 can avoid crossing the overlap region at the 
same time. For example, when electron 1 is at the far right (or left), electron 2 is in the 
overlap region; later, the situation is reversed. 

The electronic structure of the carbon atom is [He]2s22p2 with four empty seats in 
the 2p subshell. The Is and 2p subshells, however, are quite close. When other atoms 
are in the vicinity, as a result of interatomic interactions, the two subshells become 
indistinguishable and we can consider only the shell itself, which is the L shell with a 
capacity of eight electrons. It is clear that the C atom with four vacancies in the L shell 
can readily share electrons with four H atoms, as depicted in Figure 1.5, whereby the C 
atom and each of the H atoms attain complete shells. This is the CH4 molecule, which 
is the gas methane. The repulsion between the electrons in one bond and the electrons 
in a neighboring bond causes the bonds to spread as far out from each other as possi¬ 
ble, so that in three dimensions, the H atoms occupy the comers of an imaginary 
tetrahedron and the CH bonds are at an angle of 109.5° to each other, as sketched in 
Figure 1.5. 

The C atom can also share electrons with other C atoms, as shown in Figure 1.6. 
Each neighboring C atom can share electrons with other C atoms, leading to a three- 
dimensional network of a covalently bonded structure. This is the structure of the pre¬ 
cious diamond crystal, in which all the carbon atoms are covalently bonded to each 
other, as depicted in the figure. The coordination number (CN) is the number of near¬ 
est neighbors for a given atom in the solid. As is apparent in Figure 1.6, the coordina¬ 
tion number for a carbon atom in the diamond crystal structure is 4. 
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Figure 1.6 The diamond crystal is a 

covalently bonded network of carbon atoms. 

Each carbon atom is bonded covalently to four 

neighbors, forming a regular three-dimensional 

pattern of atoms that constitutes the diamond 

crystal. 

Due to the strong Coulombic attraction between the shared electrons and the pos¬ 

itive nuclei, the covalent bond energy is usually the highest for all bond types, leading 

to very high melting temperatures and very hard solids: diamond is one of the hardest 

known materials. 

Covalently bonded solids are also insoluble in nearly all solvents. The directional 

nature and strength of the covalent bond also make these materials nonductile (or non- 

malleable). Under a strong force, they exhibit brittle fracture. Further, since all the va¬ 

lence electrons are locked in the bonds between the atoms, these electrons are not free 

to drift in the crystal when an electric field is applied. Consequently, the electrical con¬ 

ductivity of such materials is very poor. 

1.3.3 Metallic Bonding: Copper 

Metal atoms have only a few valence electrons, which are not very difficult to remove. 

When many metal atoms tire brought together to form a solid, these valence electrons 

are lost from individual atoms and become collectively shared by all the ions. The 

valence electrons therefore become delocalized and form an electron gas or electron 
cloud, permeating the space between the ions, as depicted in Figure 1.7. The attrac¬ 

tion between the negative charge of this electron gas and the metal ions more 

than compensates for the energy initially required to remove the valence electrons 

from the individual atoms. Thus, the bonding in a metal is essentially due to the 

attraction between the stationary metal ions and the freely wandering electrons 

between the ions. 
The bond is a collective sharing of electrons and is therefore nondirectional. Con¬ 

sequently, the metal ions try to get as close as possible, which leads to close-packed 
crystal structures with high coordination numbers, compared to covalently bonded 

solids. In the particular example shown in Figure 1.7, Cu+ ions are packed as closely 

as possible by the gluing effect of the electrons between the ions, forming a crystal 
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Positive Free valence 
metal ion electrons 

cores forming an 
electron gas 

Figure 1.7 In metallic bonding, the valence electrons from the metal atoms form a "cloud of 

electrons," which fills the space between the metal ions and "glues" the ions together through 

Coulombic attraction between the electron gas and the positive metal ions. 

structure called the face-centered cubic (FCC). The FCC crystal structure, as 
explained later in Section 1.8, has Cu+ ions at the comers of a cube and a Cu+ at the 
center of each cube-face. (See Figure 1.31.) 

The results of this type of bonding are dramatic. First, the nondirectional nature 
of the bond means that under an applied force, metal ions are able to move with re¬ 
spect to each other, especially in the presence of certain crystal defects (such as 
dislocations). Thus, metals tend to be ductile. Most importantly, however, the “free” 
valence electrons in the electron gas can respond readily to an applied electric field 
and drift along the force of the field, which is the reason for the high electrical con¬ 
ductivity of metals. Furthermore, if there is a temperature gradient along a metal bar, 
the free electrons can also contribute to the energy transfer from the hot to the cold 
regions, since they frequently collide with the metal ions and thereby transfer energy. 
Metals therefore, typically, also have good thermal conductivities; that is, they eas¬ 
ily conduct heat. This is why when you touch your finger to a metal it feels cold be¬ 
cause it conducts heat “away” from the finger to the ambient (making the fingertip 
“feel” cold). 

1.3.4 Ionically Bonded Solids: Salt 

Common table salt, NaCl, is a classic example of a solid in which the atoms are held 
together by ionic bonding. Ionic bonding is frequently found in materials that nor¬ 
mally have a metal and a nonmetal as the constituent elements. Sodium (Na) is an al¬ 
kaline metal with only one valence electron that can easily be removed to form an Na+ 
ion with complete subshells. The ion Na+ looks like the inert element Ne, but with a 
positive charge. Chlorine has five electrons in its 3p subshell and can readily accept 
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Figure 1.8 The formation of an ionic bond 

between Na and Cl atoms in NaCl. 

The attraction is due to Coulombic forces. 

one more electron to close this subshell. By taking the electron given up by the Na 
atom, the Cl atom becomes negatively charged and looks like the inert element Ar with 
a net negative charge. Transferring the valence electron of Na to Cl thus results in two 
oppositely charged ions, Na+ and Cl-, which are called the cation and anion, respec¬ 
tively, as shown in Figure 1.8. As a result of the Coulombic force, the two ions pull 
each other until the attractive force is just balanced by the repulsive force between the 
closed electron shells. Initially, energy is needed to remove the electron from the Na 
atom; this is the energy of ionization. However, this is more than compensated for by 
the energy of Coulombic attraction between the two resulting oppositely charged ions, 
and the net effect is a lowering of the potential energy of the Na+ and Cl- ion pair. 

When many Na and Cl atoms are ionized and brought together, the resulting col¬ 
lection of ions is held together by the Coulombic attraction between the Na+ and Cl" 
ions. The solid thus consists of Na+ cations and Cl- anions holding each other through 
the Coulombic force, as depicted in Figure 1.9. The Coulombic force around a charge 
is nondirectional; also, it can be attractive or repulsive, depending on the polarity of 
the interacting ions. There are also repulsive Coulombic forces between the Na+ ions 
themselves and between the Cl- ions themselves. For the solid to be stable, each Na+ 
ion must therefore have Cl- ions as nearest neighbors and vice versa so that like-ions 
are not close to each other. 

The ions are in equilibrium and the solid is stable when the net potential energy 
is minimum, or dE/dr = 0. Figure 1.10 illustrates the variation of the net potential 
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Figure 1.9 

(a) A schematic illustration of a cross section from solid NaCl. Solid NaCl is made of Cl- and Na+ 
ions arranged alternafingly, so the oppositely charged ions are closest to each other and attract 
each other. There are also repulsive forces between the like-ions. In equilibrium, the net force acting 
on any ion is zero. 

(b) Solid NaCl. 

Figure 1.10 Sketch of the potential 
energy per ion pair in solid NaCl. 

Zero energy corresponds to neutral Na 
and Cl atoms infinitely separated. 

Potential energy E(r), eV/(ion-pair) 

energy for a pair of ions as the interatomic distance r is reduced from infinity to less 
than the equilibrium separation, that is, as the ions are brought together from infinity. 
Zero energy corresponds to separated Na and Cl atoms. Initially, about 1.5 eV is 
required to transfer the electron from the Na to Cl atom and thereby form Na+ and 
Cl" ions. Then, as the ions come together, the energy is lowered, until it reaches a 
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minimum at about 6.3 eV below the energy of the separated Na and Cl atoms. When 
r = 0.28 nm, the energy is minimum and the ions are in equilibrium. The bonding 
energy per ion in solid NaCl is thus 6.3/2 or 3.15 eV, as is apparent in Figure 1.10. The 
energy required to take solid NaCl apart into individual Na and Cl atoms is the atomic 
cohesive energy of the solid, which is 3.15 eV per atom. 

In solid NaCl, the Na+ and Cl” ions are thus arranged with each one having op¬ 
positely charged ions as its neighbors, to attain a minimum of potential energy. Since 
there is a size difference between the ions and since we must avoid like-ions getting 
close to each other, if we want to achieve a stable structure, each ion can have only six 
oppositely charged ions as nearest neighbors. Figure 1.9b shows the packing of Na+ 
and Cl- ions in the solid. The number of nearest neighbors, that is, the coordination 
number, for both cations and anions in the NaCl crystal is 6. 

A number of solids consisting of metal-nonmetal elements follow the NaCl ex¬ 
ample and have ionic bonding. They are called ionic crystals and, by virtue of their 
ionic bonding characteristics, share many physical properties. For example, LiF, MgO 
(magnesia), CsCl, and ZnS are all ionic crystals. They are strong, brittle materials with 
high melting temperatures compared to metals. Most become soluble in polar liquids 
such as water. Since all the electrons are within the rigidly positioned ions, there are no 
free or loose electrons to wander around in the crystal as in metals. Therefore, ionic 
solids are typically electrical insulators. Compared to metals and covalently bonded 
solids, ionically bonded solids have lower thermal conductivity since ions cannot read¬ 
ily pass vibrational kinetic energy to their neighbors. 

IONIC BONDING AND LATTICE ENERGY The potential energy E per Na+- Cl pair within the 
NaCl crystal depends on the interionic separation r as 

£(r) = 
e2M B 

4 ne0r rm 
[1.4] 

where the first term is the attractive and the second term is the repulsive potential energy, and 
M, B, and m are constants explained in the following. If we were to consider the potential 
energy PE of one ion pair in isolation from all others, the first term would be a simple Coulom- 
bic interaction energy for the Na+-Cl~ pair, and M would be 1. Within the NaCl crystal, how¬ 
ever, a given ion, such as Na+, interacts not only with its nearest six Cl- neighbors (Figure 
1.9b), but also with its twelve second neighbors (Na+), eight third neighbors (Cl-), and so on, 
so the total or effective PE has a factor M, called the Madelung constant, that takes into account 
all these different Coulombic interactions. M depends only on the geometrical arrangement of 
ions in the crystal, and hence on the particular crystal structure; for the FCC crystal structure, 
M = 1.748. The Na+-Cl- ion pair also have a repulsive PE that is due to the repulsion between 
the electrons in filled electronic subshells of the ions. If the ions are pushed toward each other, 
the filled subshells begin to overlap, which results in a strong repulsion. The repulsive PE de¬ 
cays rapidly with distance and can be modeled by a short-range PE of the form B/rm as in the 
second term in Equation 1.4 where for Na+^C1~, m = 8 and B = 6.972 x 10-96 J m8. Find the 
equilibrium separation (r„) of the ions in the crystal and the ionic bonding energy, defined as 
-E{r0). Given the ionization energy of Na (the energy to remove an electron) is 5.14 eV and 
the electron affinity of Cl (energy released when an electron is added) is 3.61 eV, calculate the 
atomic cohesive energy of the NaCl crystal as joules per mole. 

EXAMPLE 1.3 

Energy per 

ion pair in an 

ionic crystal 
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SOLUTION 

Equilibrium 

ionic 

separation 

Minimum PE 

at bonding 

Bonding occurs when the potential energy E (r) is a minimum at r = r0 corresponding to the 
equilibrium separation between the Na+ and Cl- ions. We differentiate E (r) and set it to zero 
at r = r0, 

e2M dE(r) 

dr 

mB 

4 nenr2 rm+1 
= 0 at r = r0 

Solving for r0. 

Thus, 

4jze0Bm~^l(m 

e2M J [1.5] 

4;r(8.85 x 10~12 Fm~1)(6.972 x 10"96 J m8)(8)' 
1/(8-1) 

(1.6 x 10_19C)2(1.748) 

= 0.281 x 10 9m or 0.28 nm 

The minimum energy E^n per ion pair is E (r0) and can be simplified further by substituting for 
B in terms of r0: 

e2M D -2» 
E = ^min — 

4ne, 

t B _ e2M / J_\ 

,r0 r™ 4 ne0r0\ m) 
[1.6] 

Thus, 

(1.6 x 10~19 C)2( 1.748) 
E min — 

4tt(8.85 X 10-12 Fm-1)(2.81 x 10~10 m) 

= -1.256 x 10"18 J or - 7.84 eV 

0-i) 
This is the energy with respect to two isolated Na+ and Cl" ions. We need 7.84 eV to break 

up a Na+-Cl" pair into isolated Na+ and Cl" ions, which represents the ionic cohesive energy. 

Some authors call this ionic cohesive energy simply the lattice energy. To take the crystal apart 
into its neutral atoms, we have to transfer the electron from the Cl~ ion to the Na+ ion to obtain 
neutral Na and Cl atoms. It takes 3.61 eV to remove the electron from the Cl" ion, but 5.14 eV is 
released when it is put into the Na+ ion. Thus, we need 7.84 eV + 3.61 eV but get back 5.14 eV. 

Bond energy per Na-Cl pair = 7.84 eV + 3.61 eV — 5.14 eV = 6.31 eV 

The atomic cohesive energy in terms of joules per mole is 

^cohesive = (6.31 eV)(1.6022 x 10"19 J/eV)(6.022 x 1023mol"') = 608 kJmol"1 

1.3.5 Secondary Bonding 

Covalent, ionic, and metallic bonds between atoms are known as primary bonds. It 
may be thought that there should be no such bonding between the atoms of the inert 
elements as they have full shells and therefore cannot accept or lose any electrons, nor 
share any electrons. However, the fact that a solid phase of argon exists at low temper¬ 
atures, below —189 °C, means that there must be some bonding mechanism between the 
Ar atoms. The magnitude of this bond cannot be strong because above —189 °C solid 
argon melts. Although each water molecule H2O is neutral overall, these molecules 
nonetheless attract each other to form the liquid state below 100 °C and the solid state 
below 0 °C. Between all atoms and molecules, there exists a weak type of attraction, the 
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(a) (b) (c) 

Figure 1.11 

(a) A permanently polarized molecule is called an electric dipole moment. 

(b) Dipoles can attract or repel each other depending on their relative orientations. 

(c) Suitably oriented dipoles attract each other to form van der Waals bonds. 

so-called van der Waals-London force, which is due to a net electrostatic attraction be¬ 
tween the electron distribution of one atom and the positive nucleus of the other. 

In many molecules the concentrations of negative and positive charges do not coin¬ 
cide. As apparent in the HC1 molecule in Figure 1.11a, the electrons spend most of their 
time around the Cl nucleus, so the positive nucleus of the H atom is exposed (H has ef¬ 
fectively donated its electron to the Cl atom) and the Cl-region acquires more negative 
charge than the H-region. An electric dipole moment occurs whenever a negative and a 
positive charge of equal magnitude are separated by a distance as in the H+-C1” mole¬ 
cule in Figure 1.11a. Such molecules are polar, and depending on their relative orienta¬ 
tions, they can attract or repel each other as depicted in Figure 1.11b. Two dipoles 
arranged head to tail attract each other because the closest separation between charges on 
A and B is between the negative charge on A and the positive charge on B, and the net 
result is an electrostatic attraction. The magnitude of the net force between two dipoles 
A and B, however, does not depend on their separation r as 1/r2 because there are both 
attractions and repulsions between the charges on A and charges on B and the net force 
is only weakly attractive. (In fact, the net force depends on 1/r4.) If the dipoles are 
arranged head to head or tail to tail, then, by similar arguments, the two dipoles repel 
each other. Suitably arranged dipoles can attract each other and form van der Waals 
bonds as illustrated in Figure 1.11c. The energies of such dipole arrangements as in Fig¬ 
ure 1.1 lc are less than that of totally isolated dipoles and therefore encourage “bonding.” 
Such bonds are weaker than primary bonds and are called secondary bonds. 

The water molecule H2O is also polar and has a net dipole moment as shown in 
Figure 1.12a. The attractions between the positive charges on one molecule and the 
negative charges on a neighboring molecule lead to van der Waals bonding between 
the H2O molecules in water as illustrated in Figure 1.12b. When the positive charge of 
a dipole as in H2O arises from an exposed H nucleus, van der Waals bonding is referred 
to as hydrogen bonding. In ice, the H2O molecules, again attracted by van der Waals 
forces, bond to form a regular pattern and hence a crystal structure. 

Van der Waals attraction also occurs between neutral atoms and nonpolar mole¬ 
cules. Consider the bonding between Ne atoms at low temperatures. Each has closed 
(or full) electron shells. The center of mass of the electrons in the closed shells, when 
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Figure 1.12 The origin of van der Waals bonding between water molecules. 

|a) The H2O molecule is polar and has a net permanent dipole moment. 

(b) Attractions between the various dipole moments in water give rise to van der 
Waals bonding. 

Time averaged electron (negative 

Ionic core Instantaneous electron (negative Synchronized fluctuations 
(nucleus + K shell) charge) distribution fluctuates about of the electrons 

the nucleus 

Figure 1.13 Induced-dipole-induced-dipole interaction and the resulting van der Waals force. 

averaged over time, coincides with the location of the positive nucleus. At any one in¬ 
stant, however, the center of mass is displaced from the nucleus due to various motions 
of the individual electrons around the nucleus as depicted in Figure 1.13. In fact, the 
center of mass of all the electrons fluctuates with time about the nucleus. Consequently, 
the electron charge distribution is not static around the nucleus but fluctuates asym¬ 
metrically, giving rise to an instantaneous dipole moment. 

When two Ne atoms, A and B, approach each other, the rapidly fluctuating negative 
charge distribution on one affects the motion of the negative charge distribution on the 
other. A lower energy configuration (i.e., attraction) is produced when the fluctuations 
are synchronized so that the negative charge distribution on A gets closer to the nu¬ 
cleus of the other, B, while the negative distribution on B at that instant stays away 
from that on A as shown in Figure 1.13. The strongest electrostatic interaction arises 
from the closest charges which are the displaced electrons in A and the nucleus in B. 
This means that there will be a net attraction between the two atoms and hence a low¬ 
ering of the net energy which in turn leads to bonding. 

This type of attraction between two atoms is due to induced synchronization of 
the electronic motions around the nuclei, and we refer to this as induced-dipole-induced- 
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Table 1.2 Comparison of bond types and typical properties (general trends) 

Bond 

Type 

Typical 

Solids 

Bond 

Energy 

(eV/atom) 

Melt. 
Temp. 

(°C) 

Elastic 

Modulus 

(GPa) 

Density 

(g cm-3) Typical Properties 

Ionic NaCl 

(rock salt) 

3.2 801 40 2.17 Generally electrical insulators. May 

become conductive at high temperatures. 

MgO 
(magnesia) 

10 2852 250 3.58 High elastic modulus. Hard and brittle but 

cleavable. 

Thermal conductivity less than metals. 

Metallic Cu 3.1 1083 120 8.96 Electrical conductor. 
Mg 1.1 650 44 1.74 Good thermal conduction. 

High elastic modulus. 

Generally ductile. Can be shaped. 

Covalent Si 4 1410 190 2.33 Large elastic modulus. 

Hard and brittle. 

C (diamond) 7.4 3550 827 3.52 Diamond is the hardest material. 

Good electrical insulator. 

Moderate thermal conduction, though 

diamond has exceptionally high 

thermal conductivity. 

van der 

Waals: 

PVC 

(polymer) 

212 4 1.3 Low elastic modulus. 

Some ductility. 
hydrogen 

bonding 

H20 (ice) 0.52 0 9.1 0.917 Electrical insulator. 

Poor thermal conductivity. 

Large thermal expansion coefficient. 

van der 

Waals: 

induced 

dipole 

Crystalline 

argon 

0.09 -189 8 1.8 Low elastic modulus. 

Electrical insulator. 

Poor thermal conductivity. 

Large thermal expansion coefficient. 

dipole. It is weaker than permanent dipole interactions and at least an order of magni¬ 
tude less than primary bonding. This is the reason why the inert elements Ne and Ar 
solidify at temperatures below 25 K (—248 °C) and 84 K (—189°C). Induced di¬ 
pole-induced dipole interactions also occur between nonpolar molecules such as H2, 
I2, CH4, etc. Methane gas (CH4) can be solidified at very low temperatures. Solids in 
which constituent molecules (or atoms) have been bonded by van der Waals forces are 
known as molecular solids; ice, solidified CO2 (dry ice), O2, H2, CH4, and solid inert 
gases, are typical examples. 

Van der Waals bonding is responsible for holding the carbon chains together in 
polymers. Although the C-to-C bond in a C-chain is due to covalent bonding, the in¬ 
teraction between the C-chains arises from van der Waals forces and the interchain 
bonding is therefore of secondary nature. These bonds are weak and can be easily 
stretched or broken. Polymers therefore have substantially lower elastic moduli and 
melting temperatures than metals and ceramics. 

Table 1.2 compares the energies involved in the five types of bonding found in ma¬ 
terials. It also lists some important properties of these materials to show the correlation 
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with the bond type and its energy. The greater is the bond energy, for example, the 
higher is the melting temperature. Similarly, strong bond energies lead to greater 
elastic moduli and smaller thermal expansion coefficients. Metals generally have the 
greatest electrical conductivity since only this type of bonding allows a very large 
number of free charges (conduction electrons) to wander in the solid and thereby con¬ 
tribute to electrical conduction. Electrical conduction in other types of solid may 
involve the motion of ions or charged defects from one fixed location to another. 

1.3.6 Mixed Bonding 

In many solids, the bonding between atoms is generally not just of one type; rather, it 
is a mixture of bond types. We know that bonding in the silicon crystal is totally cova¬ 
lent, because the shared electrons in the bonds are equally attracted by the neighboring 
positive ion cores and are therefore equally shared. When there is a covalent-type bond 
between two different atoms, the electrons become unequally shared, because the two 
neighboring ion cores are different and hence have different electron-attracting abili¬ 
ties. The bond is no longer purely covalent; it has some ionic character, because the 
shared electrons spend more time close to one of the ion cores. Covalent bonds that 
have an ionic character, due to an unequal sharing of electrons, are generally called 
polar bonds. Many technologically important semiconductor materials, such as III-V 
compounds (e.g., GaAs), have polar covalent bonds. In GaAs, for example, the electrons 
in a covalent bond spend slightly more time around the As5+ ion core than the Ga+3 
ion core. 

Electronegativity is a relative measure of the ability of an atom to attract the elec¬ 
trons in a bond it forms with another atom. The Pauling scale of electronegativity assigns 
an electronegativity value X, a pure number, to various elements, the highest being 4 for 
F, and the lowest values being for the alkali metal atoms, for which X are less than 1. In 
this scheme, the difference XA — XB in the electronegativities of two atoms A and B is 
a measure of the polar or ionic character of the bond A-B between A and B. There is ob¬ 
viously no electronegativity difference for a covalent bond. While it is possible to calcu¬ 
late the fractional ionicity of a single bond between two different atoms using XA — XB, 
inside the crystal the overall ionic character can be substantially higher because ions can 
interact with distant ions further away than just the nearest neighbors, as we have found 
out in NaCl. Many technologically important semiconductor materials, such as III-V 
compounds (e.g., GaAs) have polar covalent bonds. In GaAs, for example, the bond in 
the crystal is about 30 percent ionic in character (XAs - XGa = 2.18 — 1.81 = 0.37). In 
the ZnSe crystal, an important II-VI semiconductor, the bond is 63 percent ionic 
(.XSe - *z„ = 2.55 - 1.65 = 0.85).6 

Ceramic materials are compounds that generally contain metallic and nonmetallic 
elements. They are well known for their brittle mechanical properties, hardness, high 

6 Chemists use "Ionicity = 1 — exp[0.24(X^ — XB)]" to calculate the ionicity of the bond between A and B. While 
this is undoubtedly useful in identifying the trend, it substantially underestimates the actual ionicity of bonding within 
the crystal itself. (It is left as an exercise to show this fact from the above Xa and Xe values.) The quoted ionicity 
percentages are from J. C. Phillips' book Bonds and Bands in Semiconductors, New York: Academic Press, 1973. 
By the way, the units of X are sometimes quoted as Pauling units, after its originator Linus Pauling. 
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melting temperatures, and electrical insulating properties. The type of bonding in a 
ceramic material may be covalent, ionic, or a mixture of the two, in which the bond be¬ 
tween the atoms involves some electron sharing and, to some extent, the partial forma¬ 
tion of cations and anions; the shared electrons spend more time with one type of atom, 
which then becomes a partial anion while the other becomes a partial cation. Silicon 
nitride (S^N^, magnesia (MgO), and alumina (AI2O3) are all ceramics, but they have 
different types of bonding: Si3N4 has covalent, MgO has ionic, and AI2O3 has a mix¬ 
ture of ionic and covalent bonding. All three are brittle, have high melting tempera¬ 
tures, and are electrical insulators. 

ENERGY OF SECONDARY BONDING Consider the van der Waals bonding in solid argon. 
The potential energy as a function of interatomic separation can generally be modeled by the 
Lennard-Jones 6-12 potential energy curve, that is, 

E(r) = -Ar~6 + Br~n 

where A and B are constants. Given that A = 8.0 x 10-77 J m6 and B = 1.12 x 10"133 J m12, 
calculate the bond length and bond energy (in eV) for solid argon. 

SOLUTION 

Bonding occurs when the potential energy is at a minimum. We therefore differentiate the 
Lennard-Jones potential E(r) and set it to zero at r = rot the interatomic equilibrium separa¬ 
tion or 

— = 6Ar~7 - 12Br~n =0 at r = ra 
dr 

that is. 

Substituting A = 8.0 x 10-77 and B = 1.12 x 10-133 and solving for r0, we find 

r„ = 3.75 x 10“10 m or 0.375 nm 

When r — r0 = 3.75 x 10“10 m, the potential energy is at a minimum and corresponds to 

— bond > SO 

8.0 x 10"77 ( 1.12 x 10"133 

.75 x IQ'10)6 + (3.75 x IQ”10)12 
Ebond = ~Ar 6 + Br li = .-121 

(3 

that is, 

Ebond = 1.43 x 10-20 J or 0.089 eV 

Notice how small this energy is compared to primary bonding. 

EXAMPLE 1.4 
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EXAMPLE 1.5 

Definition of 

elastic 

modulus 

ELASTIC MODULUS The elastic modulus, or Young’s modulus Y, of a solid indicates its abil¬ 
ity to deform elastically. The greater is the elastic modulus, the more effort is required for the 
same amount of elastic deformation given a constant sample geometry. When a solid is sub¬ 
jected to tensile forces F acting on two opposite faces, as in Figure 1.14a, it experiences a stress 
a defined as the force per unit area F/A, where A is the area on which F acts. If the original 
length of the specimen is La, then the applied stress o stretches the solid by an amount 8L. The 
strain s is the fractional increase in the length of the solid 8L/L„. As long as the applied force 
displaces the atoms in the solid by a small amount from their equilibrium positions, the defor¬ 
mation is elastic and recoverable when the forces are removed. The applied stress a and the re¬ 
sulting elastic strain e are related by the elastic modulus Y by 

or = Ye [1.7] 

The applied stress causes two neighboring atoms along the direction of force to be further 
separated. Their displacement 8r(= r — ra) results in a net attractive force 8FN between two 
neighboring atoms as indicated in Figure 1.14b (which is the same as Figure 1.3a) where FN is 
the net interatomic force. 8FN attempts to restore the separation to equilibrium. This force 8 FN, 
however, is balanced by a portion of the applied force acting on these atoms as in Figure 1.14a. 
If we were to proportion the area A in Figure 1.14a among all the atoms on this area, each atom 
would have an area roughly r*. (If there are N atoms on A, Yr* = A.) The force 8FN is there¬ 
fore err*. The strain e is 8r/ra. Thus, Equation 1.7 gives 

Elastic 

modulus and 

bonding 

8Fn 8r 
= <7 = Y 

ro ro 

Clearly, Y depends on the gradient of the FN versus r curve at r„, or the curvature of the 
minimum of E versus r at r„. 

Y 
ra 

'dFN 

dr 
[1.8] 

Figure 1.14 

(a) Applied forces F stretch the solid elastically from L0 to La + 8L. The force is divided among chains of 

atoms that make the solid. Each chain carries a force SF^. 
(b) In equilibrium, the applied force is balanced by the net force 5Fn between the atoms as a result of 

their increased separation. 
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The bonding energy Ebond is the minimum of E versus r at r0 (Figure 1.3b) and can be re¬ 
lated to the curvature of E versus r which leads to7 

Y [1.9] 

where / is a numerical factor (constant) that depends on the crystal structure and the type of 
bond (of the order of unity). The well-known Hooke’s law for a spring expresses the magnitude 
of the net force S FN in terms of the displacement 8r by 8FN = f\8r\ where/J is the spring con¬ 
stant. Thus Y = f$/r0. 

Solids with higher bond energies therefore tend to have higher elastic moduli as appar¬ 
ent in Table 1.2. Secondary bonding has both a smaller Ebond and a larger r0 than primary 
bonding and Y is much smaller. For NaCl, from Figure 1.10, Ebond = 6.3 eV, r0 = 0.28 nm, 
and Y is of the order of ~50 GPa using Equation 1.9 and / 1; and not far out from the 
value in Table 1.2. 

Elastic 

modulus and 

bond energy 

1.4 KINETIC MOLECULAR THEORY 

1A1 Mean Kinetic Energy and Temperature 

The kinetic molecular theory of matter is a classical theory that can explain such seem¬ 

ingly diverse topics as the pressure of a gas, the heat capacity of metals, the average 

speed of electrons in a semiconductor, and electrical noise in resistors, among many 

interesting phenomena. We start with the kinetic molecular theory of gases, which 
considers a collection of gas molecules in a container and applies the classical equa¬ 

tions of motion from elementary mechanics to these molecules. We assume that the 

collisions between the gas molecules and the walls of the container result in the gas 

pressure P. Newton’s second law, dp/dt = force, where p = mv is the momentum, is 
used to relate the pressure P (force per unit area) to the mean square velocity v2, and 

the number of molecules per unit volume N/V. The result can be stated simply as 

PV = |Nmv2 [1.101 

where m is the mass of the gas molecule. Comparing this theoretical derivation with 

the experimental observation that 

Kinetic 

molecular 

theory for 

gases 

PV = RT 

where Na is Avogadro’s number and R is the gas constant, we can relate the mean 

kinetic energy of the molecules to the temperature. Our objective is to derive Equa¬ 

tion 1.10; to do so, we make the following assumptions: 

1. The molecules are in constant random motion. Since we are considering a large 

number of molecules, perhaps 1020 m-3, there are as many molecules traveling in 

one direction as in any other direction, so the center of mass of the gas is at rest. 

I 7 The mathematics and a more rigorous description may be found in the textbook's CD. 
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2. The range of intermolecular forces is short compared to the average separation of 
the gas molecules. Consequently, 

a. Intermolecular forces are negligible, except during a collision. 

b. The volume of the gas molecules (all together) is negligible compared to the 
volume occupied by the gas (that is, the container). 

3. The duration of a collision is negligible compared to the time spent in free motion 
between collisions. 

4. Each molecule moves with uniform velocity between collisions, and the accelera¬ 
tion due to the gravitational force or other external forces is neglected. 

5. On average, the collisions of the molecules with one another and with the walls of 
the container are perfectly elastic. Collisions between molecules result in exchanges 
of kinetic energy. 

6. Newtonian mechanics can be applied to describe the motion of the molecules. 

We consider a collection of TV gas molecules within a cubic container of side a. We 
focus our attention on one of the molecules moving toward one of the walls. The 
velocity can be decomposed into two components, one directly toward the wall vx, and 
the other parallel to the wall vy, as shown in Figure 1.15. Clearly, the collision of the 
molecule, which is perfectly elastic, does not change the component vy along the wall, 
but reverses the perpendicular component vx. The change in the momentum of the 
molecule following its collision with the wall is 

A p = 2 mvx 

where m is the mass of the molecule. Following its collision, the molecule travels back 
across the box, collides with the opposite face B, and returns to hit face A again. The 
time interval At is the time to traverse twice the length of the box, or At = 2a/vx. 
Thus, every At seconds, the molecule collides with face A and changes its momentum 
by 2mvx. To find the force F exerted by this molecule on face A, we need the rate of 

Figure 1.15 The gas molecules in the 

container are in random motion. 
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change of momentum, or 

A p 2mv x mvx 

At (2a/vx) a 

The total pressure P exerted by N molecules on face A, of area a2, is due to the 
sum of all individual forces F, or 

Total force mu2, + mt»22 + • • • + mvxN 

a2 a3 

Wl / 2 2 ? \ 

^(U*l + V*2+••• + *>**) 

that is, — 
mNv2 

D _ x 

where v2 is the average of u2 for all the molecules and is called the mean square 
velocity, and V is the volume a3. 

Since the molecules are in random motion and collide randomly with each other, 
thereby exchanging kinetic energy, the mean square velocity in the x direction is the 
same as those in the y and z directions, or 

v2 = V2 = V2 x y z 

For any molecule, the velocity v is given by 

v2 = D2 + vj + v2 = 3v2 

The relationship between the pressure P and the mean square velocity of the mol¬ 
ecules is therefore 

P = 
Nmv2 

3V 
[1.111 

where p is the density of the gas, or Nm/V. By using elementary mechanical concepts, 
we have now related the pressure exerted by the gas to the number of molecules per 
unit volume and to the mean square of the molecular velocity. 

Equation 1.11 can be written explicitly to show the dependence of PV on the mean 
kinetic energy of the molecules. Rearranging Equation 1.11, we obtain 

where \mv2 is the average kinetic energy KE per molecule. If we consider one mole of 
gas, then N is simply NA, Avogadro’s number. 

Experiments on gases lead to the empirical gas equation 

Gas pressure 

in the kinetic 

theory 

where R is the universal gas constant. Comparing this equation with the kinetic theory 
equation shows that the average kinetic energy per molecule must be proportional to 
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the temperature. 
Mean kinetic 

energy per 

atom 

where k = R/N A is called the Boltzmann constant. Thus, the mean square velocity is 
proportional to the absolute temperature. This is a major conclusion from the kinetic 
theory, and we will use it frequently. 

When heat is added to a gas, its internal energy and, by virtue of Equation 1.12, its 
temperature both increase. The rise in the internal energy per unit temperature is called 
the heat capacity. If we consider 1 mole of gas, then the heat capacity is called the 
molar heat capacity Cm. The total internal energy U of 1 mole of monatomic gas (i.e., 
a gas with only one atom in each molecule) is 

so, from the definition of Cm, at constant volume, we have 

dU 3 3 

Cm~lf~ 2Na>C ~ 2R 11,13 
Thus, the heat capacity per mole of a monatomic gas at constant volume is simply 

| R. By comparison, we will see later that the heat capacity of metals is twice this amount. 
The reason for considering constant volume is that the heat added to the system then in¬ 
creases the internal energy without doing mechanical work by expanding the volume. 

There is a useful theorem called Maxwell’s principle of equipartition of energy, 
which assigns an average of \kT to each independent energy term in the expression for 
the total energy of a system. A monatomic molecule can only have translational kinetic 
energy, which is the sum of kinetic energies in the x, y, and z directions. The total en¬ 
ergy is therefore 

E = X-mv\ + Unv) + X-mv\ 

Each of these terms represents an independent way in which the molecule can be 
made to absorb energy. Each method by which a system can absorb energy is called a 
degree of freedom. A monatomic molecule has only three degrees of freedom. 
According to Maxwell’s principle, for a collection of molecules in thermal equilib¬ 
rium, each degree of freedom has an average energy of \kT, so the average kinetic en¬ 
ergy of the monatomic molecule is 3(jkT). 

A rigid diatomic molecule (such as an O2 molecule) can acquire energy as transla¬ 
tional motion and rotational motion, as depicted in Figure 1.16. Assuming the moment of 
inertia Ix about the molecular axis (along x) is negligible, the energy of the molecule is 

where Iy and lz are moments of inertia about the y and z axes and coy and coz are angular 
velocities about the y and z axes (Figure 1.16). 

Molar heat 

capacity at 

constant 

volume 

— 1 -7 3 
KE = -mv2 = -kT 

2 2 
[1.12] 
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motion motion 
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-► vv X 

y axis out of paper 

Figure 1.16 Possible 

translational and rotational 

motions of a diatomic molecule. 

Vibrational motions are neglected. 

This molecule has five degrees of freedom and hence an average energy of 
5(^kT). Its molar heat capacity is therefore | R, 

The atoms in the molecule will also vibrate by stretching or bending the bond, 
which behaves like a “spring.” At room, temperature, the addition of heat only results 
in the translational and rotational motions becoming more energetic (excited), whereas 
the molecular vibrations remain the same and therefore do not absorb energy. This oc¬ 
curs because the vibrational energy of the molecule can only change in finite steps; in 
other words, the vibrational energy is quantized. For many molecules, the energy 
required to excite a more energetic vibration is much more than the energy possessed 
by the majority of molecules. Therefore, energy exchanges via molecular collisions 
cannot readily excite more energetic vibrations; consequently, the contribution of mo¬ 
lecular vibrations to the heat capacity is negligible. 

In a solid, the atoms are bonded to each other and can only move by vibrating about 
their equilibrium positions. In the simplest view, a typical atom in a solid is joined to 
its neighbors by “springs” that represent the bonds, as depicted in Figure 1.17. If we 
consider a given atom, its potential energy as a function of displacement from the 
equilibrium position is such that if it is displaced slightly in any direction, it will expe¬ 
rience a restoring force proportional to the displacement. Thus, this atom can acquire 
energy by vibrations in three directions. The energy associated with the jc direction, for 
example, is the kinetic energy of vibration plus the potential energy of the “spring,” or 
^mvl + jKxx2, where vx is the velocity, x is the extension of the spring, and Kx is the 
spring constant, all along the x direction. Clearly, there are similar energy terms in the 
y and z directions, so there are six energy terms in the total energy equation: 

We know that for simple harmonic motion, the average KE is equal to the average 
PE. Since, by virtue of the equipartition of energy principle, each average KE term has 



30 CHAPTER 1 Elementary Materials Science Concepts 

(a) (b) 

Figure 1.17 

(a) The ball-and-spring model of solids, in which the springs represent the interatomic bonds. Each ball (atom) is linked to 

its neighbors by springs. Atomic vibrations in a solid involve three dimensions. 

(b) An atom vibrating about its equilibrium position. The atom stretches and compresses its springs to its neighbors and 

has both kinetic and potential energy. 

an energy of \kT, the average total energy per atom is 6(\kT). The internal energy U 
per mole is 

U = WA6^/;r) = 3 RT 

The molar heat capacity then becomes 

Dulong-Petit 

rule 

This is the Dulong-Petit rule. 
The kinetic molecular theory of matter is one of the successes of classical physics, 

with a beautiful simplicity in its equations and predictions. Its failures, however, are 
numerous. For example, the theory fails to predict that, at low temperatures, the heat 
capacity increases as T3 and that the resistivity of a metal increases linearly with the 
absolute temperature. We will explain the origins of these phenomena in Chapter 4. 

dU 
Cm = — = 3/? = 25 J K mol 

dT 

EXAMPLE 1.6 SPEED OF SOUND IN AIR Calculate the root mean square (rms) velocity of nitrogen molecules 
in atmospheric air at 27 °C. Also calculate the root mean square velocity in one direction (Ur™,*). 
Compare the speed of propagation of sound waves in air, 350 ms-1, with and explain the 
difference. 

1 
-mv 
2 

2 
rms 

SOLUTION 

From the kinetic theory 
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so that 

^rms — 

3 kT 

m 

where m is the mass of the nitrogen molecule N2. The atomic mass of nitrogen is Afa, = 
14g mol-1, so that in kilograms 

2Mat(10-3) 
m = - 

Thus 

v 
3kNAT Y/2 T 3 RT ] 

2Mat(10-3)J ” |_2Mat(10-3)J 

3(8.314 J mol"1 K-1)(300 K)~|1/2 

2(14 x 10-3 kg mol-1) J 

1/2 

= 517 m s 1 

Consider an rms velocity in one direction. Then 

r’rms ,x — = 298 m s-1 

which is slightly less than the velocity of sound in air (350 ms-1). The difference is due to the 
fact that the propagation of a sound wave involves rapid compressions and rarefactions of air, 
and the result is that the propagation is not isothermal. Note that accounting for oxygen in air 
lowers Wrms.x- (Why?) 

SPECIFIC HEAT CAPACITY 
atomic mass is 63.6. 

Estimate the heat capacity of copper per unit gram, given that its EXAMPLE 1.7 

SOLUTION 

From the Dulong-Petit rule, Cm = 3R for NA atoms. But NA atoms have a mass of Afat grams, 
so the heat capacity per gram, the specific heat capacity cs, is 

3R 25 J mol-1 K-1 

* Mat 63.6 g mol-1 

«s 0.39 J g-1 K-1 (The experimental value is 0.38 J g-1 K-1.) 

1.4.2 Thermal Expansion 

Nearly all materials expand as the temperature increases. This phenomenon is due to 
the asymmetric nature of the interatomic forces and the increase in the amplitude of 
atomic vibrations with temperature as expected from the kinetic molecular theory. 

The potential energy curve U(r) for two atoms separated by a distance r is shown 
in Figure 1.18. In equilibrium the PE is a minimum at f/min = — U0 and the bonding 
energy is simply U0. The atoms are separated by the equilibrium separation rQ. However, 
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Energy 

Figure 1.18 The potential energy PE curve has a minimum when the atoms in the solid attain 
the interatomic separation at r = rQ. 

Because of thermal energy, the atoms will be vibrating and will have vibrational kinetic energy. At 

T= T], the atoms will be vibrating in such a way that the bond will be stretched and compressed 

by an amount corresponding to the KE of the atoms. A pair of atoms will be vibrating between B 

and C. Their average separation will be at A and greater than r0. 

State A 

jMk State C, KE = 0 

E-Uc 

Figure 1.19 Vibrations of atoms in the solid. 

We consider for simplicity a pair of atoms. 

Total energy is E = PE + KE, and this is 

constant for a pair of vibrating atoms 

executing simple harmonic motion. At B and 

C, KE is zero (atoms are stationary and about 

to reverse direction of oscillation) and PE is 

maximum. 

according to the kinetic molecular theory, atoms are vibrating about their equilibrium 
positions with a mean vibrational kinetic energy that increases with the temperature as 
\kT. At any instant the total energy E of the pair of atoms is U + KE, and this is con¬ 
stant inasmuch as no external forces are being applied. The atoms will be vibrating 
about their equilibrium positions, stretching and compressing the bond, as depicted in 
Figure 1.19. At positions B and C, U is maximum and the KE is zero; the atoms are 
stationary and about to reverse their direction of oscillation. Thus at B and C the total 
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energy E = UB = Uc and the PE has increased from its minimum value t/mm by an 
amount equal to KE. The line BC corresponds to the total energy E. The atoms are 
confined to vibrate between B and C, executing simple harmonic motion and hence 
maintaining E = U + KE = constant. 

But the PE curve U{r) is asymmetric. U(r) is broader in the r > r0 region. Thus, 
the atoms spend more time in the r > rc region, that is, more time stretching the bond 
than compressing the bond (with respect to the equilibrium length r0). The average 
separation corresponds to point A, 

r*v = \{rB + rc) 

which is clearly greater than ra. As the temperature increases, KE increases, the total 
energy E increases, and the atoms vibrate between wider extremes of the U(r) curve, 
between B' and C'. The new average separation at A' is now greater than that at 
A:rA’ > rA. Thus as the temperature increases, the average separation between the 
atoms also increases, which leads to the phenomenon of thermal expansion. If the PE 

curve were symmetric, then there would be no thermal expansion as the atoms would 
spend equal times in the r < rc and r > ra regions. 

When the temperature increases by a small amount ST, the energy per atom in¬ 
creases by Catom ST where Catom is the heat capacity per atom (molar heat capacity 
divided by NA). If Cat0m ST is large, then the line B'C' in Figure 1.18 will be higher up 
on the energy curve and the average separation A! will therefore be larger. Thus, the 
increase <5rav in the average separation is proportional to ST. If the total length L0 is 
made up of N atoms, L0 = iVrav, then the change SL in La is proportional to N ST or 
L0 ST. The proportionality constant is the thermal coefficient of linear expansion, or 
simply, thermal expansion coefficient X, which is defined as the fractional change in 
length per unit temperature. 

1 SL 

~L0‘ST 
[1.14] 

If L0 is the original length at temperature T0, then the length L at temperature T, 
from Equation 1.14, is 

L = La[l + X(T — T0)] [1.15] 

We note that A. is a material property that depends on the nature of the bond. The 
variation of rav with T in Figure 1.18 depends on the shape of the PE curve U(r). Typ¬ 
ically, X is larger for metallic bonding than for covalent bonding. 

We can use a mathematical procedure (known as a Taylor expansion) to describe 
the U(r) versus r curve in terms of its minimum value t/min, plus correction terms that 
depend on the powers of the displacement (r — r0) from r0, 

U(r) = I/min + a2(r - r0)2 + a3(r - r0)3 H- [1.16] 

where a2 and a3 are coefficients that are related to the second and third derivatives of U 

at r0. The term a\(r — r0) is missing because dU/dr = 0 at r = r0 where U = [/min- 
The Umin and a2{r — rQ)2 terms in Equation 1.16 give a parabola about Umin which is a 
symmetric curve around r0 and therefore does not lead to thermal expansion. The average 

Definition of 

thermal 

expansion 

coefficient 

Thermal 

expansion 

Potential 

energy of an 

atom 
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Thermal 

expansion 

coefficient 

and 

temperature 

location at any energy on a symmetric curve at r0 is always at r0. It is the <33 term that 
gives the expansion because it leads to asymmetry. Thus, X depends on the amount of 
asymmetry, that is, aija^. The asymmetric PE curve in Figure 1.18 which has a finite 
cubic c*3 term as in Equation 1.16 does not lead to a perfect simple harmonic (sinu¬ 
soidal) vibration about rQ because the restoring force is not proportional to the dis¬ 
placement alone. Such oscillations are unharmonic, and the PE curve is said to possess 
an unharmonicity (terms such as a3). Thermal expansion is an unharmonic effect. 

The thermal expansion coefficient normally depends on the temperature, X = X{T), 

and typically increases with increasing temperature, except at the lowest temperatures. 
We can always expand X(T) about some useful temperature such as T0 to obtain a 
polynomial series in temperature terms up to the most significant term, usually the T2 
containing term. Thus, Equation 1.14 becomes 

= X{T) = A + B(T — T0) + C(T - T0)2 + • • • [1.17] 
L/ 0 u T 

Figure 1.20 Dependence of the linear thermal expansion coefficient A (K ]) 

on temperature T (K) on a log-log plot. 

HDPE, high-density polyethylene; PMMA, polymethylmethacrylate (acrylic); PC, 

polycarbonate; PET, polyethylene terephthalate (polyester); fused silica, Si02; 

alumina, AI2O3. 

I SOURCE: Data extracted from various sources including G. A. Slack and S. F. Bartram, 
I J.Appl.Phys., 46,89, 1975. 
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where A, B, and C are temperature-independent constants, and the expansion is about 
T0. To find the total fractional change in the length A L/L0 from T0 to T, we have to 
integrate A(T) with respect to temperature from Ta to T. We can still employ Equation 
1.15 provided that we use a properly defined mean value for the expansion coefficient 
from T0 to T, 

L = L0[ 1 + A(T - T0)] [1.18] 

where ^ — (t-t0) St. MD dT [1.19] 

Figure 1.20 shows the temperature dependence of A for various materials. In very gen¬ 
eral terms, except at very low (typically below 100 K) and very high temperatures 
(near the melting temperature), for most metals A does not depend strongly on the tem¬ 
perature; many engineers take A for a metal to be approximately temperature indepen¬ 
dent. There is a simple relationship between the linear expansion coefficient and the 
heat capacity of a material, which is discussed in Chapter 4. 

VOLUME EXPANSION COEFFICIENT Suppose that the volume of a solid body at temperature 
T0 is V0. The volume expansion coefficient av of a solid body characterizes the change in its 
volume from V0 to V due to a temperature change from T0 to T by 

V = V0[\+av(T-T0)] [1.20] 

Show that av is given by 

av = 3A [1.21] 

Aluminum has a density of 2.70 g cm-3 at 25 °C. Its thermal expansion coefficient is 24 x 
10-6 °C-‘. Calculate the density of A1 at 350 °C. 

SOLUTION 

Consider the solid body in the form of a rectangular parallelepiped with sides x0,y0, and z0- 

Then at T0, 

and at T, 

that is 

V0 = xoyoz0 

V = [x0( 1 + A AT)][y0(l + A AT)][Zo(l + A AT)] 

= x0y0z0( 1 + A AT)3 

V = x0y0z0[ 1 + 3A AT + 3A2(AT)2 + A3(AT)3] 

We can now substitute for V from Equation 1.20, use VQ = x0y0z0, and neglect the 
A2(AT)2 and A3(AT)3 terms compared with the A AT term (A 1) to obtain, 

V = V0[l + 3A(T - Ta)] = V0[l + av(T- T0)] 

ansion leads to a dens 

p0{\ -av(T-T0)} 

Since density p is mass/volume, volume expansion leads to a density reduction. Thus, 

Po 

P \+av(T-T0) 

For Al, the density at 350 °C is 

\-6 p = 2.70[1 - 3(24 x 10 )(350 - 25)] = 2.637 g cm -3 

Thermal 

expansion 

Mean thermal 

expansion 

coefficient 

EXAMPLE 1.8 

Volume 

expansion 

Volume 

expansion 

coefficient 
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EXAMPLE 1.9 

Thermal 

expansion 

coefficient of 

Si 

EXPANSION OF Si The expansion coefficient of silicon over the temperature range 120- 
1500 K is given by Okada and Tokumaru (1984) as 

k = 3.725 x 1(T6[1 - e-3.725xio-3(r-124)] + 5 548 x 10-«>r [1.22] 

where k is in K-1 (or °C_ 1) and T is in kelvins. At a room temperature of 20 °C, the above gives 
k = 2.51 x 10-6 K~l. Calculate the fractional change A L/L0 in the length La of the Si crystal 
from 20 to 320 °C, by (a) assuming a constant k equal to the room temperature value and 
(b) assuming the above temperature dependence. Calculate the mean k for this temperature range. 

SOLUTION 

Assuming a constant we have 

A L 
= k(T - T0) = (2.51 x 1(T6 °C-1)(320 - 20) = 0.753 x 10 

L0 
or 0.075% 

With a temperature-dependent k(T), 

AL rT A L f 

T0 Jt0 

■L 

k(T) dT 

320+273 

{3.725 x 10~6[1 - *-3-725*10" cr-!24)] + 5 548 x \Q-™T}dT 

'20+273 

The integration can either be done numerically or analytically (both left as an exercise) with the 
result that 

-= 1.00 x 1(T3 or 0.1% 
L0 

which is substantially more than when using a constant k. The mean k over this temperature 
range can be found from 

AL - , - 
-= k(T - T0) or 1.00 x 10-3 = X(320 - 20) 
Lo 

which gives k = 3.33 x 10-6 °C_1. A 0.1 percent change in length means that a 1 mm chip 
would expand by 1 micron. 

1.5 MOLECULAR VELOCITY AND ENERGY 
DISTRIBUTION 

Although the kinetic theory allows us to determine the root mean square velocity of 
the gas molecules, it says nothing about the distribution of velocities. Due to random col¬ 
lisions between the molecules and the walls of the container and between the molecules 
themselves, the molecules do not all have the same velocity. The velocity distribution of 
molecules can be determined experimentally by the simple scheme illustrated in Figure 
1.21. Gas molecules are allowed to escape from a small aperture of a hot oven in which 
the substance is vaporized. Two blocking slits allow only those molecules that are mov¬ 
ing along the line through the two slits to pass through, which results in a collimated 
beam. This beam is directed toward two rotating disks, which have slightly displaced 
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Effusing gas atoms Velocity selector 

Figure 1.21 Schematic diagram of a Stern-type experiment for determining the distribution of 

molecular speeds. 

0 500 1000 1500 2000 
Speed (m/s) 

Figure 1.22 Maxwell-Boltzmann 

distribution of molecular speeds in 

nitrogen gas at two temperatures. 

The ordinate is dN/[N dv\, the fractional 

number of molecules per unit speed 

interval in (km/s)"1. 

slits. The molecules that pass through the first slit can only pass through the second if 
they have a certain speed; that is, the exact speed at which the second slit lines up with 
the first slit. Thus, the two disks act as a speed selector. The speed of rotation of the disks 
determines which molecular speeds are allowed to go through. The experiment therefore 
measures the number of molecules AN with speeds in the range v to (v + Ai>). 

It is generally convenient to describe the number of molecules dN with speeds in 
a certain range v to (t> + dv) by defining a velocity density function nv as follows: 

dN — nv dv 

where nv is the number of molecules per unit velocity that have velocities in the range 
v to (u -f dv). This number represents the velocity distribution among the molecules 
and is a function of the molecular velocity nv — nv(v). From the experiment, we can 
easily obtain nv by nv = AN/Av at various velocities. Figure 1.22 shows the velocity 
density function nv of nitrogen gas at two temperatures. The average (uav), most prob¬ 
able (d*), and rms (i>rms) speeds are marked to show their relative positions. As ex¬ 
pected, these speeds all increase with increasing temperature. From various experi- Maxwell- 

ments of the type shown in Figure 1.21, the velocity distribution function nv has been Boltzmann 

widely studied and found to obey the following equation: distribution 

( mv2\ for molecular 
v exp I — ) [1.23] speeds 
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Boltzmann 

distribution 
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kinetic 

energies 

where N is the total number of molecules and m is the molecular mass. This is the 
Maxwell-Boltzmann distribution function, which describes the statistics of particle 
velocities in thermal equilibrium. The function assumes that the particies do not interact 
with each other while in motion and that all the collisions are elastic in the sense that 
they involve an exchange of kinetic energy. Figure 1.22 clearly shows that molecules 
move around randomly, with a variety of velocities ranging from nearly zero to almost 
infinity. The kinetic theory speaks of their rms value only. 

What is the energy distribution of molecules in a gas? In the case of a monatomic 
gas, the total energy E is purely translational kinetic energy, so we can use E = ^mv2. 
To relate an energy range dE to a velocity range dv, we have dE = mv dv. Suppose 
that he is the number of atoms per unit volume per unit energy at an energy E. Then 
nE dE is the number of atoms with energies in the range E to (E + dE). These are also 
the atoms with velocities in the range v to (u + dv), because an atom with a velocity v 
has an energy E. Thus, 

nEdE = nv dv 

i.e., 

If we substitute for nv and (.dv/dE), we obtain the expression for nE as a function 

n°=ikAwTE',2e'p(-ik) n-Mi 

Thus, the total internal energy is distributed among the atoms according to 
the Maxwell-Boltzmann distribution in Equation 1.24. The exponential factor 
exp (—E/kT) is called the Boltzmann factor. Atoms have widely differing kinetic en¬ 
ergies, but a mean energy of |kT. Figure 1.23 shows the Maxwell-Boltzmann energy 
distribution among the gas atoms in a tank at two temperatures. As the temperature 
increases, the distribution extends to higher energies. The area under the curve is the 
total number of molecules, which remains the same for a closed container. 

Equation 1.24 represents the energy distribution among the N gas atoms at any time. 
Since the atoms are continually colliding and exchanging energies, the energy of one 

Figure 1.23 Energy distribution of gas 

molecules at two different temperatures. 

The shaded area shows the number of 

molecules that have energies greater than 

Ea■ This area depends strongly on the 

temperature as exp(—E^/lcT). 

Energy, E 
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atom will sometimes be small and sometimes be large, but averaged over a long time, 
this energy will be |kT as long as all the gas atoms are in thermal equilibrium ii.e., the 
temperature is the same everywhere in the gas). Thus, we can also use Equation 1.24 to 
represent all possible energies an atom can acquire over a long period. There are a total 
of N atoms, and nE dE of them have energies in the range E to (E + dE). Thus, 

hf dE 
Probability of energy being in E to (E + dE) =- [1.25] 

N 

When the probability in Equation 1.25 is integrated (i.e., summed) for all energies 
(E = 0 to oo), the result is unity, because the atom must have an energy somewhere in 
the range of zero to infinity. 

What happens to the Maxwell-Boltzmann energy distribution law in Equation 1.24 
when the total energy is not simply translational kinetic energy? What happens when we 
do not have a monatomic gas? Suppose that the total energy of a molecule (which may 
simply be an atom) in a system of N molecules has vibrational and rotational kinetic en¬ 
ergy contributions, as well as potential energy due to intermolecular interactions. In all 
cases, the number of molecules per unit energy n E turns out to contain the Boltzmann fac¬ 
tor, and the energy distribution obeys what is called the Boltzmann energy distribution: 

where E is the total energy {KE + PE), N is the total number of molecules in the sys¬ 
tem, and C is a constant that relates to the specific system (e.g., a monatomic gas or a 
liquid). The constant C may depend on the energy E, as in Equation 1.24, but not as 
strongly as the exponential term. Equation 1.26 is the probability per unit energy that 
a molecule in a given system has an energy E. Put differently, (nE dE)/N is the fraction 
of molecules in a small energy range E to E + dE. 

Boltzmann 

energy , 

distribution 

MEAN AND RMS SPEEDS OF MOLECULES Given the Maxwell-Boltzmann distribution law 
for the velocities of molecules in a gas, derive expressions for the mean speed (uav), most prob¬ 
able speed (v*), and rms velocity (Vrms) of the molecules and calculate the corresponding val¬ 
ues for a gas of noninteracting electrons. 

EXAMPLE 1.10 

SOLUTION 

The number of molecules with speeds in the range v to (v + dv) is 
3/2 

( m \3/2 , ( mv2\ 
dN = n„<tv = 4*N{—) vtKf{-—jdv 

By definition, then, the mean speed is given by 

f v dN f vnv dv I ZkT 

av f dN f nv dv V nm 

where the integration is over all speeds (v = 0 to oo). The mean square velocity is given by 

— f v2 dN f v2nv dv 3kT 

Mean speed 
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so the rms velocity is 

Vrms — / 3kT 

m 

where nv/N is the probability per unit speed that a molecule has a speed in the range v to 
(u + dv). Differentiating nv with respect to v and setting this to zero, dnv/dv = 0, gives the po¬ 
sition of the peak of nv versus v, and thus the most probable speed v*. 

Substituting m = 9.1 x 10~31 kg for electrons and using T = 300 K, we find v* = 

95.3 km s-1, vav = 108 km s-1, and tvs = 117 km s_1, all of which are close in value. We 
often use the term thermal velocity to describe the mean speed of particles due to their thermal 
random motion. Also, the integrations shown are not trivial and they involve substitution and 
integration by parts. 

1.6 HEAT, THERMAL FLUCTUATIONS, AND NOISE 
Generally, thermal equilibrium between two objects implies that they have the same 
temperature, where temperature (from the kinetic theory) is a measure of the mean 
kinetic energy of the molecules. Consider a solid in a monatomic gas atmosphere such 
as He gas, as depicted in Figure 1.24. Both the gas and the solid are at the same temper¬ 
ature. The gas molecules move around randomly, with a mean kinetic energy given 
by jmv2 = | kT, where m is the mass of the gas molecule. We also know that the atoms 
in the solid vibrate with a mean kinetic energy given by \M V2 = \kT, where M is the 
mass of the solid atom and V is the velocity of vibration. The gas molecules will collide 
with the atoms on the surface of the solid and will thus exchange energy with those solid 
atoms. Since both are at the same temperature, the solid atoms and gas molecules 
have the same mean kinetic energy, which means that over a long time, there will be no 
net transfer of energy from one to the other. This is basically what we mean by thermal 
equilibrium. 

If, on the_other hand, the solid is hotter than the gas, T^d > rgas, and thus 
jMV2 > \mv2, then when an average gas molecule and an average solid atom collide, 

Solid 

Gas 

Figure 1.24 Solid in equilibrium in air. 

During collisions between the gas and solid atoms, 

kinetic energy is exchanged. 

t\O0 
KJm 

Gas 
atom 
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Figure 1.25 Fluctuations of a mass attached to a spring, due to 

random bombardment by air molecules. 

energy will be transferred from the solid atom to the gas molecule. As many more gas 
molecules collide with solid atoms, more and more energy will be transferred, until the 
mean kinetic energy of atoms in each substance is the same and they reach the same 
temperature: the bodies have equilibrated. The amount of energy transferred from the 
kinetic energy of the atoms in the hot solid to the kinetic energy of the gas molecules 
is called heat. Heat represents the energy transfer from the hot body to the cold body 
by virtue of the random motions and collisions of the atoms and molecules. 

Although, over a long time, the energy transferred between two systems in thermal 
equilibrium is certainly zero, this does not preclude a net energy transfer from one to 
the other at one instant. For example, at any one instant, an average solid atom may be 
hit by a fast gas molecule with a speed at the far end of the Maxwell-Boltzmann dis¬ 
tribution. There will then be a transfer of energy from the gas molecule to the solid 
atom. At another instant, a slow gas molecule hits the solid, and the reverse is true. 
Thus, although the mean energy transferred from one atom to the other is zero, the in¬ 
stantaneous value of this energy is not zero and varies randomly about zero. 

As an example, consider a small mass attached to a spring, as illustrated in Fig¬ 
ure 1.25. The gas or air molecules will bombard and exchange energy with the solid 
atoms. Some air molecules will be fast and some will be slow, which means that there 
will be an instantaneous exchange of energy. Consequently, the spring will be com¬ 
pressed when the bombarding air molecules are fast (more energetic) and extended 
when they are less energetic. This leads to a mechanical fluctuation of the mass about 
its equilibrium position, as depicted in Figure 1.25. These fluctuations make the mea¬ 
surement of the exact position of the mass uncertain, and it is futile to try to measure 
the position more accurately than these fluctuations permit. 

If the mass m compresses the spring by Ax, then at time t, the energy stored as po¬ 
tential energy in the spring is 

1 i 
PE(t) = -K(Ax)1 2 

2 
[1.271 
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where K is the spring constant. At a later instant, this energy will be returned to the 
gas by the spring. The spring will continue to fluctuate because of the fluctuations in 
the velocity of the bombarding air molecules. Over a long period, the average value of 
PE will be the same as KE and, by virtue of the Maxwell equipartition of energy theo¬ 
rem, it will be given by 

-K(Ax)2 = —kT [1.281 
2 2 

Thus, the rms value of the fluctuations of the mass about its equilibrium position is 

kT 
(Ax)rms = y ^ M.29] 

To understand the origin of electrical noise, for example, we consider the thermal 
fluctuations in the instantaneous local electron concentration in a conductor, such as 
that shown in Figure 1.26. Because of fluctuations in the electron concentration at any 
one instant, end A of the conductor can become more negative with respect to end B, 
which will give rise to a voltage across the conductor. This fluctuation in the electron 
concentration is due to more electrons at that instant moving toward end A than toward 
B. At a later instant, the situation reverses and more electrons move toward B than 
toward A, resulting in end B becoming more negative and leading to a reversal of the 
voltage between A and B. Clearly, there will therefore be voltage fluctuations across 
the conductor, even though the mean voltage across it over a long period is always 
zero. If the conductor is connected to an amplifier, these voltage fluctuations will be 
amplified and recorded as noise at the output. This noise corrupts the actual signal at 
the amplifier input and is obviously undesirable. As engineers, we have to know how 
to calculate the magnitude of this noise. Although the mean voltage due to thermal 
fluctuations is zero, the rms value is not. The average voltage from a power outlet is 
zero, but the rms value is 120 V. We use the rms value to calculate the amount of aver¬ 
age power available. 

Consider a conductor of resistance R. To derive the noise voltage generated by R 
we place a capacitor C across this conductor, as in Figure 1.27, and we assume that both 
are at the same temperature; they are in thermal equilibrium. The capacitor is placed as 
a convenient device to obtain or derive the noise voltage generated by R. It should be 
emphasized that C itself does not contribute to the source of the fluctuations (it gener¬ 
ates no noise) but is inserted into the circuit to impose a finite bandwidth over which we 
will calculate the noise voltage. The reason is that all practical electric circuits have 
some kind of bandwidth, and the noise voltage we will derive depends on this band¬ 
width. Even if we remove the capacitor, there will still be stray capacitances; and if we 
short the conductor, the shorting wires will have some inductance that will also impose 
a bandwidth. As we mentioned previously, thermal fluctuations in the conductor give 
rise to voltage fluctuations across R. There is only so much average energy available in 
these thermal fluctuations, and this is the energy that is used to charge and discharge the 
external capacitor C. The voltage across the capacitor depends on how much energy 
that can be stored on it, which in turn depends on the thermal fluctuations in the con¬ 
ductor. Charging a capacitor to a voltagey implies that an energy E = \Cv2 is stored on 
the capacitor. The mean stored energy £ in a thermal equilibrium system can only be 
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Figure 1*26 Random motion of conduction 

electrons in a conductor, resulting in electrical 

noise. 

Figure 1.27 Charging and discharging of 

a capacitor by a conductor, due to the 

random thermal motions of the conduction 

electrons. 

\kT, according to the Maxwell energy equipartition theorem. Thus E(t), the mean en¬ 
ergy stored on C due to thermal fluctuations, is given by 

~E(tj = \Cv{t)2 = \kT 

We see that the mean square voltage across the capacitor is given by 

[1.30] 

Interestingly, the rms noise voltage across an RC network seems to be independent 
of the resistance. However, the origin of the noise voltage arises from the electron fluc¬ 
tuations in the conductor and we must somehow reexpress Equation 1.30 to reflect this 
fact; that is, we must relate the electrical fluctuations to R. 

The voltage fluctuations across the network will have many sinusoidal components, 
but only those below the cutoff frequency of the RC network will contribute to the mean 
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square voltage (that is, we effectively have a low-pass filter). If B is the bandwidth of the 
RC network,8 then B = 1 /(2nRC) and we can eliminate C in Equation 1.30 to obtain 

v(t)2 = InkTRB 

This is the key equation for calculating the mean square noise voltage from a re¬ 
sistor over a bandwidth B. A more rigorous derivation makes the numerical factor 4 
rather than 2n. For a network with a bandwidth B, the rms noise voltage is therefore 

= V4 kTRB [1.31] 

Equation 1.31 is known as the Johnson resistor noise equation, and it sets the 
lower limit of the magnitude of small signals that can be amplified. Note that Equa¬ 
tion 1.31 basically tells us the rms value of the voltage fluctuations within a given 
bandwidth (B) and not the origin and spectrum (noise voltage vs. frequency) of the 
noise. The origin of noise is attributed to the random motions of electrons in the 
conductor (resistor), and Equation 1.31 is the fundamental description of electrical 
fluctuations; that is, the fluctuations in the conductor’s instantaneous local electron 
concentration that charges and discharges the capacitor. To determine the rms noise 
voltage across a network with an impedance Z(j(o), all we have to do is find the real 
part of Z, which represents the resistive part, and use this for R in Equation 1.31. 

EXAMPLE 1.11 NOISE IN AN RLC CIRCUIT Most radio receivers have a tuned parallel-resonant circuit, which 
consists of an inductor L, capacitor C, and resistance R in parallel. Suppose L is 100 pH; C is 
100 pF; and R, the equivalent resistance due to the input resistance of the amplifier and to the 
loss in the coil (coil resistance plus ferrite losses), is about 200 k£2. What is the minimum rms 
radio signal that can be detected? 

SOLUTION 

Consider the bandwidth of this tuned RLC circuit, which can be found in any electrical engi¬ 
neering textbook: 

where f0 = 1 /[2n*jLC] is the resonant frequency and Q = 2nf0CR is the quality factor. Sub¬ 
stituting for L, C, and R, we get, f0 = 107/2tt = 1.6 x 106 Hz and Q = 200, which gives 
B = 107/[2?r(200)] Hz, or 8 kHz. The rms noise voltage is 

Vrms = [4kTRB]1/2 = [4(1.38 x 10'23 J K"')(300 K)(200 x 103 £2)(8 x 103 Hz)]1/2 

= 5.1 x 10"6 V or 5.1 nV 

This rms voltage is within a bandwidth of 8 kHz centered at 1.6 MHz. This last informa¬ 
tion is totally absent in Equation 1.31. If we attempt to use 

I 8 A low-pass filter allows all signal frequencies up to the cutoff frequency 8 to pass. 8 is 1 /(2jrRC). 
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we get 

^rms 

(1.38 x 1CT23 JK-')(300 K)‘ 

. 100 x 10-12 F . 

1/2 

6.4 pV 

However, Equation 1.30 was derived using the RC circuit in Figure 1.27, whereas we now 
have an LCR circuit. The correct approach uses Equation 1.31, which is generally valid, and the 
appropriate bandwidth B. 

17 THERMALLY ACTIVATED PROCESSES 

17.1 Arrhenius Rate Equation 

Many physical and chemical processes strongly depend on temperature and exhibit what 
is called an Arrhenius type behavior, in which the rate of change is proportional to 
exp(- EA/kT), where EA is a characteristic energy parameter applicable to the particular 
process. For example, when we store food in the refrigerator, we are effectively using the 
Arrhenius rate equation: cooling the food diminishes the rate of decay. Processes that ex¬ 
hibit an Arrhenius type temperature dependence are referred to as thermally activated. 

For an intuitive understanding of a thermally activated process, consider a vertical fil¬ 
ing cabinet that stands in equilibrium, with its center of mass at A, as sketched in Figure 
1.28. Tilting the cabinet left or right increases the potential energy PE and requires exter¬ 
nal work. If we could supply this energy, we could move the cabinet over its edge and lay 
it flat, where its PE would be lower than at A. Clearly, since the PE at B is lower, this is a 
more stable position than A. Further, in going from A to B, we had to overcome a poten¬ 
tial energy barrier of amount EA, which corresponds to the cabinet standing on its edge 
with the center of mass at the highest point at A*. To topple the cabinet, we must first pro¬ 
vide energy9 equal to EA to take the center of mass to A*, from which point the cabinet, 
with the slightest encouragement, will fall spontaneously to B to attain the lowest PE. At 
the end of the whole tilting process, the internal energy change for the cabinet, A U, is due 
to the change in the PE (= mgh) from A to B, which is negative; B has lower PE than A. 

Suppose, for example, a person with an average energy less than EA tries to topple 
the cabinet. Like everyone else, that person experiences energy fluctuations as a result 
of interactions with the environment (e.g., what type of day the person had). During 
one of those high-energy periods, he can topple the cabinet, even though most of the 
time he cannot do so because his average energy is less then EA. The rate at which the 
cabinet is toppled depends on the number of times (frequency) the person tries and 
the probability that he possesses energy greater than EA. 

As an example of a thermally activated process, consider the diffusion of impu¬ 
rity atoms in a solid, one of which is depicted in Figure 1.29. In this example, the 
impurity atom is at an interatomic void A in the crystal, called an interstitial site. For 
the impurity atom to move from A to a neighboring void B, the atom must push the 
host neighbors apart as it moves across. This requires energy in much the same way 

9 According to the conservation of energy principle, the increase in the PE from A to A* must come from the 
external work. 
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Figure 1.28 Tilting a filing cabinet from 

state A to its edge in state A* requires an en¬ 

ergy Ea. 
After reaching A*, the cabinet spontaneously 

drops to the stable position B. The PE of state 

B is lower than A, and therefore state B is 

more stable than A. 

Figure 1.29 Diffusion of an 

interstitial impurity atom in a crystal 

from one void to a neighboring 

void. 

The impurity atom at position A 

must possess an energy EA to push 

the host atoms away and move 

into the neighboring void at B. 

UA= UB 

Displacement 

as does toppling the filing cabinet. There is a potential energy barrier EA to the mo¬ 
tion of this atom from A to B. 

Both the host and the impurity atoms in the solid vibrate about their equilibrium po¬ 
sitions, with a distribution of energies, and they also continually exchange energies, 
which leads to energy fluctuations. In thermal equilibrium, at any instant, we can expect 
the energy distribution of the atoms to obey the Boltzmann distribution law (see Equa¬ 
tion 1.26). The average kinetic energy per atom is vibrational and is |kT, which will not 
allow the impurity simply to overcome the PE barrier EA, because typically EA » \kT. 

The rate of jump, called the diffusion, of the impurity from A to B depends on two 
factors. The first is the number of times the atom tries to go over the potential barrier, 
which is the vibrational frequency va, in the AB direction. The second factor is the prob¬ 
ability that the atom has sufficient energy to overcome the PE barrier. Only during those 
times when the atom has an energy greater than the potential energy barrier 
Ea = UA* — UA will it jump across from A to B. During this diffusion process, the 
atom attains an activated state, labeled A* in Figure 1.29, with an energy EA above 
UA, so the crystal internal energy is higher than UA. EA is called the activation energy. 
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Suppose there are N impurity atoms. At any instant, according to the Boltzmann 
distribution, «£ dE of these will have kinetic energies in the range E to (E + dE), so 
the probability that an impurity atom has an energy E greater than EA is 

Number of impurities with E > EA 
Probability (E > EA) =- 

Total number of impurities 

N 

where A is a dimensionless constant that has only a weak temperature dependence. 
The rate of jumps, jumps per seconds, or simply the frequency of jumps 9 from void 
to void is 

9 = (Frequency of attempt along AB)(Probability of E > EA) 

= Av0 exp E A = UM — UA [1.32] 

Rate for a 

thermally 

activated 

process 

Equation 1.32 describes the rate of a thermally activated process, for which in¬ 
creasing the temperature causes more atoms to be energetic and hence results in more 
jumps over the potential barrier. Equation 1.32 is the well-known Arrhenius rate 
equation and is generally valid for a vast number of transformations, both chemical 
and physical. 

1.7.2 Atomic Diffusion and the Diffusion Coefficient 

Consider the motion of the impurity atom in Figure 1.29. For simplicity, assume a two- 
dimensional crystal in the plane of the paper, as in Figure 1.30. The impurity atom has 
four neighboring voids into which it can jump. If 0 is the angle with respect to the 
x axis, then these voids are at directions 0 = 0°, 90°, 180°, and 270°; as depicted in 
Figure 1.30. Each jump is in a random direction along one of these four angles. As the 
impurity atom jumps from void to void, it leaves its original location at O, and after N 

jumps, after time t, it has been displaced from O to O'. 
Let a be the closest void-to-void separation. Each jump results in a displacement 

along x which is equal to a cos 6, with 9 = 0°, 90°, 180°, or 270°. Thus, each jump 

Figure 1.30 An impurity atom has four site choices for diffusion to a neighboring interstitial vacancy. 

After N jumps, the impurity atom would have been displaced from the original position at O. 
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results in a displacement along x which can be a, 0, —a, or 0, corresponding to the four 
possibilities. After N jumps, the mean displacement along x will be close to zero, just 
as the mean voltage of the ac voltage from a power outlet is zero, even though it has an 
rms value of 120 V. We therefore consider the square of the displacements. The total 
square displacement, denoted X2, is 

X2 = a2 cos2 0i + a2 cos2 $2 + ■■• + a2 cos2 0# 

Clearly, 0 = 90° and 270° give cos20 = 0. Of all N jumps, |N are 0 = 0 and 
180°, each of which gives cos2 0 = 1. Thus, 

X2= -a2N 
2 

There will be a similar expression for T2, which means that after N jumps, the 
total square distance L2 from O to O' in Figure 1.30 is 

L2 = X2 + Y2 = a2N 

The rate of jumping (frequency of jumps) is given by Equation 1.32 

0 = vaA exp 

so the time per jump is 1/0. Time t for N jumps is N/■&. Thus, N = fit and 

L2 = a2&t = 2 Dt 11.331 

where, by definition, D = \a2-&, which is a constant that depends on the diffusion 
process, as well as the temperature, by virtue of 0. This constant is generally called the 
diffusion coefficient. Substituting for 0, we find 

or 

[1.34] 

where Da is a constant. The root square displacement L in time t, from Equation 1.33, 
is given by L = [2Dt]l/1. Since L2 is evaluated from X2 and Y2, L is known as the 
root mean square (rms) displacement. 

The preceding specific example considered the diffusion of an impurity in a void 
between atoms in a crystal; this is a simple way to visualize the diffusion process. An 
impurity, indeed any atom, at a regular atomic site in the crystal can also diffuse around 
by various other mechanisms. For example, such an impurity can simultaneously ex¬ 
change places with a neighbor. But, more significantly, if a neighboring atomic site has 
a vacancy that has been left by a missing host atom, then the impurity can simply jump 
into this vacancy. (Vacancies in crystals are explained in detail in Section 1.9.1; for the 
present, they simply correspond to missing atoms in the crystal.) The activation energy 
Ea in Equation 1.34 is a measure of the difficulty of the diffusion process. It may be as 
simple as the energy (or work) required for an impurity atom to deform (or strain) the 
crystal around it as it jumps from one interstitial site to a neighboring interstitial site, as 
in Figure 1.29; or it may be more complicated, for example, involving vacancy creation. 
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Various Si semiconductor devices are fabricated by doping a single Si crystal with 
impurities (dopants) at high temperatures. For example, doping the Si crystal with 
phosphorus (P) gives the crystal a higher electrical conductivity. The P atoms substi¬ 
tute directly for Si atoms in the crystal. These dopants migrate from high to low dopant 
concentration regions in the crystal by diffusion, which occurs efficiently only at suf¬ 
ficiently high temperatures. 

DIFFUSION OF DOPANTS IN SILICON The diffusion coefficient of P atoms in the Si crystal 
follows Equation 1.34 with D0 = 10.5 cm2 s-1 and EA = 3.69 eV. What is the diffusion coef¬ 
ficient at a temperature of 1100 °C at which dopants such as P are diffused into Si to fabricate 
various devices? What is the rms distance diffused by P atoms in 5 minutes? Estimate, as an 
order of magnitude, how many jumps the P atom makes in 1 second if you take the jump dis¬ 
tance to be roughly the mean interatomic separation, ~ 0.27 nm. 

EXAMPLE 1.12 

SOLUTION 

From Equation 1.34, 

D = D0 exp (10.5 cm2 s ') exp 
(3.69eV)( 1.602 x 10-19JeV~‘) ~ 

(1.381 x 10~23 J K—1 )(1100 + 273 K). 

= 3.0 x 10-13cm2 s’1 

The rms distance L diffused in a time t = 5 min = 5 x 60 seconds is 

L = V2Dt = [2(3.0 x 10-13 cm2 s-1)(5 x 60 s)]1/2 = 1.3 x 10-5 cm or 13 |xm 

Equation 1.33 was derived for a two-dimensional crystal as in Figure 1.30, and for an impurity 
diffusion. Nonetheless, we can still use it to estimate how many jumps a P atom makes in 
1 second. From Equation 1.33, & « 2D/a2 ^ 2(3.0 x 10-17m2 s_1)/(0.27 x 10-9 m)2 = 823 
jumps per second. It takes roughly 1 ms to make one jump. It is left as an exercise to show that 
at room temperature it will take a P atom 1046 years to make a jump! (Scientists and engineers 
know how to use thermally activated processes.) 

1.8 THE CRYSTALLINE STATE 

1.8.1 Types of Crystals 

A crystalline solid is a solid in which the atoms bond with each other in a regular pat¬ 
tern to form a periodic collection (or array) of atoms, as shown for the copper crystal 
in Figure 1.31. The most important property of a crystal is periodicity, which leads to 
what is termed long-range order. In a crystal, the local bonding geometry is repeated 
many times at regular intervals, to produce a periodic array of atoms that constitutes 
the crystal structure. The location of each atom is well known by virtue of periodicity. 
There is therefore a long-range order, since we can always predict the atomic arrange¬ 
ment anywhere in the crystal. Nearly all metals, many ceramics and semiconductors, 
and various polymers are crystalline solids in the sense that the atoms or molecules are 
positioned on a periodic array of points in space. 
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FCC unit cell 

(a) (b) (c) 

Figure 1.31 

(a) The crystal structure of copper which is face<entered cubic (FCC). The atoms are positioned at well-defined sites 

arranged periodically, and there is a long-range order in the crystal. 

(b) An FCC unit cell with close-packed spheres. 

(c) Reduced-sphere representation of the FCC unit cell. 

Examples: Ag, Al, Au, Ca, Cu, y-Fe (>912 °C), Ni, Pd, Pt, Rh. 

All crystals can be described in terms of a lattice and a basis.10 A lattice is an infi¬ 
nite periodic array of geometric points in space, without any atoms. When we place an 
identical group of atoms (or molecules), called a basis, at each lattice point, we obtain 
the actual crystal structure. The crystal is thus a lattice plus a basis at each lattice 
point. In the copper crystal in Figure 1.31a, each lattice point has one Cu atom and the 
basis is a single Cu atom. As apparent from Figure 1.31a, the lattice of the copper crys¬ 
tal has cubic symmetry and is one of many possible lattices. 

Since the crystal is essentially a periodic repetition of a small volume (or cell) of 
atoms in three dimensions, it is useful to identify the repeating unit so that the crystal 
properties can be described through this unit. The unit cell is the most convenient 
small cell in the crystal structure that carries the properties of the crystal. The repeti¬ 
tion of the unit cell in three dimensions generates the whole crystal structure, as is ap¬ 
parent in Figure 1.31a for the copper crystal. 

The unit cell of the copper crystal is cubic with Cu atoms at its comers and one Cu 
atom at the center of each face, as indicated in Figure 1.31b. The unit cell of Cu is thus 
said to have a face-centered cubic (FCC) structure. The Cu atoms are shared with 
neighboring unit cells. Effectively, then, only one-eighth of a comer atom is in the unit 
cell and one-half of the face-centered atom belongs to the unit cell, as shown in Fig¬ 
ure 1.31b. This means there are effectively four atoms in the unit cell. The length of the 
cubic unit cell is termed the lattice parameter a of the crystal structure. For Cu, for 
example, a is 0.362 nm, whereas the radius R of the Cu atom in the crystal is 0.128 nm. 

10 Lattice is a purely imaginary geometric concept whose only requirement is that the infinite array of points has 
periodicity. In many informal discussions, the term lattice or crystal lattice is used to mean the crystal structure itself. 
These concepts are further developed in Section 1.13 under Additional Topics. 
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Layer B 

Layer A 

Layer B 
Layer A 

Layer A Layer A 

Figure 1.32 Body-centered cubic (BCC) crystal 

structure. 

(a) A BCC unit cell with close-packed hard spheres 

representing the Fe atoms. 

(b) A reduced-sphere unit cell. 

(a) |b) (c) (d) 

Figure 1.33 The hexagonal close-packed (HCP) crystal structure. 

(a) The hexagonal close-packed (HCP) structure. A collection of many Zn atoms. Color difference distinguishes layers 

(stacks). 

(b) The stacking sequence of closely packed layers is ABAB. 

(c) A unit cell with reduced spheres. 

(d) The smallest unit cell with reduced spheres. 

Assuming the Cu atoms are spheres that touch each other, we can geometrically relate 
a and R. For clarity, it is often more convenient to draw the unit cell with the spheres 
reduced, as in Figure 1.31c. 

The FCC crystal structure of Cu is known as a close-packed crystal structure 
because the Cu atoms are packed as closely as possible, as is apparent in Figure 1.31a 
and b. The volume of the FCC unit cell is 74 percent full of atoms, which is the maxi¬ 
mum packing possible with identical spheres. By comparison, iron has a body- 
centered cubic (BCC) crystal structure and its unit cell is shown in Figure 1.32. The 
BCC unit cell has Fe atoms at its comers and one Fe atom at the center of the cell. The 
volume of the BCC unit cell is 68 percent full of atoms, which is lower than the max¬ 
imum possible packing. 

The FCC crystal structure is only one way to pack the atoms as closely as possible. 
For example, in zinc, the atoms are arranged as closely as possible in a hexagonal sym¬ 
metry, to form the hexagonal close-packed (HCP) structure shown in Figure 1.33a. 
This stmcture corresponds to packing spheres as closely as possible first as one layer A, 
as shown in Figure 1.33b. You can visualize this by arranging six pennies as closely as 
possible on a table top. On top of layer A we can place an identical layer B, with the 
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Figure 1.34 The diamond unit cell 

which is cubic. The cell has eight 

atoms. 

Gray Sn (a-Sn) and the elemental 

semiconductors Ge and Si have this 

crystal structure. 

Figure 1.35 The zinc blende (ZnS) 

cubic crystal structure. 

Many important compound crystals have 

the zinc blende structure. Examples: 

AlAs, GaAs, GaP, GaSb, InAs, InP, 

InSb, ZnS, ZnTe. 

spheres taking up the voids on layer A, as depicted in Figure 1.33b. The third layer can 
be placed on top of B and lined up with layer A. The stacking sequence is therefore 
ABAB. ... A unit cell for the HCP structure is shown in Figure 1.33c, which shows 
that this is not a cubic structure. The unit cell shown, although convenient, is not the 
smallest unit cell. The smallest unit cell for the HCP structure is shown in Figure 1.33d 
and is called the hexagonal unit cell. The repetition of this unit cell will generate the 
whole HCP structure. The atomic packing density in the HCP crystal structure is 74 per¬ 
cent, which is the same as that in the FCC structure. 

Covalently bonded solids, such as silicon and germanium, have a diamond crystal 
structure brought about by the directional nature of the covalent bond, as shown in 
Figure 1.34 (see also Figure 1.6). The rigid local bonding geometry of four Si-Si 
bonds in the tetrahedral configuration forces the atoms to form what is called the 
diamond cubic crystal structure. The unit cell in this case can be identified with the 
cubic structure. Although there are atoms at each comer and at the center of each face, 
indicating an FCC-like stmcture, there are four atoms within the cell as well. Thus, 
there are eight atoms in the unit cell. The diamond unit cell can actually be described 
in terms of an FCC lattice (a geometric arrangement of points) with each lattice point 
having a basis of two Si atoms. If we place the two Si atoms at each site appropriately, 
for example, one right at the lattice point, and the other displaced from it by a quarter 
lattice distance a/4 along the cube edges, we can easily generate the diamond unit cell. 
In the copper crystal, each FCC lattice point has one Cu atom, whereas in the Si crys¬ 
tal each lattice point has two Si atoms; thus there are 4 x 2 = 8 atoms in the diamond 
unit cell. 

In the GaAs crystal, as in the silicon crystal, each atom forms four directional 
bonds with its neighbors. The unit cell looks like a diamond cubic, as indicated in 
Figure 1.35 but with the Ga and As atoms alternating positions. This unit cell is termed 
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Nearest neighbors = 6 Nearest neighbors = 4 A two-dimensional crystal of 
pennies and quarters 

Figure 1.36 Packing of coins on a table top to build a two-dimensional crystal. 

the zinc blende structure after ZnS, which has this type of unit cell. Many important 
compound semiconductors have this crystal structure, GaAs being the most commonly 
known. The zinc blende unit cell can also be described in terms of a fundamental FCC 
lattice and a basis that has two atoms, Zn and S (or Ga and As). For example, we can 
place one Zn at each lattice point and one S atom displaced from the Zn by a/4 along 
the cube edges. 

In ionic solids, the cations (e.g., Na+) and the anions (Cl-) attract each other 
nondirectionally. The crystal structure depends on how closely the opposite ions can be 
brought together and how the same ions can best avoid each other while maintaining 
long-range order, or maintaining symmetry. These depend on the relative charge and 
relative size per ion. 

To demonstrate the importance of the size effect in two dimensions, consider iden¬ 
tical coins, say pennies (1-cent coins). At most, we can make six pennies touch one 
penny, as shown in Figure 1.36. On the other hand, if we use quarters11 (25-cent coins) 
to touch one penny, at most only five quarters can do so. However, this arrangement 
cannot be extended to the construction of a two-dimensional crystal with periodicity. 
To fulfill the long-range symmetry requirement for crystals, we can only use four quar¬ 
ters to touch the penny and thereby build a two-dimensional “penny-quarter” crystal, 
which is shown in the figure. In the two-dimensional crystal, a penny has four quarters 
as nearest neighbors; similarly, a quarter has four pennies as nearest neighbors. A con¬ 
venient unit cell is a square cell with one-quarter of a penny at each comer and a full 
penny at the center (as shown in the figure). 

The three-dimensional equivalent of the unit cell of the penny-quarter crystal is the 
NaCl unit cell shown in Figure 1.37. The Na+ ion is about half the size of the Cl- ion, 
which permits six nearest neighbors while maintaining long-range order. The repetition 
of this unit cell in three dimensions generates the whole NaCl crystal, which was de¬ 
picted in Figure 1.9b. 

A similar unit cell with Na+ and Cl- interchanged is also possible and equally 
convenient. We can therefore describe the whole crystal with two interpenetrating FCC 

11 Although many are familiar with the United States coinage, any two coins with a size ratio of about 0.75 would 
work out the same. 
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Figure 1.37 A possible reduced- 

sphere unit cell for the NaCI (rock salt) 

crystal. 

An alternative unit cell may have Na+ 

and Cl- interchanged. Examples: 

AgCI, CaO, CsF, LiF, LiCl, NaF, NaCI, 

KF, KCI, MgO. 

Figure 1.38 A possible reduced-sphere 

unit cell for the CsCl crystal. 

An alternative unit cell may have Cs+ and 

Cl~ interchanged. Examples: CsCl, CsBr, 

Csl, TlCl, TlBr, Til. 

unit cells, each having oppositely charged ions at the comers and face centers. Many 
ionic solids have the rock salt (NaCI) crystal structure. 

When the cation and anions have equal charges and are about the same size, as 
in the CsCl crystal, the unit cell is called the CsCl structure, which is shown in 
Figure 1.38. Each cation is surrounded by eight anions (and vice versa), which are at 

Table 1.3 Properties of some important crystal structures 

a and It Number of Atomic 

Crystal (R is the Radius Coordination Atoms per Packing 

Structure of the Atom) Number (CN) Unit Cell Factor 

Simple cubic a — 2R 6 1 0.52 

BCC 
„ 4 R 

a ~ V5 
8 2 0.68 

FCC 

II G 12 4 0.74 

HCP a = 2R 

c = 1.633a 

12 2 0.74 

Diamond 
. _ %R 
a~ 71 

4 8 0.34 

Zinc blende 4 8 0.34 

NaCI 6 4 cations 0.67 

4 anions (NaCI) 

CsCl 8 1 cation 

1 anion 

Examples 

No metals (Except Po) 

Many metals: a-Fe, Cr, Mo, W 

Many metals: Ag, Au, Cu, Pt 

Many metals: Co, Mg, Ti, Zn 

Covalent solids: 
Diamond, Ge, Si, «-Sn 

Many covalent and ionic solids. 
Many compound semiconductors. 

ZnS, GaAs, GaSb, InAs, InSb 

Ionic solids such as NaCI, AgCI, 

LiF, MgO, CaO 

Ionic packing factor depends on 

relative sizes of ions. 

Ionic solids such as CsCl, CsBr, Csl 
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the comers of a cube. This is not a true BCC unit cell because the atoms at various 
BCC lattice points are different. (As discussed in Section 1.13, CsCl has a simple cubic 
lattice with a basis that has one Cl- ion and one Na+ ion.) 

Table 1.3 summarizes some of the important properties of the main crystal struc¬ 
tures considered in this section. 

THE COPPER (FCC) CRYSTAL 
Figure 1.39. 

Consider the FCC unit cell of the copper crystal shown in EXAMPLE 1.13 

a. How many atoms are there per unit cell? 

b. If R is the radius of the Cu atom, show that the lattice parameter a is given by a = R2\fl. 

c. Calculate the atomic packing factor (APF) defined by 

Volume of atoms in unit cell 
APF = - 

Volume of unit cell 

d. Calculate the atomic concentration (number of atoms per unit volume) in Cu and the den¬ 
sity of the crystal given that the atomic'mass of Cu is 63.55 g mol-1 and the radius of the 
Cu atom is 0.128 nm. 

SOLUTION 

a. There are four atoms per unit cell. The Cu atom at each comer is shared with eight other 
adjoining unit cells. Each Cu atom at the face center is shared with the neighboring unit 
cell. Thus, the number of atoms in the unit cell = 8 comers (~ atom) + 6 faces (\ atoms) = 
4 atoms. 

b. Consider the unit cell shown in Figure 1.39 and one of the cubic faces. The face is a square 
of side a and the diagonal is -Ja1 + a1 oxa-Jl. The diagonal has one atom at the center of 
diameter 2 R, which touches two atoms deqtered at the comers. The diagonal, going from 
comer to comer, is therefore R + 2R + R^hus, 4R = a-J2 and a = 4R/V2 = R2-J2. 

Therefore, a = 0.3620 nm. 

c. APF = 
(Number of atoms in unit cell) x (Volume of atom) 

Volume of unit cell 

4 42 
4 x -nR} —itR3 Ai_ 3_3_4 7T 

a3 “ (/?2\/2)3 ~ 3(2\/2)3 

Figure 1.39 The FCC unit cell. 

The atomic radius is R and the lattice 

parameter is a. 
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d. In general, if there are x atoms in the unit cell, the atomic concentration is 

Thus, for Cu 

Number of atoms in unit cell x 

Volume of unit cell a3 

«at = -=-7 = 8.43 x 1022 cm 3 
(0.3620 x 10"7 cm)3 

There are x atoms in the unit cell, and each atom has a mass of Mat/NA grams. The density 
p is ~ / . \ 

Mass of all atoms in unit cell 

Volume of unit cell 
ffl 

natMat (8.43 x 1022 cm 3)(63.55 g mol ') _3 
that is, p =-=-----= 8.9 gem J 

Na 6.022 x 1023 mol"1 6 
t 

The expression p = (natMat)/NA is independent of the crystal structure. 

1.8.2 Crystal Directions and Planes 

There can be a number of possibilities for choosing a unit cell for a given crystal struc¬ 
ture, as is apparent in Figure 1.33c and d for the HCP crystal. As a convention, we gen¬ 
erally represent the geometry of the unit cell as a parallelepiped with sides a, 6,and c 
and angles a, fi, and y, as depicted in Figure 1.40a. The sides a, b, and c and angles 
a, fi, and y are referred to as tie lattice parameters. To establish a reference frame 
and to apply three-dimensional geometry, we insert an xyz coordinate system. The 
x, y, and z axes follow the edges of the parallelepiped and the origin is at the lower- 
left rear comer of the cell. The unit cell extends along the x axis from 0 to a, along y 
from 0 to b, and along z from 0 to c. 

For Cu and Fe, the unit-cell geometry has a = b = c,a = fi = y = 90°, and 
cubic symmetry. For Zn, the unit cell has hexagonal geometry, with a = b ^ c, 
a = fi = 90°, and y = 120°, as shown in Figure 1.33d. 

In explaining crystal properties, we must frequently specify a direction in a crys¬ 
tal, or a particular plane of atoms. Many properties, for example, the elastic modulus, 
electrical resistivity, magnetic susceptibility, etc., are directional within the crystal. We 
use the convention described here for labeling crystal directions based on three- 
dimensional geometry. 

All parallel vectors have the same indices. Therefore, the direction to be labeled 
can be moved to pass through the origin of the unit cell. As an example, Figure 1.40b 
shows a direction whose indices are to be determined. A point P on the vector can be 
expressed by the coordinates x0,y0,z0, where x0,y0, and z0 are projections from point 
P onto the x, y, and z axes, respectively, as shown in Figure 1.40b. It is generally con¬ 
venient to place P where the line cuts a surface (though this is not necessary). We can 
express these coordinates in terms of the lattice parameters a, b, and c, respectively. 
We then have three coordinates, say x\, yi, and z\, for point P in terms of a, b, and c. 
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z 

(a) A parallelepiped is chosen to describe 
the geometry of a unit cell. We line the 
x, y, and z axes with the edges of the 
parallelepiped taking the lower-left rear 
corner as the origin. 

For example, if 

then P is at 

1 1 
Zo are b9 ~c 

1 1 
x\,yuz\ i.e., 1, - 

We then multiply or divide these numbers until we have the smallest integers (which 
may include 0). If we call these integers u, v, and w, then the direction is written in square 
brackets without commas as [uv tu]. If any integer is a negative number, we use a bar on 
top of that integer. For the particular direction in Figure 1.40b, we therefore have [121]. 
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Some of the important directions in a cubic lattice are shown in Figure 1.40c. For 
example, the x, y, and z directions in the cube are [100], [010], and [001], as shown. 
Reversing a direction simply changes the sign of each index. The negative x, y, and z 
directions are [100], [OlO], and [OOl], respectively. 

Certain directions in the crystal are equivalent because the differences between 
them are based only on our arbitrary decision for labeling x, y, and z directions. For 
example, [100] and [010] are different simply because of the way in which we labeled 
the x and y axes. Indeed, directional properties of a material (e.g., elastic modulus, 
and dielectric susceptibility) along the edge of the cube [100] are invariably the same 
as along the other edges, for example, [010] and [001]. All of these directions along 
the edges of the cube constitute a family of directions, which is any set of directions 
considered to be equivalent. We label a family of directions, for example, [100], [010], 
[001], ..., by using a common notation, triangular brackets. Thus, (100) represents 
the family of six directions, [100], [010], [001], [100], [OlO], and [OOl] in a cubic crysx^ 
tal. Similarly, the family of diagonal directions in the cube, shown in Figure 1,40c, is 
denoted (111). 

We also frequently need to describe a particular plane in a crystal. Figure 1.41 
shows a general unit cell with a plane to be labeled. We use the following convention, 
called the Miller indices of a plane, for this purpose. 

We take the intercepts x0, y0, and z0 of the plane on the x, y, and z axes, respec¬ 
tively. If the plane passes through the origin, we can use another convenient parallel 
plane, or simply shift the origin to another point. All planes that have been shifted by 
a lattice parameter have identical Miller indices. 

We express the intercepts x0,y0, and z0 in terms of the lattice parameters a, b, and 
c, respectively, to obtain xx, yx, and z\. We then invert these numbers. Taking the rec¬ 
iprocals, we obtain 

J_ J_ J_ 

*i’ y\ z\ 

We then clear all fractions, without reducing to lowest integers, to obtain a set of 
integers, say h, k, and t. We then put these integers into parentheses, without commas, 
that is, (hki). For the plane in Figure 1.41a, we have 

Intercepts x0, y0, and z0 are \a, lb, and oo c. 

Intercepts xi, yi, and z\, in terms of a, b, and c, are 1, and oo. 

Reciprocals l/xXt \/y\, and \/z\ are \j\, 1/1, l/oo = 2,1,0. 

This set of numbers does not have fractions, so it is not necessary to clear frac¬ 
tions. Hence, the Miller indices (hki) are (210). 

If there is a negative integer due to a negative intercept, a bar is placed across the 
top of the integer. Also, if parallel planes differ only by a shift that involves a multiple 
number of lattice parameters, then these planes may be assigned the same Miller 
indices. For example, the plane (010) is the xz plane that cuts the y axis at —b. If we 
shift the plane along y by two lattice parameters (2b), it will cut the y axis at b and 
the Miller indices will become (010). In terms of the unit cell, the (OlO) plane is the 
same as the (010) plane, as shown in Figure 1.41b. Note that not all parallel planes are 
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(b) Various planes in the cubic lattice. 

Figure 1.41 Labeling of crystal planes and typical examples in the cubic lattice. 

identical. Planes can have the same Miller indices only if they are separated by a mul¬ 
tiple of the lattice parameter. For example, the (010) plane is not identical to the (020) 
plane, even though they are geometrically parallel. In terms of the unit cell, plane (010) 
is a face of the unit cell cutting the y axis at b, whereas (020) is a plane that is halfway 
inside the unit cell, cutting the y axis at ^b. The planes contain different numbers of 
atoms. The (020) plane cannot be shifted by the lattice parameter b to coincide with 
plane (010). 

It is apparent from Figure 1.41b that in the case of the cubic crystal, the [hkt] 
direction is always perpendicular to the {hkt) plane. 

Certain planes in the crystal belong to a family of planes because their indices dif¬ 
fer only as a consequence of the arbitrary choice of axis labels. For example, the in¬ 
dices of the (100) plane become (010) if we switch the x and y axes. All the (100), 
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(010), and (001) planes, and hence the parallel (100), (010), (001) planes, form a fam¬ 
ily of planes, conveniently denoted by curly brackets as {100}. 

Frequently we need to know the number of atoms per unit area on a given plane 
0hkt). For example, if the surface concentration of atoms is high on one plane, then 
that plane may encourage oxide growth more rapidly than another plane where there 
are less atoms per unit area. Planar concentration of atoms is the number of atoms 
per unit area, that is, the surface concentration of atoms, on a given plane in the crys¬ 
tal. Among the {100}, {110}, and {111}, planes in FCC crystals, the most densely 
packed planes, those with the highest planar concentration, are {111} planes and the 
least densely packed are {110}. 

EXAMPLE 1.14 MILLER INDICES AND PLANAR CONCENTRATION Consider the plane shown in Figure 1.42a, 
which passes through one side of a face and the center of an opposite face in the FCC lattice. The 
plane passes through the origin at the lower-left rear comer. We therefore shift the origin to say 
point O' at the lower-right rear comer of the unit cell. In terms of a, the plane cuts the x, y, and 
z axes at oo, —1, respectively. We take the reciprocals to obtain, 0, —1,2. Therefore, the 
Miller indices are (0l2). 

To calculate the planar concentration n(hke) on a given (hk£) plane, we consider a bound 
area A of the (hkZ) plane within the unit cell as in Figure 1.42b. Only atoms whose centers lie 
on A are involved in n(hke). For each atom, we then evaluate what portion of the atomic cross 
section (a circle in two dimensions) cut by the plane (hkl) is contained within A. Consider the 
Cu FCC crystal with a = 0.3620 nm. 

The (100) plane corresponds to a cube face and has an area A = a2. There is one full 
atom at the center; that is, the (100) plane cuts through one full atom, one full circle in two 
dimensions, at the face center as in Figure 1.42b. However, not all comer atoms are within A. 

Only a quarter of a circle is within the bound area A in Figure 1.42b. 

Number of atoms in A = (4 comers) x atom) + 1 atom at face center = 2 

Figure 1.42 The (012) plane and planar concentrations in an FCC crystal. 
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Planar concentration «(ioo) of (100) is 

4(j)+l 2 
”(100) 

a* a2 (0.3620 x 10“9 m)2 
= 15.3 atoms nm -2 

Consider the (110) plane as in Figure 1.42c. The number of atoms in the area A = 
(a)(ay/2) defined by two face diagonals and two cube sides is 

(4 comers) x (j atom) + (2 face diagonals) x (f atom at diagonal center) = 2 

Planar concentration on (110) is 

”(110) = 

4U) + 2(^) 
(«W2) 

-= = 10.8 atoms nm 
W2 

Similar for the (111) plane, «(m) is 17.0 atoms nm 2. Clearly the (111) planes are the most 
and (110) planes are the least densely packed among the (100), (110), and (111) planes. 

1.8.3 Allotropy and Carbon 

Certain substances can have more than one crystal structure, iron being one of the best- 
known examples. This characteristic is termed polymorphism or allotropy. Below 
912°C, iron has the BCC structure and is called a-Fe. Between 912 °C and 1400 °C, 
iron has the FCC structure and is called y-Fe. Above 1400 °C, iron again has the BCC 
structure and is called <5-Fe. Since iron has more than one crystal structure, it is called 
polymorphic. Each iron crystal structure is an allotrope or a polymorph. 

The allotropes of iron are all metals. Furthermore, one allotrope changes to another at 
a well-defined temperature called a transition temperature, which in this case is 912 °C. 

Many substances have allotropes that exhibit widely different properties. More¬ 
over, for some polymorphic substances, the transformation from one allotrope to 
anolher cannot be achieved by a change of temperature, but requires the application of 
pressure, as in the transformation of graphite to diamond. 

Carbon has three important crystalline allotropes: diamond, graphite, and the 
newly discovered buckminsterfullerene. These crystal structures are shown in Fig¬ 
ure 1.43a, b and c, respectively, and their properties are summarized in Table 1.4. 
Graphite is the carbon form that is stable at room temperature. Diamond is the stable 
form at very high pressures. Once formed, diamond continues to exist at atmospheric 
pressures and below about 900 °C, because the transformation rate of diamond to 
graphite is virtually zero under these conditions. Graphite and diamond have widely 
differing properties, which lead to diverse applications. For example, graphite is an 
electrical conductor, whereas diamond is an insulator. Diamond is the hardest sub¬ 
stance known. On the other hand, the carbon layers in graphite can readily slide over 
each other under shear stresses, because the layers are only held together by weak 
secondary bonds (van der Waals bonds). This is the reason for graphite’s lubricating 
properties. 

Buckminsterfullerene is another polymorph of carbon. In the buckminsterfullerene 
molecule (called the “buckyball”), 60 carbon atoms bond with each other to form a 
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Cubic crystal 

Covalently 
bonded network 
of atoms 

Covalently bonded layer 

Layers bonded by van der 
Waals bonding 

<— Covalently bonded 
layer 

Hexagonal unit cell 

(a) Diamond unit cell (b) Graphite 

The FCC unit cell of the Buckminsterfullerene (C6Q) molecule (the 

Buckminsterfullerene crystal. Each “buckyball” molecule) 
lattice point has a C^ molecule 

(c) Buckminsterfullerene 

Figure 1.43 The three allotropes of carbon. 

perfect soccer ball-type molecule. The C6o molecule has 12 pentagons and 20 hexa¬ 
gons joined together to form a spherical molecule, with each C atom at a comer, as 
depicted in Figure 1.43c. The molecules are produced in the laboratory by a carbon arc 
in a partial atmosphere of an inert gas (He); they are also found in the soot of partial 
combustion. The crystal form of buckminsterfullerene has the FCC structure, with 
each C6o molecule occupying a lattice point and being held together by van der Waals 
forces, as shown in Figure 1.43c. The Buckminsterfullerene crystal is a semiconductor, 
and its compounds with alkali metals, such as K3C6o, exhibit superconductivity at low 
temperatures (below 18 K). Mechanically, it is a soft material. 

Diamond, graphite, and the fullerene crystals are not the only crystalline 
allotropes of carbon, and neither are they the only structural forms of carbon. For 
example, lonsdaleite, which is another crystalline allotrope, is hexagonal diamond 
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Table 1.4 Crystalline allotropes of carbon (p is the density and Y is the elastic modulus or Young's modulus) 

Graphite Diamond 

Buckminsterfullerene 

Crystal 

Structure Covalent bonding within layers. 

Van der Waals bonding 

between layers. Hexagonal 

unit cell. 

Covalently bonded network. 

Diamond crystal structure. 

Covalently bonded C6o 

spheroidal molecules held in 

an FCC crystal structure by 

van der Waals bonding. 

Electrical Good electrical conductor. Very good electrical Semiconductor. Compounds 
and Thermal conductivity insulator. Excellent with alkali metals 
thermal 

properties 
comparable to metals. thermal conductor, about 

five times more than silver 

or copper. 

(e.g., K3C60) exhibit 
superconductivity. 

Mechanical Lubricating agent. Machinable. The hardest material. Mechanically soft. 
properties Bulk graphite: 

Y % 27 GPa 

f> ~ 2.25 g cm*3 

Y = 827 GPa 

p = 3.25 g cm-3 
Y * 18 GPa 

p = 1.65 g cm"3 

Comment Stable allotrope at atmospheric 

pressure 
High-pressure allotrope. Laboratory synthesized.^ 

Occurs in the soot of partial 

combustion. 

Uses, Metallurgical crucibles, welding Cutting tool applications. Possible future semiconductor 
potential electrodes, heating elements, Diamond anvils. Diamond or superconductivity 
uses electrical contacts, refractory 

applications. 

film coated drills, blades, 

bearings, etc. Jewelry. Heat 

conductor for ICs. Possible 

thin-film semiconductor 

devices, as the charge 

carrier mobilities are large. 

applications. 

in which each C atom covalently bonds to four neighbors, as in diamond, but the 
crystal structure has hexagonal symmetry. (It forms from graphite on meteors when 
the meteors impact the Earth; currently it is only found in Arizona.) Amorphous 
carbon has no crystal structure (no long-range order), so it is not a crystalline 
allotrope, but many scientists define it as a form or phase of carbon, or as a struc¬ 
tural “allotrope.” The recently discovered carbon nanotubes are thin and long 
carbon tubes, perhaps 10 to 100 microns long but only several nanometers in diam¬ 
eter, hence the name nanotube. They are tubes made from rolling a graphite sheet 
into a tube and then capping the ends with hemispherical buckyballs. The carbon 
tube is really a single macromolecule rather than a crystal in its traditional sense12; 
it is a structural form of carbon. Carbon nanotubes have many interesting and 
remarkable properties and offer much potential for various applications in electron¬ 
ics; the most topical currently being carbon nanotube field emission devices. 
(Chapter 4 has an example.) 

12 It is possible to define a unit cell on the surface of a carbon nanotube and apply various crystalline concepts, as 
some scientists have done. To date, however, there seems to be no single crystal of carbon nanotubes in the same 
way that there is a fullerene crystal in which the C&o molecules are bonded to form an FCC structure. 
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1.9 CRYSTALLINE DEFECTS AND THEIR 
SIGNIFICANCE 

By bringing all the atoms together to try to form a perfect crystal, we lower the total 
potential energy of the atoms as much as possible for that particular structure. What 
happens when the crystal is grown from a liquid or vapor; do you always get a perfect 
crystal? What happens when the temperature is raised? What happens when impurities 
are added to the solid? 

There is no such thing as a perfect crystal. We must therefore understand the types 
of defects that can exist in a given crystal structure. Quite often, key mechanical and 
electrical properties are controlled by these defects. 

1.9.1 Point Defects: Vacancies and Impurities 

Above the absolute zero temperature, all crystals have atomic vacancies or atoms 
missing from lattice sites in the crystal structure. The vacancies exist as a requirement 
of thermal equilibrium and are called thermodynamic defects. Vacancies introdu6e 
disorder into the crystal by upsetting the perfect periodicity of atomic arrangements. 

We know from the kinetic molecular theory that all the atoms in a crystal vibrate 
about their equilibrium positions with a distribution of energies, a distribution that closely 
resembles the Boltzmann distribution. At some instant, there may be one atom with suffi¬ 
cient energy to break its bonds and jump to an adjoining site on the surface, as depicted in 
Figure 1.44. This leaves a vacancy behind, just below the surface. This vacancy can then 
diffuse into the bulk of the crystal, because a neighboring atom can diffuse into it. 

This latter process of vacancy creation has been shown to be a sequence of events 
in Figure 1.44. Suppose that Ev is the average energy required to create such a 
vacancy. Then only a fraction, exp(— Ev/kT), of all the atoms in the crystal can have 

ooooo 
ooooo 
ooooo 
ooooo 
ooooo 

(a) Perfect crystal 

without vacancies 

060OO 
OOOOO 
ooooo 
ooooo 
ooooo 
(b) An energetic 
atom at the surface 
breaks bonds and 
jumps on to a new 
adjoining position on 
the surface. This 
leaves behind a 
vacancy. 

o o o°o o 
ooooo 
ooooo 
ooooo 
ooooo 
(c) An atom in the 
bulk diffuses to fill 
the vacancy thereby 
displacing the 
vacancy toward the 
bulk. 

ooo°oo 
ooooo 
o 6 000 
ooooo 
ooooo 
(d) Atomic diffusions 
cause the vacancy to 
diffuse into the bulk. 

Figure 1.44 Generation of a vacancy by the diffusion of an atom to the surface and the subsequent 

diffusion of the vacancy into the bulk. 
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(d) An interstitial impurity 

in the crystal. The impurity 

occupies an empty space 

between host atoms. 

Figure 1.45 Point defects in the crystal structure. 

The regions around the point defect become distorted; the lattice becomes strained. 

(a) A vacancy in the 

crystal. 

(b) A substitutional 

impurity in the crystal. The 

impurity atom is larger 

than the host atom. 

(c) A substitutional impurity 

in the crystal. The impurity 

atom is smaller than the 

host atom. 

s 

sufficient energy to create vacancies. If the number of atoms per unit volume in the 
crystal is N, then the vacancy concentration nv is given by13 

At all temperatures above absolute zero, there will always be an equilibrium con¬ 
centration of vacancies, as dictated by Equation 1.35. Although we considered only 
one possible vacancy creation process in Figure 1.44 there are other processes that also 
create vacancies. Furthermore, we have shown the vacancy to be the same size in the 
lattice as the missing atom, which is not entirely true. The neighboring atoms around a 
vacancy close in to take up some of the slack, as shown in Figure 1.45a. This means 
that the crystal lattice around the vacancy is distorted from the perfect arrangement 
over a few atomic dimensions. The vacancy volume is therefore smaller than the vol¬ 
ume of the missing atom. 

Vacancies are only one type of point defect in a crystal structure. Point defects 
generally involve lattice changes or distortions of a few atomic distances, as depicted in 
Figure 1.45. The crystal structure may contain impurities, either naturally or as a con¬ 
sequence of intentional addition, as in the case of silicon crystals grown for microelec¬ 
tronics. If the impurity atom substitutes directly for the host atom, the result is called a 
substitutional impurity and the resulting crystal structure is that of a substitutional 
solid solution, as shown in Figure 1.45b and c. When a Si crystal is “doped” with small 
amounts of arsenic (As) atoms, the As atoms substitute directly for the Si atoms in the 
Si crystal; that is, the arsenic atoms are substitutional impurities. The impurity atom 
can also place itself in an interstitial site, that is, in a void between the host atoms, as 

Equilibrium 

concentration 

of vacancies 

13 The proper derivation of the vacancy concentration involves considering thermodynamics and equilibrium 
concepts, in the actual thermodynamic expression, the pre-exponential term in Equation 1.35 is not unity but a factor 
that depends on the change in the entropy of the crystal upon vacancy creation. For nearly all practical purposes 
Equation 1.35 is sufficient. 
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(a) Schottky and Frenkel defects in an ionic 
crystal. 

Figure 1.46 Point defects in ionic crystals. 

(b) Two possible imperfections caused by ionized 
substitutional impurity atoms in an ionic crystal. 

carbon does in the BCC iron crystal. In that case, the impurity is called an interstitial 
impurity, as shown in Figure 1.45d. 

In general, the impurity atom will have both a different valency and a different 
size. It will therefore distort the lattice around it. For example, if a substitutional im¬ 
purity atom is larger than the host atom, the neighboring host atoms will be pushed 
away, as in Figure 1.45b. The crystal region around an impurity is therefore dis¬ 
torted from the perfect periodicity and the lattice is said to be strained around a 
point defect. A smaller substitutional impurity atom will pull in the neighboring 
atoms, as in Figure 1.45c. Typically, interstitial impurities tend to be small atoms 
compared to the host atoms, a typical example being the small carbon atom in the 
BCC iron crystal. 

In an ionic crystal, such as NaCl, which consists of anions (Cl~) and cations 
(Na+), one common type of defect is called a Schottky defect. This involves a miss¬ 
ing cation-anion pair (which may have migrated to the surface), so the neutrality is 
maintained, as indicated in Figure 1.46a. These Schottky defects are responsible for 
the major optical and electrical properties of alkali halide crystals. Another type of de¬ 
fect in the ionic crystal is the Frenkel defect, which occurs when a host ion is dis¬ 
placed into an interstitial position, leaving a vacancy at its original site. The interstitial 
ion and the vacancy pair constitute the Frenkel defect, as identified in Figure 1.46a. 
For the AgCl crystal, which has predominantly Frenkel defects, an Ag+ is in an inter¬ 
stitial position. The concentration of such Frenkel defects is given by Equation 1.35, 
with an appropriate defect creation energy ^defect instead of Ev. 

Ionic crystals can also have substitutional and interstitial impurities that become 
ionized in the lattice. Overall, the ionic crystal must be neutral. Suppose that an Mg2+ 
ion substitutes for an Na+ ion in the NaCl crystal, as depicted in Figure 1.46b. Since 
the overall crystal must be neutral, either one Na+ ion is missing somewhere in the 
crystal, or an additional Cl- ion exists in the crystal. Similarly, when a doubly charged 
negative ion, such as O2-, substitutes for Cl-, there must either be an additional cation 
(usually in an interstitial site) or a missing Cl- somewhere in order to maintain charge 
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neutrality in the crystal. The most likely type of defect depends on the composition of 
the ionic solid and the relative sizes and charges of the ions. 

VACANCY CONCENTRATION IN A METAL The energy of formation of a vacancy in the alu¬ 
minum crystal is about 0.70 eV. Calculate the fractional concentration of vacancies in A1 at 
room temperature, 300 K, and very close to its melting temperature 660 °C. What is the vacancy 
concentration at 660 °C given that the atomic concentration in A1 is about 6.0 x 1022 cm-3? 

EXAMPLE 1.15 

SOLUTION 

Using Equation 1.35, the fractional concentration of vacancies are as follows: 
At 300 °C, 

r (0.70 eV)(1.6 x 10~19 J eV-1: ] 

~ eXPL (1.38 x 10-23 J K-1)(300 K) J 
= 1.7 x 10"12 

f (0.70 eV)(1.6 x 10~19 J eV-1)*! 

~ eXPL (L38 x 10-23 JK-1)(933 K) J 
= 1.7 x 10~4 

That is, almost 1 in 6000 atomic sites is a vacancy. The atomic concentration N in A1 is about 
6.0 x 1022 cm-3, which means that the vacancy concentration nv at 660 °C is 

nv = (6.0 x 1022 cm“3)(1.7 x 10“4) = 1.0 x 1019 cm-3 

The mean vacancy separation (on the order of n~1/3) at 660 °C is therefore roughly 5 nm. The 
mean atomic separation in A1 is ~ 0.3 nm (~ 7V_1/3), so the mean separation between vacancies 
is only about 20 atomic separations! (A more accurate version of Equation 1.35, with an en¬ 
tropy term, shows that the vacancy concentration is even higher than the estimate in this exam¬ 
ple.) The increase in the linear thermal expansion coefficient of a metal with temperature near 
its melting temperature, as shown for Mo in Figure 1.20, has been attributed to the generation 
of vacancies in the crystal. 

VACANCY CONCENTRATION IN A SEMICONDUCTOR The energy of vacancy formation in the 
Ge crystal is about 2.2 eV. Calculate the fractional concentration of vacancies in Ge at 938 °C, just 
below its melting temperature. What is the vacancy concentration given that the atomic mass Mat 
and density p of Ge are 72.64 g mol-1 and 5.32 g cm-3, respectively? Neglect the change in the 
density with temperature which is small compared with other approximations in Equation 1.35. 

EXAMPLE 1.16 

SOLUTION 

Using Equation 1.34, the fractional concentration of vacancies at 938 °C or 1211 K is 

nv ( Ev\ f (2.2 eV)(1.6 x 10-19 J eV1)"] „ A __10 

N *A kTJ (1.38 x 10~23 JK_1)(12II K) J 
which is orders of magnitude less than that for A1 at its melting temperature in Example 1.15; 
vacancies in covalent crystals cost much more energy than those in metals. 
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The number of Ge atoms per unit volume is 

pNA (5.32 g cm_3)(6.022 x 1023 g mol-1) 22 
N = -= -:-= 4.41 x 10 cm 

Mm 72.64 g mol-1 

so that at 938 °C, 

nv = (4.4 x 1022 cm~3)(7.0 x 10"10) = 3.1 x 1013 cm"3 

Only 1 in 109 atoms is a vacancy. 

1.9.2 Line Defects: Edge and Screw Dislocations 

A line defect is formed in a crystal when an atomic plane terminates within the crystal 
instead of passing all the way to the end of the crystal, as depicted in Figure 1.47a. The 
edge of this short plane of atoms is therefore like a line running inside the crystal. The 
planes neighboring (i.e., above) this short plane are dislocated (displaced) with respect 
to those below the line. We therefore call this type of defect an edge dislocation and 
use an inverted T symbol. The vertical line corresponds to the half-plane of atoms in 
the crystal, as illustrated in Figure 1.47a. It is clear that the atoms around the disloca¬ 
tion line have been effectively displaced from their perfect-crystal equilibrium posi¬ 
tions, which results in atoms being out of registry above and below the dislocation. The 
atoms above the dislocation line are pushed together, whereas those below it are pulled 
apart, so there are regions of compression and tension above and below the dislocation 
line, respectively, as depicted by the shaded region around the dislocation line in Fig¬ 
ure 1.47b. Therefore, around a dislocation line, we have a strain field due to the 
stretching or compressing of bonds. 

The energy required to create a dislocation is typically in the order of 100 eV per 
nm of dislocation line. On the other hand, it takes only a few eV to form a point defect, 

Edge dislocation line 

(a) Dislocation is a line defect. The dislocation 
shown runs into the paper. 

(b) Around the dislocation there is a strain field as 
the atomic bonds have been compressed above 
and stretched below the dislocation line. 

Figure 1.47 Dislocation in a crystal. This is a line defect, which is accompanied by lattice distortion and hence a 

lattice strain around it. 
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Atoms in 
■ the upper 
portion 

(a) A screw dislocation in a crystal (b) The screw dislocation in (a) as viewed from above 

Figure 1.48 A screw dislocation, which involves shearing one portion of a perfect crystal with respect to another, on one 

side of a line (AB). 

which is a few nanometers in dimension. In other words, forming a number of point 
defects is energetically more favorable than forming a dislocation. Dislocations are not 

equilibrium defects. They normally arise when the crystal is deformed by stress, or 
when the crystal is actually being grown. 

Another type of dislocation is the screw dislocation, which is essentially a shearing 
of one portion of the crystal with respect to another, by one atomic distance, as illustrated 
in Figure 1.48a. The displacement occurs on either side of the screw dislocation line. 
The circular arrow around the line symbolizes the screw dislocation. As we move away 
from the dislocation line, the atoms in the upper portion become more out of registry 
with those below; at the edge of the crystal, this displacement is one atomic distance, as 
illustrated in Figure 1.48b. 

Both edge and screw dislocations are generally created by stresses resulting from 
thermal and mechanical processing. A line defect is not necessarily either a pure edge 
or a pure screw dislocation; it can be a mixture, as depicted in Figure 1.49. Screw dis¬ 
locations frequently occur during crystal growth, which involves atomic stacking on 
the surface of a crystal. Such dislocations aid crystallization by providing an additional 
“edge” to which the incoming atoms can attach, as illustrated in Figure 1.50. To 
explain, if an atom arrives at the surface of a perfect crystal, it can only attach to one 
atom in the plane below. However, if there is a screw dislocation, the incoming atom 
can attach to an edge and thereby form more bonds; hence, it can lower its potential 
energy more than anywhere else on the surface. With incoming atoms attaching to the 
edges, the growth occurs spirally around the screw dislocation, and the final crystal 
surface reflects this spiral growth geometry. 

The phenomenon of plastic or permanent deformation of a metal depends 
totally on the presence and motions of dislocations, as discussed in elementary books 
on the mechanical properties of materials. In the case of electrical properties of metals, 

/ 
/ 
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© New molecule 

Figure 1.49 A mixed 

dislocation. 

Figure 1.50 Screw dislocation aids 

crystal growth -because the newly arriving 

atom can attach to two or three atoms 

instead of one atom and thereby form 

more bonds. 

Growth spiral on the surface of a 
polypropylene crystal due to screw dislocation 
aided crystal growth. 

I SOURCE: Photo by Phillip Geil, Courtesy of 
I Case Western Reserve University. 

we will see in Chapter 2 that dislocations increase the resistivity of materials, cause 
significant leakage current in a pn junction, and give rise to unwanted noise in various 
semiconductor devices. Fortunately, the occurrence of dislocations in semiconductor 
crystals can be controlled and nearly eliminated. In a metal interconnection line on a 
chip, there may be an average of 104-105 dislocation lines per mm2 of crystal, whereas 
a silicon crystal wafer that is carefully grown may typically have only 1 dislocation 
line per mm2 of crystal. 

1.9.3 Planar Defects: Grain Boundaries 

Many materials are poly crystalline; that is, they are composed of many small crys¬ 
tals oriented in different directions. In fact, the growth of a flawless single crystal 
from what is called the melt (liquid) requires special skills, in addition to scientific 
knowledge. When a liquid is cooled to below its freezing temperature, solidifica¬ 
tion does not occur at every point; rather, it occurs at certain sites called nuclei, 
which are small crystal-like structures containing perhaps 50 to 100 atoms. Figure 
1.51a to c depicts a typical solidification process from the melt. The liquid atoms 
adjacent to a nucleus diffuse into the nucleus, thereby causing it to grow in size to 
become a small crystal, or a crystallite, called a grain. Since the nuclei are ran¬ 
domly oriented when they are formed, the grains have random crystallographic 
orientations during crystallite growth. As the liquid between the grains is con¬ 
sumed, some grains meet and obstruct each other. At the end of solidification, there¬ 
fore, the whole structure has grains with irregular shapes and orientations, as shown 
in Figure 1.51c. 

It is apparent from Figure 1.51c that in contrast to a single crystal, a polycrys¬ 
talline material has grain boundaries where differently oriented crystals meet. As indi¬ 
cated in Figure 1.52, the atoms at the grain boundaries obviously cannot follow their 
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The photograph of the surface of a synthetic diamond 
grown on the (111) surface of natural diamond from 
sodium carbonate solvent at 5.5 GPa and 1600 °C. 

I SOURCE: Courtesy of Dr. Hisao Kanda, National 
I Institute for Materials Science, Ibaraki, Japan. 

Dislocations can be seen by examining a thin slice of the 
sample under a transmission electron microscope (TEM). 
They appear as dark lines and loops as shown here in a 
Ni-Si alloy single crystal. The loop dislocations are 
around N^Si particles inside the crystal. The sample had 
been mechanically deformed, which generates 
dislocations. 

SOURCE: Courtesy of Professor John Humphreys, 
UMIST, England. (J. Humphreys and V. Ramaswamy in 
High Voltage Electron Microscopy, ed. P. R. Swann. 
C. J. Humphreys and M. J. Goringe, New York: 
Academic Press, 1974, p. 26.) 

Left: A polycrystalline diamond film on the (100) surface of a single crystal silicon wafer. The film thickness is 
6 microns and the SEM magnification is 6000. 

Right: A 6-micron-thick CVD diamond film grown on a single crystal silicon wafer. SEM magnification is 8000. 

I SOURCE: Courtesy of Dr. Paul May, The School of Chemistry, University of Bristol, England. 



72 CHAPTER 1 Elementary Materials Science Concepts 

Nuclei Crystallite 

Figure 1.51 Solidification of a polycrystalline solid from the melt. For simplicity, cubes represent atoms. 

Foreign impurity 

Self-interstitial-type atom 

Void, vacancy 

Strained bond 

Grain boundary 

Broken bond 
(dangling bond) 

Figure 1.52 The grain boundaries have broken bonds, voids, vacancies, 

strained bonds, and interstitial-type atoms. 

The structure of the grain boundary is disordered, and the atoms in the grain 

boundaries have higher energies than those within the grains. 

natural bonding habits, because the crystal orientation suddenly changes across the 
boundary. Therefore, there are both voids at the grain boundary and stretched and bro¬ 
ken bonds. In addition, in this region, there are misplaced atoms that do not follow the 
crystalline pattern on either side of the boundary. Consequently, the grain boundary 
represents a high-energy region per atom with respect to the energy per atom within 
the bulk of the grains themselves. The atoms can diffuse more easily along a grain 
boundary because (a) less bonds need to be broken due to the presence of voids and 
(b) the bonds are strained and easily broken anyway. In many polycrystalline materi¬ 
als, impurities therefore tend to congregate in the grain boundary region. We generally 
refer to the atomic arrangement in the grain boundary region as being disordered due 
to the presence of the voids and misplaced atoms. 
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Since the energy of an atom at the grain boundary is greater than that of an 
atom within the grain, these grain boundaries are nonequilibrium defects; conse¬ 
quently, they try to reduce in size to give the whole structure a lower potential en¬ 
ergy. At or around room temperature, the atomic diffusion process is slow; thus, the 
reduction in the grain boundary is insignificant. At elevated temperatures, however, 
atomic diffusion allows big grains to grow, at the expense of small grains, which 
leads to grain coarsening (grain growth) and hence to a reduction in the grain 
boundary area. 

Mechanical engineers have learned to control the grain size, and hence the me¬ 
chanical properties of metals to suit their needs, through various thermal treatment cy¬ 
cles. For electrical engineers, the grain boundaries become important when designing 
electronic devices based on polysilicon or any polycrystalline semiconductor. For 
example, in highly polycrystalline materials, particularly thin-film semiconductors 
(e.g., polysilicon), the resistivity is invariably determined by polycrystallinity, or grain 
size, of the material, as discussed in Chapter 2. 

1.9.4 Crystal Surfaces and Surface Properties 

In describing crystal structures, we assume that the periodicity extends to infinity 
which means that the regular array of atoms is not interrupted anywhere by the pres¬ 
ence of real surfaces of the material. In practice, we know that all substances have real 
surfaces. When the crystal lattice is abruptly terminated by a surface, the atoms at the 
surface cannot fulfill their bonding requirements as illustrated in Figure 1.53. For sim¬ 
plicity, the figure shows a Si crystal schematically sketched in two dimensions where 
each atom in the bulk of the crystal has four covalent bonds, each covalent bond 

Figure 1.53 At the surface of a hypothetical two-dimensional crystal, the atoms cannot fulfill 

their bonding requirements and therefore have broken, or dangling, bonds. 

Some of the surface atoms bond with each other; the surface becomes reconstructed. The surface 

can have physisorbed and chemisorbed atoms. 



chapter i • Elementary Materials Science Concepts 

having two electrons.14 The atoms at the surface are left with dangling bonds, bonds 
that are half full, only having one electron. These dangling bonds are looking for atoms 
to which they can bond. Two neighboring surface atoms can share each other’s dan¬ 
gling bond electrons, that is, form a surface bond with each other. This bonding be¬ 
tween surface atoms causes a slight displacement of the surface atoms and leads to a 
surface that has been reconstructed. 

Atoms from the environment can also bond with the atoms on the crystal surface. 
For example, a hydrogen atom can be captured by a dangling bond at the surface to 
form a chemical bond as a result of which hydrogen becomes absorbed. Primary 
bonding of foreign atoms to a crystal surface is called chemisorption. The H atom in 
Figure 1.53 forms a covalent bond with a Si atom and hence becomes chemisorbed. 
However, the H2O molecule cannot form a covalent bond, but, because of hydrogen 
bonding, it can form a secondary bond with a surface Si atom and become adsorbed. 
Secondary bonding of foreign atoms or molecules to a crystal surface is called 
physisorption (physical adsorption). Water molecules in the air can readily become 
adsorbed at the surface of a crystal. Although the figure also shows a physisorbed H2 

molecule as an example, this normally occurs at very low temperatures where crystal 
vibrations are too weak to quickly dislodge the H2 molecule. It should be remarked 
that in many cases, atoms or molecules from the environment become adsorbed at the 
surface for only a certain period of time; they have a certain sticking or dwell time. For 
example, at room temperature, inert gases stick to a metal surface only for a duration 
of the order of microseconds, which is extremely long compared with the vibrational 
period of the crystal atoms (~10-12 seconds). A dangling bond can capture a free 
electron from the environment if one is available in its vicinity. The same idea applies 
to a dangling bond at a grain boundary as in Figure 1.52. 

At sufficiently high temperatures, some of the absorbed foreign surface atoms can 
diffuse into the crystal volume to become bulk impurities. Many substances have a nat¬ 
ural oxide layer on the surface that starts with the chemical bonding of oxygen atoms to 
the surface atoms and the subsequent growth of the oxide layer. For example, aluminum 
surfaces always have a thin aluminum oxide layer. In addition, the surface of the oxide 
often has adsorbed organic species of atoms usually from machining and handling. The 
surface condition of a Si crystal wafer in microelectronics is normally controlled by first 
etching the surface and then oxidizing it at a high temperature to form a SiC>2 passivat¬ 
ing layer on the crystal surface. This oxide layer is an excellent barrier against the dif¬ 
fusion of impurity atoms into the crystal. (It is also an excellent electrical insulator.) 

Figure 1.53 shows only some of the possibilities at the surface of a crystal. Gener¬ 
ally the surface structure depends greatly on the mode of surface formation, which 
invariably involves thermal and mechanical processing, and previous environmental 
history. One visualization of a crystal surface is based on the terrace-ledge-kink 
model, the so-called Kossel model, as illustrated in Figure 1.54. The surface has 
ledges, kinks, and various imperfections such as holes and dislocations, as well as 
impurities which can diffuse to and from the surface. The dimensions of the various im¬ 
perfections {e.g., the step size) depend on the process that generated the surface. 

14 Not all possibilities shown in Figure 1.53 occur in practice; their occurrences depend on the preparation method 
of the crystal. 
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Atomic arrangements on a reconstructed (111) Figure 1.54 Typically, a crystal surface has many types of 
surface of a Si crystal as seen by a surface imperfections, such as steps, ledges, kinks, crevices, holes, and 
tunneling microscope. dislocations. 
I SOURCE: Courtesy of Burleigh Instruments, 
I Inc. 

1.9.5 Stoichiometry, Nonstoichiometry, and Defect Structures 

Stoichiometric compounds are those that have an integer ratio of atoms, for exam¬ 
ple, as in CaF2 where two F atoms bond with one Ca atom. Similarly, in the compound 
ZnO, if there is one O atom for every Zn atom, the compound is stoichiometric, as 
schematically illustrated in Figure 1.55a. Since there are equal numbers of 02~ anions 
and Zn2+ cations, the crystal overall is neutral. It is also possible to have a nonstoi- 
chiometric ZnO in which there is excess zinc. This may result if, for example, there is 
insufficient oxygen during the preparation of the compound. The Zn2+ ion has a radius 
of 0.074 nm, which is about 1.9 times smaller than the O2- anion (radius of 0.14 nm), 
so it is much easier for a Zn2+ ion to enter an interstitial site than the O2- ion or the Zn 
atom itself, which has a radius of 0.133 nm. Excess Zn atoms therefore occupy 
interstitial sites as Zn2+ cations. Even though the excess zinc atoms are still ionized 
within the crystal, their lost electrons cannot be taken by oxygen atoms, which are all 

Oooooo 
0O0O0O 
Oooooo 
0O0O0O 
Oooooo 

Oooooo 
o Q!p O o O 
Oooooo 
o O o Guo O 
O o O ox) o 

O °2~ 
Q Zn2+ 

• "Free" (or mobile) electron 
within the crystal 

(a) Stoichiometric ZnO crystal with 
equal number of anions and 
cations and no free electrons 

(b) Nonstoichiometric ZnO crystal with 
excess Zn in interstitial sites as Zn2* 
cations 

Figure 1.55 Stoichiometry and nonstoichiometry and the resulting defect structure. 
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O2- anions, as indicated in Figure 1.55b. Thus, the nonstoichiometric ZnO with excess 
Zn has Zn2+ cations in interstitial sites and mobile electrons within the crystal, which 
can contribute to the conduction of electricity. Overall, the crystal is neutral, as the 
number of Zn2+ ions is equal to the number of O2- ions plus two electrons from each 
excess Zn. The structure shown in Figure 1.55b is a defect structure, since it deviates 
from the stoichiometry. 

1.10 SINGLE-CRYSTAL CZOCHRALSKI GROWTH 

The fabrication of discrete and integrated circuit (IC) solid-state devices requires semi¬ 
conductor crystals with impurity concentrations as low as possible and crystals that 
contain very few imperfections. A number of laboratory techniques are available for 
growing high-purity semiconductor crystals. Generally, they involve either solidifica¬ 
tion from the melt or condensation of atoms from the vapor phase. The initial process 
in IC fabrication requires large single-crystal wafers that are typically 15 cm in diam¬ 
eter and 0.6 mm thick. These wafers are cut from a long, cylindrical single Si crystal 
(typically, 1-2 m in length). 

Large, single Si crystals for IC fabrication are often grown by the Czochralski 
method, which involves growing a single-crystal ingot from the melt, using solidifi¬ 
cation on a seed crystal, as schematically illustrated in Figure 1.56a. Molten Si is held 
in a quartz (crystalline SiC>2) crucible in a graphite susceptor, which is either heated by 

Argon gas M*[— 

Pull shaft 

Rotation 

Quartz 

crucible 

Graphite 

susceptor 

Graphite 

resistance 

heater 

Growing 

crystal 

Seed 

crystal 

I 
Si ingot 

To pump 
Gas outlet 

(a) Schematic illustration of the growth of 
a single-crystal Si ingot by the Czochralski 
technique. 

(b) The crystallographic orientation of the silicon 
ingot is marked by grounding a flat. The ingot can 
be as long as 2 m. Wafers are cut using a rotating annula 
diamond saw. Typical wafer thickness is 0.6-0.7 mm. 

Figure 1.56 
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Silicon ingot being pulled from the melt in a 
Czochralski crystal drawer. 

I SOURCE: Courtesy of MEMC Electronic 
I Materials, Inc. 

a graphite resistance heater or by a radio frequency induction coil (a process called RF 
heating).15 A small dislocation-free crystal, called a seed, is lowered to touch the melt 
and then slowly pulled out of the melt; a crystal grows by solidifying on the seed crys¬ 
tal. The seed is rotated during the pulling stage, to obtain a cylindrical ingot. To sup¬ 
press evaporation from the melt and prevent oxidation, argon gas is passed through the 
system. 

Initially, as the crystal is withdrawn, its cross-sectional area increases; it then 
reaches a constant value determined by the temperature gradients, heat losses, and the 
rate of pull. As the melt solidifies on the crystal, heat of fusion is released and must be 
conducted away; otherwise, it will raise the temperature of the crystal and remelt it. 
The area of the melt-crystal interface determines the rate at which this heat can be con¬ 
ducted away through the crystal, whereas the rate of pull determines the rate at which 
latent heat is released. Although the analysis is not a simple one, it is clear that to ob¬ 
tain an ingot with a large cross-sectional area, the pull speed must be slow, typical 
growth rates are a few millimeters per minute. 

The sizes and diameters of crystals grown by the Czochralski method are obviously 
limited by the equipment, though crystals 20-30 cm in diameter and 1-2 m in length are 
routinely grown for the IC fabrication industry. Also, the crystal orientation of the seed 
and its flatness with melt surface are important engineering requirements. For example, 
for very large scale integration (VLSI), the seed is placed with its (100) plane flat to the 
melt, so that the axis of the cylindrical ingot is along the [100] direction. 

Following growth, the Si ingot is usually ground to a specified diameter. Using 
X-ray diffraction, the crystal orientation is identified and either a flat or an edge is 
ground along the ingot, as shown in Figure 1.56b. Subsequently, the ingot is cut into 
thin wafers by a rotating annular diamond saw. To remove any damage to the wafer 
surfaces caused by sawing and obtain flat, parallel surfaces, the wafers are lapped 
(ground flat with alumina powder and glycerine), chemically etched, and then pol¬ 
ished. The wafers are then used in IC fabrication, usually as a substrate for the growth 
of a thin layer of crystal from the vapor phase. 

The Czochralski technique is also used for growing Ge, GaAs, and InP single crys¬ 
tals, though each case has its own particular requirements. The main drawback of the 
Czochralski technique is that the final Si crystal inevitably contains oxygen impurities 
dissolved from the quartz crucible. 

I 15 The induced eddy currents in the graphite give rise to l2R heating of the graphite susceptor. 
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1.11 GLASSES AND AMORPHOUS SEMICONDUCTORS 

1.11.1 Glasses and Amorphous Solids 

A characteristic property of the crystal structure is its periodicity and degree of sym¬ 
metry. For each atom, the number of neighbors and their exact orientations are well 
defined; otherwise, the periodicity would be lost. There is therefore a long-range 
order resulting from strict adherence to a well-defined bond length and relative bond 
angle (or exact orientation of neighbors). Figure 1.57a schematically illustrates the 
presence of a clear, long-range order in a hypothetical two-dimensional crystal. Tak¬ 
ing an arbitrary origin, we can predict the position of each atom anywhere in the crys¬ 
tal. We can perhaps use this to represent crystalline Si02 (silicon dioxide), for exam¬ 
ple, in two dimensions. In reality, a Si atom bonds with four oxygen atoms to form a 
tetrahedron, and the tetrahedra are linked at the comers to create a three-dimensional 
crystal stmcture. 

Not all solids exhibit crystallinity. Many substances exist in a noncrystalline or 
amorphous form, due to their method of formation. For example, SiC>2 can have an 
amorphous stmcture, as illustrated schematically in two dimensions in Figure 1.57b. In 
the amorphous phase, SiC>2 is called vitreous silica, a form of glass, which has wide 
engineering applications, including optical fibers. The stmcture shown in the figure for 
vitreous silica is essentially that of a frozen liquid, or a supercooled liquid. Vitreous 
silica is indeed readily obtained by cooling the melt. 

Many amorphous solids are formed by rapidly cooling or quenching the liquid to 
temperatures where the atomic motions are so sluggish that crystallization is virtually j 
halted. (The cooling rate is measured relative to the crystallization rate, which depends j 
on atomic diffusion.) We refer to these solids as glasses. In the liquid state, the atoms! 

• Silicon (or arsenic) atom O Oxygen (or selenium) atom 

(a) A crystalline solid reminiscent of 
crystalline Si02 (density = 2.6 g cm-3) 

(b) An amorphous solid reminiscent of 

vitreous silica (Si02) cooled from the melt 
(density = 2.27 g cm'3) 

Figure 1.57 Crystalline and amorphous structures illustrated schematically in two 

dimensions. 
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have sufficient kinetic energy to break and make bonds frequently and to bend and twist 
their bonds. There are bond angle variations, as well as rotations of various atoms around 
bonds (bond twisting). Thus, the bonding geometry around each atom is not necessar¬ 
ily identical to that of other atoms, which leads to the loss of long-range order and the 
formation of an amorphous structure, as illustrated in Figure 1.57b for the same mater¬ 
ial in Figure 1.57a. We may view Figure 1.57b as a snapshot of the structure of a liquid. 
As we move away from a reference atom, after the first and perhaps the second neigh¬ 
bors, random bending and twisting of the bonds is sufficient to destroy long-range order. 
The amorphous structure therefore lacks the long-range order of the crystalline state. 

To reach the glassy state, the temperature is rapidly dropped well below the melt¬ 
ing temperature where the atomic diffusion processes needed for arranging the atoms 
into a crystalline structure are infinitely slow on the time scale of the observation. The 
liquid structure thus becomes frozen. Figure 1.57b shows that for an amorphous struc¬ 
ture, the coordination of each atom is well defined, because each atom must satisfy 
its chemical bonding requirement, but the whole structure lacks long-range order. 
Therefore, there is only a short-range order in an amorphous solid. The structure is a 
continuous random network of atoms (often called a CRN model of an amorphous 
solid). As a consequence of the lack of long-range order, amorphous materials do not 
possess such crystalline imperfections as grain boundaries and dislocations, which is a 
distinct advantage in certain engineering applications. 

Whether a liquid forms a glass or a crystal structure on cooling depends on a com¬ 
bination of factors, such as the nature of the chemical bond between the atoms or mol¬ 
ecules, the viscosity of the liquid (which determines how easily the atoms move), the 
rate of cooling, and the temperature relative to the melting temperature. For example, 
the oxides SiC>2, B2O3, GeC>2, and P2O5 have directional bonds that are a mixture of co¬ 
valent and ionic bonds and the liquid is highly viscous. These oxides readily form 
glasses on cooling from the melt. On the other hand, it is virtually impossible to 
quench a pure metal, such as copper, from the melt, bypass crystallization, and form a 
glass. The metallic bonding is due to an electron gas permeating the space between the 
copper ions, and that bonding is nondirectional, which means that on cooling, copper 
ions are readily (and hence, quickly) shifted with respect to each other to form the 
crystal. There are, however, a number of metal-metal (Cu66Zr33) and metal-metalloid 
alloys (FegoB2o, PdgoSho) that form glasses if quenched at ultrahigh cooling rates of 
106-108 °C s-1. In practice, such cooling rates are achieved by squirting a thin jet of 
the molten metal against a fast-rotating, cooled copper cylinder. On impact, the melt is 
frozen within a few milliseconds, producing a long ribbon of metallic glass. The 
process is known as melt spinning and is depicted in Figure 1.58. 

Many solids used in various applications have an amorphous structure. The ordi¬ 
nary window glass (Si02)o.8(Na20)o.2 and the majority of glassware are common exam¬ 
ples. Vitreous silica (Si02) mixed with germania (Ge02) is used extensively in optical 
fibers. The insulating oxide layer grown on the Si wafer during IC fabrication is the 
amorphous form of Si02- Some intermetallic alloys, such as Feo.sBo.2, can be rapidly 
quenched from the liquid (as shown in Figure 1.58) to obtain a glassy metal used in low- 
loss transformer cores. Arsenic triselenide, As2Se3, has a crystal structure that resembles 
the two-dimensional sketch in Figure 1.57a, where an As atom (valency III) bonds with 
three Se atoms, and a Se atom (valency VI) bonds with two As atoms. In the amorphous 



80 chapter i • Elementary Materials Science Concepts 

Inert gas pressure 

if 
Quartz tube 

Molten alloy 

Heater coil 

Jet of molten metal 

Figure 1.58 It is possible to rapidly 

quench a molten metallic alloy, thereby 

bypassing crystallization, and forming a 

glassy metal commonly called a metallic 

glass. 

The process is called melt spinning. 

Melt spinning involves squirting a jet of molten metal onto a 
rotating cool metal drum. The molten jet is instantly solidified into a 
glassy metal ribbon which is a few microns in thickness. The 
process produces roughly 1 to 2 kilometers of ribbon per minute. 

I SOURCE: Photo courtesy of the Estate of Fritz Goro. 

phase, this crystal structure looks like the sketch in Figure 1.57b, in which the bonding 
requirements are only locally satisfied. The crystal can be prepared by condensation 
from the vapor phase, or by cooling the melt. The vapor-grown films of amorphous 
As2Se3 are used in some photoconductor drums in the photocopying industry. 

1.11.2 Crystalline and Amorphous Silicon 

A silicon atom in the silicon crystal forms four tetrahedrally oriented, covalent bonds 
with four neighbors, and the repetition of this exact bonding geometry with a well- 
defined bond length and angle leads to the diamond structure shown in Figure 1.6. A 
simplified two-dimensional sketch of the Si crystal is shown in Figure 1.59. The crys¬ 
tal has a clear long-range order. Single crystals of Si are commercially grown by the 
Czochralski crystal pulling technique. 

It is also possible to grow amorphous silicon, denoted by a-Si, by the condensa¬ 
tion of Si vapor onto a solid surface, called a substrate. For example, an electron 
beam is used to vaporize a silicon target in a vacuum; the Si vapor then condenses on 
a metallic substrate to form a thin layer of solid noncrystalline silicon. The technique,* 
which is schematically depicted in Figure 1.60, is referred to as electron beam 
deposition. The structure of amorphous Si (a-Si) lacks the long-range order of 
crystalline Si (c-Si), even though each Si atom in a-Si, on average, prefers to bond 
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(a) Two-dimensional 
schematic 
representation of a 
silicon crystal. 

(b) Two-dimensional schematic 
representation of the structure 
of amorphous silicon. 
The structure has voids and 
dangling bonds and there is 
no long-range order. 

(c) Two-dimensional schematic 
representation of the structure of 
hydrogenated amorphous silicon. 
The number of hydrogen atoms 
shown is exaggerated. 

Figure 1.59 Silicon can be grown as a semiconductor crystal or as an amorphous semiconductor film. Each line 

represents an electron in a bond. A full covalent bond has two lines, and a broken bond has one line. 

pump 

Figure 1.60 Amorphous silicon, a-Si, can be 

prepared by an electron beam evaporation of 

silicon. 

Silicon has a high melting temperature, so an 

energetic electron beam is used to melt the crystal in 

the crucible locally and thereby vaporize Si atoms. 

Si atoms condense on a substrate placed above the 

crucible, to form a film of a-Si. 

with four neighbors. The difference is that the relative angles between the Si-Si 
bonds in a-Si deviate considerably from those in the crystal, which obey a strict 
geometry. Therefore, as we move away from a reference atom in a-Si, eventually the 
periodicity for generating the crystalline structure is totally lost, as illustrated 
schematically in Figure 1.59. Furthermore, because the Si-Si bonds do not follow the 
equilibrium geometry, the bonds are strained and some are even missing, simply be¬ 
cause the formation of a bond causes substantial bond bending. Consequently, the 

'R-Si structure has many voids and incomplete bonds, or dangling bonds, as schemat¬ 
ically depicted in Figure 1.59. 

One way to reduce the density of dangling bonds is simply to terminate a dangling 
bond using hydrogen. Since hydrogen only has one electron, it can attach itself to a 
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Figure 1.61 Hydrogenated 
amorphous silicon, a-Si:H, is 
generally prepared by the 

decomposition of silane 

molecules in a radio frequency 
(RF) plasma discharge. 

Si and H atoms condense on a 

substrate to form a film of a-Si:H. 

Heated substrate 
a-Si:H film 

CVD chamber 

drogen in amorphous silicon is cal^hy^genated ^ 

(PECVD), the process is illustrated schematically in Figure 1.61. The silane gas mole 

tofornTfita of aMM andKthe Si and H a,0ms then condense a sub- 
substrate L «• f “ temPerature is 100 hot, the atoms on the 
orient . W h sufficient kinet.c energy, and hence the atomic mobility to 

is ~ 250 °r Th u f0nn a p0,lyayslalline structure. Typically, the substrate temperamre 
250 C. The advantage of a-Si:H is that it can be grown on large areas for such an- 

picationsas photovoltaic cells, flat panel thin-film transistor (TFT) displays and the 

p'rlTs of c^sSe"^” SOmehPh0trPymg Table 15 s—^ £ properties of crystalline and amoiphous silicon, in teims of structure and applications. 

Table 1.5 Crystalline and amorphous silicon 

Structure 

Crystalline Si (c-Si) Amorphous Si (a-Si) 

Diamond cubic. Short-range order only. On average, 

each Si covalently bonds with four 
Si atoms. 

Has microvoids and dangling bonds. 

Typical preparation Czochralski technique. Electron beam evaporation of Si. 

Density (g cm"3) 

Electronic 

applications 

2.33 

Discrete and integrated 

electronic devices. 

About 3-10% less dense. 

None 

Hydrogenated a-Si (a-Si:H) 

Short-range order only 

Structure typically contains 
10% H. Hydrogen atoms 

passivate dangling bonds and 

relieve strainirom bonds. 

Chemical vapfor deposition 

of silane gas by RF plasma. 

About 1—3% less dense. 

Large-area electronic devices such 
as solar cells, flat panel displays, 

and some photoconductor drums 
used in photocopying. 
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1.12 SOLID SOLUTIONS AND TWO-PHASE SOLIDS 

1.12.1 Isomorphous Solid Solutions: Isomorphous Alloys 

A phase of a material has the same composition, structure, and properties everywhere, 
so it is a homogeneous portion of the chemical system under consideration. In a given 
chemical system, one phase may be in contact with another phase. For example, at 0 °C, 
iced water will have solid and liquid phases in contact. Each phase, ice and water, has a 
distinct structure. 

A bartender knows that alcohol and water are totally miscible; she can dilute 
whisky with as much water as she likes. When the two liquids are mixed, the molecules 
are randomly mixed with each other and the whole liquid is a homogenous mixture of 
the molecules. The liquid therefore has one phase; the properties of the liquid are the 
same everywhere. The same is not true when we try to mix water and oil. The mixture 
consists of two distinctly separate phases, oil and water, in contact. Each phase has a 
different composition, even though both are liquids. 

Many solids are a homogeneous mixture of two types of separate atoms. For ex¬ 
ample, when nickel atoms are added to copper, Ni atoms substitute directly for the Cu 
atoms, and the resulting solid is a solid solution, as depicted in Figure 1.62a. The 
structure remains an FCC crystal whatever the amount of Ni we add, from 100% Cu to 
100% Ni. The solid is a homogenous mixture of Cu and Ni atoms, with the same struc¬ 
ture everywhere in the solid solution, which is called an isomorphous solid solution. 
The atoms in the majority make up the solvent, whereas the atoms in the minority are 
the solute, which is dissolved in the solvent. For a Cu-Ni alloy with a Ni content of 
less than 50 at.%, copper is the solvent and nickel is the solute. 

The substitution of solute atoms for solvent atoms at various lattice sites of the 
solvent can be either random (disordered) or ordered. The two cases are schematically 
illustrated in Figure 1.62a and b, respectively. In many solid solutions, the substitution 
is random, but for certain compositions, the substitution becomes ordered. There is a 

(a) Disordered substitutional 
solid solution. Example: 
Cu-Ni alloys ({100} planes) 

(b) Ordered substitutional 
solid solution. Example: 
Cu-Zn alloy of composition 
50% Cu-50% Zn. ({110} planes) 

(c) Interstitial solid solution. 
Example: Small number of C 
atoms in FCC Fe (austenite). 
({100} planes) 

Figure 1.62 Solid solutions can be disordered substitutional, ordered substitutional, and interstitial 

substitutional. 

Only one phase within the alloy has the same composition, structure, and properties everywhere. 
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distinct ordering of atoms around each solute atom such that the crystal structure re¬ 
sembles that of a compound. For example, fi' brass has the composition 50 at.% Cu- 
50 at.% Zn. Each Zn atom is surrounded by eight Cu atoms and vice versa, as depicted 
in two dimensions in Figure 1.62b. The structure is that of a metallic compound be¬ 
tween Cu and Zn. 

Another type of solid solution is the interstitial solid solution, in which solute 
atoms occupy interstitial sites, or voids between atoms, in the crystal. Figure 1.62c 
shows an example in which a small number of carbon atoms have been dissolved in a 
y-iron crystal (FCC) at high temperatures. 

1.12.2 Phase Diagrams : Cu-Ni and Other Isomorphous Alloys 

The Cu-Ni alloy is isomorphous. Unlike pure copper or pure nickel, when a Cu-Ni 
alloy melts, its melting temperature is not well defined. The alloy melts over a range of 
temperatures in which both the liquid and the solid coexist as a heterogeneous mixture. 
It is therefore instructive to know the phases that exist in a chemical system at various 
temperatures as a function of composition, and this need leads to the use of phase 
diagrams. 

Suppose we take a crucible of molten copper and allow it to cool. Above its melt¬ 
ing temperature (1083 °C), there is only the liquid phase. The temperature drops with 
time, as shown in Figure 1.63a, until at the melting or fusion temperature at point L0 
when copper crystals begin to nucleate (solidify) in the crucible. During solidification, 
the temperature remains constant. As long as we have both the liquid and solid phases 
coexisting, the temperature remains constant at 1083 °C. During this time, heat is 
given off as the Cu atoms in the melt attach themselves to the Cu crystals. This heat 
is called the heat of fusion. Once all the liquid has solidified (point So), the tempera¬ 
ture begins to drop as the solid cools. There is therefore a sharp melting temperature 
for copper, at 1083 °C. 

If we were to cool pure nickel from its melt, we would observe a behavior similar 
to that of pure copper, with a well-defined melting temperature at 1453 °C. 

Now suppose we cool the melt of a Cu-Ni alloy with a composition16 of 80 wt.% 
Cu and 20 wt.% Ni. In the melt, the two species of atoms are totally miscible, and 
there is only a single liquid phase. As the cooling proceeds, we reach the temperature 
1195 °C, identified as point L20 in Figure 1.63a, where the first crystals of Cu-Ni 
alloy begin to appear. In this case, however, the temperature does not remain con¬ 
stant until the liquid is solidified, but continues to drop. Thus, there is no single melt¬ 
ing temperature, but a range of temperatures<iv£j>Which both the liquid and the solid 
phases coexist in a heterogeneous mixture. We find that when the temperature 
reaches 1130 °C, corresponding to point S20, all the liquid has solidified. Below 
1130 °C, we have a single-phase solid that is an isomorphous solid solution of Cu and 
Ni. If we repeat these experiments for other compositions, we find a similar behavior; 
that is, freezing occurs over a transition temperature range. The beginning and end 

I 14ln materials science, we generally prefer to give alloy composition in wt.%, which henceforth will simply be %. 
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PureCu 80%Cu-20%Ni 

lolid 

Formation of first 
solid 

Ik\ Heterogeneous 
^ ■ mixture of liquid and 

solid. 

Solid 

Crystal grains 

■> Time 

(a) 

PureCu 
(b) 

Pure Ni 

Figure 1.63 Solidification of an isomorphous alloy such as Cu-Ni. 

(a) Typical cooling curves. 

(b) The phase diagram marking the regions of existence for the phases. 

* 

« 

of solidification, at points L and 5, respectively, depend on the specific composition 
of the alloy. 

To characterize the freezing or melting behavior of other compositions of Cu-Ni 
alloys, we can plot the temperatures for the beginning and end of solidification ver¬ 
sus the composition and identify those temperature regions where various phases 
exist, as shown in Figure 1.63b. When we join all the points corresponding to the be¬ 
ginning of freezing, that is, all the L points, we obtain what is called the liquidus 
curve. For any given composition, only the liquid phase can exist above the liquidus 
curve. If we join all the points where the liquid has totally solidified, that is, all the 
S points, we have a curve called the solidus curve. At any temperature and compo¬ 
sition below the solidus curve, we can only have the solid phase. The region between 
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Figure 1.64 Cooling of a 80% Cu-20% Ni alloy from the melt to the 

solid state. 

the liquidus and solidus curves marks where a heterogeneous mixture of liquid and 
solid phases exists. 

Let’s follow the cooling behavior of the 80% Cu-20% Ni alloy from the melt at 
1300 °C down to the solid state at 1000 °C, as shown in Figure 1.64. The vertical 
dashed line at 20% Ni represents the overall composition of the alloy (the whole * 
chemical system) and the cooling process corresponds to movement down this dashed 
line, starting from the liquid phase at Lq. 

When the Cu-Ni alloy begins to solidify at 1195 °C, at point L \, the first solid that 
forms is richer in Ni content. The only solid that can exist at this temperature has 
a composition Si, which has a greater Ni content than the liquid, as shown in Fig¬ 
ure 1.64. Intuitively, we can see this by noting that Cu, the component with the lower 
melting temperature, prefers to remain in the liquid, whereas Ni, which has a higher 
melting temperature, prefers to remain in the solid. When the temperature drops fur¬ 
ther, say to 1160 °C (indicated by X in the figure), the alloy is a heterogeneous mixture 
of liquid and solid. At this temperature, the only solid that can coexist with the liquid 
has a composition S2. The liquid has the composition L2. Since the liquid has lost some 
of its Ni atoms, the liquid composition is less than that at Li. The liquidus and solidus 
curves therefore give the compositions of the liquid and solid phases coexisting in the 
heterogeneous mixture during melting. 

At 1160 °C, the overall composition of the alloy (the whole chemical system) is 
still 20% Ni and is represented by point X in the phase diagram. When the temperature 
reaches 1130 °C, nearly all the liquid has been solidified. The solid has the composi¬ 
tion S3, which is 20% Ni, as we expect since the whole alloy is almost all solid. The 
last drops of the liquid in the alloy have the composition L3, since at this temperature, 
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Table 1.6 Phase in the 80% Cu-20% Ni isomorphous alloy 

Temperature, °C Phases Composition Amount 

1300 Liquid only Lo = 20% Ni 100% 

1195 Liquid and solid L\ = 20% Ni 100% 
Si = 36% Ni First solid appears 

1160 Liquid and solid L/2. — 13% Ni 53.3% 

S2 = 28% Ni 46.7% 

1130 Liquid and solid L3 = 7% Ni The last liquid drop 

S3 = 20% Ni 100% 

1050 Solid only S4 = 20% Ni 100% 

only the liquid with this composition can coexist with the solid at S3. Table 1.6 sum¬ 
marizes the phases and their compositions, as observed during the cooling process 
depicted in Figure 1.64. By convention, all solid phases that can exist are labeled 
by different Greek letters. Since we can only have one solid phase, this is labeled the 
a-phase. 

During the solidification process depicted in Figure 1.64, the solid composition 
changes from Si to S2 to S3. We tacitly assume that the cooling is sufficiently slow to 
allow time for atomic diffusion to change the composition of the whole solid. There¬ 
fore, the phase diagram in Figure 1.63b, which assumes near equilibrium conditions 
during cooling, is termed an equilibrium phase diagram. If the cooling is fast, there 
will be limited time for atomic diffusion in the solid phase, and the resulting solid 
will have a composition variation. The inner core will correspond to the solidification 
at Si and will be Ni rich. Since the solidification occurs quickly, the Ni atoms do not 
have time to diffuse out from the inner core to allow the composition in the solid to 
change from Si to S2 to S3. Thus, the outer region, the final solidification, will be Ni 
deficient (or Cu rich); its composition is not S3 but less, because S3 is the average com¬ 
position in the whole solid. The solid structure will be cored, as depicted in Figure 
1.65. The cooling process is then said to have occurred under nonequilibrium condi¬ 
tions, which leads to a segregation of the elements in the grains. Under nonequilibrium 
cooling conditions we cannot quantitatively use the equilibrium phase diagram in Fig¬ 
ure 1.63b. The diagram can only serve as a qualitative guide. 

The amounts of liquid and solid in the mixture can be determined from the phase di¬ 
agram using the lever rule, which is based on the fact that the total mass of the alloy 

Last solidification 
Ni deficient 
Cu rich 

First solidification 
(5,) Ni rich 

Figure 1.65 Segregation in a grain due to rapid 

cooling (nonequilibrium cooling). 

Grain boundary 
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remains the same throughout the entire cooling process. Let Wl and Ws be the weight 
(or mass) fraction of the liquid and solid phases in the alloy mixture. The composi¬ 
tions of the liquid and solid are denoted as Cl and Cs, respectively. The overall 
composition of the alloy is denoted Co, which is the overall weight fraction of Ni in the 
alloy. 

If we take the alloy to have a weight of unity, then the conservation of mass means 
that 

WL + Ws = 1 

Further, the weight fraction of Ni in both the liquid and solid must add up to the com¬ 
position C0 of Ni in the whole alloy, or 

Lever rules 

CLWL + CSWS = Co 

We can substitute for Ws in the above equation to find the weight fraction of the 
liquid and then that of the solid phase, as follows: 

Cs — Co 
CS-CL 

and Ws 
Cp — Cl 

Cs — Cl 
[1.36] 

To apply Equation 1.36, we first draw a line (called a tie line) from L2 to S2 cor¬ 
responding to CL and Cs, as shown in Figure 1.64. The line represents a “horizontal 
lever” and point X at Co at this temperature is the lever’s fulcrum. The lengths of the 
lever arms from the fulcrum to the liquidus and solidus curves are (Co — C£) and 
(Cs — Co), respectively. The lever must be balanced by the weights Wl and Ws at¬ 
tached to the ends. The total length of the lever is (Cs — Cl). At 1160 °C, CL = 0.13 
(13% Ni) and Cs = 0.28 (28% Ni), so the weight fraction of the liquid phase is 

Cs — Co 

Cs — Cl 

0.28 - 0.20 

0.28-0.13 
0.533 or 53.3% 

Similarly, the weight fraction of the solid phase is 1 — 0.533 or 0.467. 

1.12.3 Zone Refining and Pure Silicon Crystals 

Zone refining is used for the production of high-purity crystals. Silicon, for example, 
has a high melting temperature, so any impurities present in the crystal decrease the 
melting temperature. This is similar to the depression of the melting temperature of 
pure Ni by the addition of Cu, as shown by the right-hand side of Figure 1.63b. We can 
represent the phase diagram of Si with small impurities as shown in Figure 1.66. Con¬ 
sider what happens if we have a rod of the solid and we melt only the left end by ap¬ 
plying heat locally (using^RFTieating, for example). At the same time, we move the 
melted zone toward the right by moving the heater. We therefore melt the solid at A 
and refreeze it at B, as shown in Figure 1.67a. 

The solid has an impurity concentration of Co', when it melts at A, the melt ini¬ 
tially also has the same concentration Cl = Cq. However, at temperature TB, the melt 
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Temperature 

Figure 1.66 The phase diagram of Si with 

impurities near the low-concentration region. 

Melt Heat 

Purified 
region 

> Direction of travel 

'o 
Impure 
solid 

(a) Heal is applied locally starting at one 
end. The impurity concentration in the 
refrozen solid at 8 is C8 < Co- The 
impurity concentration in the melt is 
C[' > Cq . 

(b) As the torch travels toward the 
right, the refrozen solid at B' has CB< 
where CB < CB> < CQ. The impurity 
concentration in the melt is now 
even greater than Q.. 

(c) The impurity concentration profile in 

the refrozen solid after one pass. 

x 

Figure 1.67 The principle of zone refining. 
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begins to solidify. At the start of solidification the solid that freezes has a composition 
CB, which is considerably less than Co, as is apparent in Figure 1.66. The cooling at B 
occurs rapidly, so the concentration Cb cannot adjust to the equilibrium value at the 
end of freezing. Thus, the solid that freezes at B has a lower concentration of impuri¬ 
ties. The impurities have been pushed out of the solid at B and into the melt, whose im¬ 
purity concentration increases from Cl to CL>- 

Next, refreezing at B', shown in Figure 1.67b, occurs at a lower temperature 7#, 
because the melt concentration Cu is now greater than Co- The solid that freezes at B' 
has the concentration Cb>, shown in Figure 1.66, which is greater than Cb but less than 
Co- As the melted zone is floated toward the right, the melt that is solidified at B, B', 
etc., has a higher and higher impurity concentration, until its impurity content reaches 
that of the impure solid, at which point the concentration remains at Co- When the 
melted zone approaches the far right where the freezing is halted, the impurities in the 
final melt appear in the last frozen region at the far right. The resulting impurity con¬ 
centration profile is schematically depicted in Figure 1.67c. The region of impurity 
concentration below Co is the zone refined section of the rod. The zone refining proce¬ 
dure can be repeated again, starting from the left toward the right, to reduce the impu¬ 
rity concentration even lower. The impurity concentration profile after many passes 
is sketched in Figure 1.67d. Although the profile is nonuniform, due to the segregation 
effect, the impurity concentrations in the zone refined section may be as low as a factor 
of 10~6. 

1.12.4 Binary Eutectic Phase Diagrams and Pb-Sn Solders 
• 

When we dissolve salt in water, we obtain a brine solution. If we continue to add more 
salt, we eventually reach the solubility limit of salt in the solution, and the excess salt 
remains as a solid at the bottom of the container. We then have two coexisting phases: 
brine (liquid solution) and salt (solid), as shown in Figure 1.68. The solubility limit of 
one component in another in a mixture is represented by a solvus curve shown 
schematically in Figure 1.68 for salt in brine. In the solid state, there are many ele¬ 
ments that can only be dissolved in small amounts in another solid. 

Lead in the solid phase has an FCC crystal structure, and tin has a BCT (body- 
centered tetragonal) structure. Although the two elements are totally miscible in any 

Figure 1.68 We can only dissolve so much salt in 

brine (solution of salt in water). 

Eventually we reach the solubility limit at Xs, which 

depends on the temperature. If we add more salt, then 

the excess salt does not dissolve and coexists with the 

brine. Past Xs we have two phases, brine (solution) and 

salt (solid). 

Brine 

Salt 



l.ia Solid Solutions and Two-Phase Solids 91 

0 20 40 60 80 100 

Pure Pb Composition in wt.% Sn Pure Sn 

Figure 1.69 The equilibrium phase diagram of the Pb-Sn alloy. 

The microstructures on the left show the observations at various points during the cooling of a 90% 

Pb—10% Sn from the melt along the dashed line (the overall alloy composition remains constant at 

10% Sn). 

proportion when melted, this is not so in the solid state. We can only dissolve so much 
Sn in solid Pb, and vice versa. We quickly reach the solubility limit, and the resulting 
solid is a mixture of two distinctly different solid phases. One solid phase, labeled a, 
is Pb rich and has the FCC structure with some Sn atoms dissolved in the crystal. The 
amount of Sn dissolved in a is given by the solvus curve of Sn in a at that temperature. 
The other phase, labeled fi, is Sn rich and has the BCT structure with some Pb atoms 
dissolved in it. The amount of Pb dissolved in /J is given by the solvus curve of Pb in 

at that temperature. 
The existence of various phases and their compositions as a function of tem¬ 

perature are given by the equilibrium phase diagram for the Pb-Sn alloy, shown in 
Figure 1.69. This is called an equilibrium eutectic phase diagram. The liquidus 
and solidus curves, as usual, mark the borders for the liquid and solid phases. Be¬ 
tween the liquidus and solidus curves, we have a heterogeneous mixture of melt 
and solid. Unlike the Cu-Ni case, the melting temperature of both elements here 
is depressed with alloying. The liquidus and solidus curves thus decrease from 
both ends, starting at A and B. They meet at a point E, called the eutectic point, 
at 61.9% Sn and 183 °C. This point has a special significance: No liquid can 
exist below this temperature, so 183 °C is the lowest melting temperature of the 
alloy. 
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Eutectic 
transformation 

In addition, we must insert the solvus curves at both the Pb and Sn ends to mark 
the extent of solid-state solubility and hence identify the two-phase solid region. The 
solvus curve for the solubility limit of Sn in Pb meets the solidus curve at point C, 
19.2% Sn. Similarly, the solubility limit of Pb in Sn meets the solvus curve at D. A 
characteristic feature of this phase diagram is that CD is a straight line through E at 
183 °C. Below 183 °C, between the two solvus curves, we have a solid with two 
phases, a and /3. This is identified as a + /Jin the diagram. 

The usefulness of such a phase diagram is best understood by examining the phase 
transformations and microstructures during the cooling of a melt of a given composi¬ 
tion alloy. Consider a 90% Pb-10% Sn alloy being cooled from the melt at 350 °C 
(point L) where there is only one phase, the liquid phase. At point M, 315 °C, few nu¬ 
clei of the a-phase appear in the liquid. The composition of the a-phase is given by the 
solidus curve at 315 °C and is about 5% Sn. At point N, 290 °C, there is more a-phase 
in the mixture. The compositions of the liquid and or-phases are given respectively by 
the liquidus and solidus curves at 290 °C. At point 0,275 °C, all liquid has been solid¬ 
ified into the a-phase, which then has the composition 10% Sn. 

Between M and O, the alloy is a coexistent mixture of the liquid phase (melt) and 
the solid a-phase. At point P, 175 °C, we still have only the a-phase. When we reach 
the solvus curve at point Q, 140 °C, we can no longer keep all the Sn dissolved in the 
a-phase, as we have reached the solubility limit of Sn in a. Some of the Sn atoms must 
diffuse out from the a-phase; they do so by forming a second solid phase, which is the 
fi -phase. The /3-phase nucleates within the a-phase (usually at the grain boundaries, 
where atomic diffusion occurs readily). The -phase will contain as much dissolved 
Pb as is allowed by the solubility of Pb in the j$ -phase, which is given by the solvus 
curve on the Sn side and marked as point Q\ about 98% Sn. Thus, the microstructure 
is now a mixture of the a and f$ phases. 

As cooling proceeds, the two phases continue to coexist, but their relative propor¬ 
tions change. At R, 50 °C, the alloy is a mixture of the a-phase given by R'(4% Sn) and 
the -phase given by R"{99% Sn). The relative amounts of a and phases are given 
by the lever rule. Figure 1.69 illustrates the microstructure of the 90% Pb-10% 
Sn alloy as it is cooled. 

An interesting phenomenon can be observed when we cool an alloy of the eu¬ 
tectic composition 38.1% Pb-61.9% Sn from the melt. The cooling process and the 
observed microstructures are illustrated in Figure 1.70; the microstructures are on 
the right. The temperature-time profile is also depicted in Figure 1.70. At point L, 
350 °C, the alloy is all liquid; as it cools, its temperature drops until point E at 
183 °C. At E, the temperature remains constant and a solid phase nucleates within 
the melt. With time, the amount of solid grows until all the liquid is solidified and the 
temperature begins to drop again. This behavior is much like that of a pure element, 
for which melting occurs at a well-defined temperature. This behavior only occurs 
for the eutectic composition (61.9% Sn), because this is the composition at which the 
liquidus and solidus curves meet at one temperature. Generally, the liquid with the 
eutectic composition will solidify through the eutectic transformation at the eutec¬ 
tic temperature, or 

^61.9% Sn <*19.2% Sn + $97.5% Sn (183°C) [1.37] 
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Figure 1.70 The alloy with the eutectic composition cools like a pure element, exhibiting a single solidification 

temperature at 183 °C. 

The solid has the special eutectic structure. The alloy with the composition 60% Pb-40% Sn when solidified is a mixture 

of primary a and eutectic solid. 

The solid that forms from the eutectic solidification has a special microstructure, 
consisting of alternating plates, or lamellae, of a and ft phases, as shown in Fig¬ 
ure 1.70. This is called the eutectic microstructure (or eutectic solid). The formation 
of a Pb-rich a-phase and an Sn-rich -phase from the 61.9% Sn liquid requires the 
redistribution of the two types of atoms by atomic diffusion. Atomic diffusions are eas¬ 
ier in the liquid than in the solid. The formation of a solid with alternating a and /3 lay¬ 
ers allows the Pb and Sn atoms to diffuse in the liquid without having to move over 
long distances. The eutectic structure is not a phase itself, but a mixture of the two 
phases, a and fi. 

When cooled from the melt, an alloy with a composition between 19.2% Sn and 
61.9% Sn solidifies into a mixture of a-phase and a eutectic solid (a mixture of a and 
ft phases). Consider the cooling of an alloy with a composition of 40% Sn, starting 
from the liquid phase L at 350 °C, as shown in Figure 1.70. At point Af(235 °C), the 
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first solid, the a-phase, nucleates. Its composition is about 15% Sn. At N, 210 °C, the 
alloy is a mixture of liquid, composition 50% Sn, and a-phase, composition 18% Sn. 
The composition of the liquid thus moves along the liquidus line from M toward E. 
At 183 °C, the liquid has the composition 61.9% Sn, or the eutectic composition, and 
therefore undergoes the eutectic transformation indicated in Equation 1.37. There is 
still a-phase in the alloy, but its composition is now 19.2% Sn; it does not take part in 
the eutectic transformation of the liquid. During the eutectic transformation, the tem¬ 
perature remains constant. When all the liquid has been solidified, we have a mixture 
of the preexisting a-phase, called primary a (or proeutectic a), and the newly 
formed eutectic solid. The final microstructure is shown in Figure 1.70 and consists of 
a primary a and a eutectic solid; therefore, two solid phases, a and f$, coexist. 

During cooling between points M and O, the alloy 60% Pb-40% Sn is a mixture 
of melt and a-phase, and it exhibits plastic-like characteristics while solidifying. Fur¬ 
ther, the temperature range for the solidification is about 183 °C to 235 °C, or about 
50 °C. Such an alloy is preferable for such uses as soldering wiped joints to join 
pipes together, giving the plumber sufficient play for adjusting and wiping the joint. 
On the other hand, a solder with the eutectic composition (commercially, this is 40% 
Pb-60% Sn solder, which is close to the eutectic) has the lowest melting temperature 
and solidifies quickly. The liquid also has good wetting properties. Therefore, 40% 
Pb-60% Sn is widely used for soldering semiconductor devices, where good wetting 
and minimal exposure to high temperature are required. 

EXAMPLE 1.17 THE 60% Pb-40% Sn ALLOY Consider the solidification of the 60% Pb-40% Sn alloy. What 
are the phases, compositions, and weight fractions of various phases existing in the alloy at 
250 °C, 210 °C, 183. 5 °C (just above 183 °C), and 182.5 °C (just below 183 °C)? 

SOLUTION 

We again refer to the phase diagram in Figure 1.70 to identify which phases exist at what tem¬ 
peratures. At 250 °C, we only have the liquid phase. At 210 °C, point N, the liquid and the a-phase 
are in equilibrium. The composition of the a-phase is given by the solidus line; at 210 °C, 
Ca = 18% Sn. The composition of the liquid is given by the liquidus line; at 210 °C, CL = 50% 
Sn. To find the weight fraction of a the alloy, we use the lever rule, 

Cl — Co 

Cl — Ca 

50-40 

50 - 18 

From Wa + WL = 1, we obtain the weight fraction of the liquid phase, WL =1 - 0.313 = 0.687. 
At 183.5 °C, point O, the composition of the a-phase is 19.2% Sn corresponding to C 

and that of the liquid is 61.9% Sn corresponding to E. The liquid therefore has the eutectic 
composition. The weight fractions are 

Wa = 
CL-C0 61.9-40 

CL -Ca ~ 61.9- 19.2 
= 0.513 

WL = 1 -0.513 = 0.487 

As expected, the amount of a-phase increases during solidification; at the same time, its 
composition changes along the solidus curve. Just above 183 °C, about half the alloy is the solid 
a-phase and the other half is liquid with the eutectic composition. Thus, on solidification, the liquid 
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Table 1.7 The 60% Pb-40% Sn alloy 

Temperature (°C) Phases Composition Mass (g) Microstructure and Comment 

250 L 40% Sn 100 
235 L 40% Sn 100 The first solid (a-phase) nucleates in the 

a 15% Sn 0 liquid. 

210 L 50% Sn 68.7 Mixture of liquid and a phases. More solid 

a 18% Sn 31.3 forms. Compositions change. 

183.5 L 61.9% Sn 48.7 Liquid has the eutectic composition. 

a 19.2% Sn 51.3 

182.5 a 19.2% Sn 73.4 Eutectic (a and p phases) and primary 

P 97.5% Sn 26.6 of-phase. 

I Assume mass of the alloy is 100 g. 

undergoes the eutectic transformation and forms the eutectic solid. Just below 183 °C, therefore, 
the microstructure is the primary a-phase and the eutectic solid. Stated differently, below 183 °C, 
the a and p phases coexist, and /6 is in the eutectic structure. The weight fraction of the eutectic 
phase is the same as that of the liquid just above 183 °C, from which it was formed. The weight 
fractions of a and in the whole alloy are given by the lever rule applied at point P, or 

C,-C0= 97.5-40 

Cfi - Ca 97.5 - 19.2 

CoZC._«=J2±. 0.266 
Cp - Ca 97.5 - 19.2 

The microstructure at room temperature will be much like that just below 183 °C, at which 
the alloy is a two phase solid because atomic diffusions in the solid will not be sufficiently fast 
to allow the compositions to change. Table 1.7 summarizes the phases that exist in this alloy at 
various temperatures. 

Wa = 

ADDITIONAL TOPICS 

1.13 BRAVAIS LATTICES 
An infinite periodic array of geometric points in space defines a space lattice or sim¬ 
ply a lattice. Strictly, a lattice does not contain any atoms or molecules because it is 
simply an imaginary array of geometric points. A two-dimensional simple square 

lattice is shown in Figure 1.71a. In three dimensions. Figure 1.71a would correspond 
to the simple cubic (SC) lattice. The actual crystal is obtained from the lattice by plac¬ 
ing an identical group of atoms (or molecules) at each lattice point. The identical group 
of atoms is called the basis of the crystal structure. Thus, conceptually, as illustrated in 
Figure 1.71a to c, 

Crystal = Lattice + Basis 
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Figure 1.71 

(a) A simple square lattice. The unit cell is a square with a side a. 

(b) Basis has two atoms. 

(c) Crystal = Lattice + Basis. The unit cell is a simple square with two atoms. 

(d) Placement of basis atoms in the crystal unit cell. 

The unit cell of the two-dimensional lattice in Figure 1.71a is a square which is 
characterized by the length a of one of the sides; a is called a lattice parameter. A 
given lattice can generate different patterns of atoms depending on the basis. The lat¬ 
tice in Figure 1.71a with the two-atom basis in Figure 1.71b produces the crystal in 
Figure 1.71c. Although the latter crystal appears as a body-centered square (similar to 
BCC in three dimensions), it is nonetheless a simple square lattice with two atoms 
comprising the basis. Suppose that the basis had only one atom; then the crystal would 
appear as the simple square lattice in Figure 1.71a (with each point now being an 
atom). The patterns in Figure 1.71a and c are different but the underlying lattice is the 
same. Because they have the same lattice, the two crystals would have certain identi¬ 
cal symmetries. For example, for both crystals, a rotation by 90° about a lattice point 
would produce the same crystal structure. 

To fully characterize the crystal, we also have to specify the locations of the basis 
atoms in the unit cell as in Figure 1.7Id. By convention, we place a Cartesian coordi¬ 
nate system at the rear-left comer of the unit cell with the x and y axes along the square 
edges. We indicate the coordinates (*, , y( ) of each ith atom in terms of the lattice 
parameters along x and y. Thus, the atoms in the unit cell in Figure 1.7Id are at (0, 0) 
and at (5, ^). The CsCl unit cell in Figure 1.38 appears as BCC, but it can be described 
by a SC lattice and a basis that has one Cl- ion and one Cs+ ion. The ions in the SC 
unit cell are located at (0, 0, 0) and at the cell center at (5, \). Similarly, the NaCl 
crystal in Figure 1.37 is an FCC lattice with a basis of Na^ and Cl- ions. 

The diamond unit cell of silicon is an FCC lattice with two Si atoms constituting 
the basis. The two Si atoms are placed at (0, 0, 0) and (5,5, 5). Most of the important 
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III-V compound semiconductors such as GaAs, AlAs, In As, InP, etc., which are 
widely used in numerous optoelectronic devices, have the zinc blende (ZnS) unit cell. 
The zinc blende unit cell consists of an FCC lattice and a basis that has the Zn and S 
atoms placed at (0, 0,0) and (|, |), respectively. 

We generally represent the geometry of the unit cell of a lattice as a parallelepiped 
with sides a,b,c and angles a, /$, y as depicted in Figure 1.40a. In the case of copper 
and iron, the geometry of the unit cell has a — b = c,a = fi = y= 90°, and cubic 

Unit Cell Geometry 

Cubic system 
a = b = c 

a = (3 = y = 90° 

Many metals, Al, Cu, Fe, Pb. Many 
ceramics and semiconductors, NaCl, CsCl, 
LiF, Si, GaAs 

Simple cubic Body-centered 
cubic 

Face-centered 
cubic 

Tetragonal system 
a = b*c 
a = 13 = y = 90° 

In, Sn, barium titanate, TiC>2 

Orthorhombic system 
a*b*c 
a = /3 = y = 90° 

S, U, PI, Ga (< 30°C), iodine, cementite 
(Fe3C), sodium sulfate 

Simple 
tetragonal 

orthorhombic 
Body-centered 
orthorhombic 

Body-centered 
tetragonal 

Base-centered Face-centered 
orthorhombic orthorhombic 

Hexagonal system 

a = b*c 
a = f} = 90°; y = 120° 

Cadmium, magnesium, zinc, 
graphite Hexagonal 

Rhombohedral system 
a = b = c 
a = P = y* 90° 

Arsenic, boron, bismuth, antimony, 
mercury (< -39°C) 

Rhombohedral 

Monoclinic system 
a^b^c 
a = /3 = 90°; y * 90° 

O-Selenium, phosphorus, 
lithium sulfate, 
tin fluoride monoclinic 

Base-centered 
monoclinic 

Triclinic system 
a*b*c 
a*(j*y* 90° 

Potassium dicromate 

Figure 1.72 The seven crystal systems {unit-cell geometries) and fourteen Bravais lattices. 
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symmetry. For Zn, the unit cell has hexagonal geometry with a = b^c,a = fi = 90°, 
and y = 120° as shown in Figure 1.33d. Based on different lattice parameters, there are 
seven possible distinct unit-cell geometries, which we call crystal systems each with a 
particular distinct symmetry. The seven crystal systems are depicted in Figure 1.72 with 
typical examples. We are already familiar with the cubic and hexagonal systems. The 
seven crystal systems only categorize the unit cells based on the geometry of the unit 
cell and not in terms of the symmetry and periodicity of the lattice points. (One should 
not confuse the unit-cell geometry with the lattice, which is a periodic array of points.) 
In the cubic system, for example, there are three possible distinct lattices corresponding 
to SC, BCC, and FCC which are shown in Figure 1.72. All three have the same cubic 
geometry: a = b = c and a = = y = 90°. 

Many distinctly different lattices, or distinct patterns of points, exist in three 
dimensions. There are 14 distinct lattices whose unit cells have one of the seven 
geometries as indicated in Figure 1.72. Each of these is called a Bravais lattice. The 
copper crystal, for example, has the FCC Bravais lattice, but arsenic, antimony, and bis¬ 
muth crystals have the rhombohedral Bravais lattice. Tin’s unit cell belongs to the 
tetragonal crystal system, and its crystal lattice is a body-centered tetragonal (BCT). 

CD Selected Topics and Solved Problems 

Selected Topics ". |f| Solved Prob,en,S 

Units and Conversions van der Waals Bonding: Secondary Bonding and 
Bonding: Bond Energies and Elastic Moduli Bulk Modulus 
Secondary Bonding Elementary Concepts in Material Science: Mean 
Cohesive Energy: Ionic Bonding and Atomic Separation, Bulk and Surface Atomic 

Madelung Constant Concentrations, and Density 
Elementary Crystals Elementary Crystals 
X-Ray Diffraction and Crystal Structures Ionic Crystals 
Essential Mechanical Properties 

Diffusion 

Diffusion and Oxidation 

Thermal Expansion ' T ] 

Surface Tension of Crystals 

DEFINING TERMS 
Activated state is the state that occurs temporarily 

during a transformation or reaction when the reactant 

atoms or molecules come together to form a particular 

arrangement (intermediate between reactants and 
products) that has a higher potential energy than the re¬ 
actants. The potential energy barrier between the acti¬ 

vated state and the reactants is the activation energy. 

Activation energy is the potential energy barrier 

against the formation of a product. In other words, it is 

the minimum energy that the reactant atom or mole¬ 

cule must have to be able to reach the activated state 
and hence form a product. 

Amorphous solid is a solid that exhibits no crys¬ 

talline structure or long-range order. It only possesses a 
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short-range order in the sense that the nearest neigh¬ 
bors of an atom are well defined by virtue of chemical 

bonding requirements. 

Anion is an atom that has gained negative charge by 
virtue of accepting one or more electrons. Usually, 

atoms of nonmetallic elements can gain electrons eas¬ 

ily to become anions. Anions become attracted to the 

anode (positive terminal) in ionic conduction. Typical 

anions are the halogen ions F-, Cl-, Br“, and I-. 

Atomic mass (or relative atomic mass or atomic 
weight) Mat of an element is the average atomic mass, 

in atomic mass units (amu), of all the naturally occur¬ 

ring isotopes of the element. Atomic masses are listed 
in the Periodic Table. The amount of an element that 

has 6.022 x 1023 atoms (the Avogadro number of 

atoms) has a mass in grams equal to the atomic mass. 

Atomic mass unit (amu) is a convenient mass mea¬ 

surement equal to one-twelfth of the mass of a neutral 

carbon atom that has a mass number of A = 12 (6 pro¬ 

tons and 6 neutrons). It has been found that amu = 
1.66054 x 1027 kg, which is equivalent to 10_3/jVa, 

where NA is Avogadro’s number. 

Atomic packing factor (APF) is the fraction of vol¬ 
ume actually occupied by atoms in a crystal. 

Avogadro’s number (NA) is the number of atoms in 

exactly 12 g of carbon-12. It is 6.022 x 1023. Since 

atomic mass is defined as one-twelfth of the mass of 
the carbon-12 atom, the NA number of atoms of any 

substance has a mass equal to the atomic mass Mat, in 
grams. 

Basis represents an atom, a molecule, or a collection 

of atoms, that is placed at each lattice point to generate 

the true crystal structure of a substance. All crystals are 

thought of as a lattice with each point occupied by a 

basis. 

Bond energy or binding energy is the work (or en¬ 

ergy) needed to separate two atoms infinitely from 

their equilibrium separation in the molecule or solid. 

Bulk modulus K is volume stress (pressure) needed 
per unit elastic volume strain and is defined by 

p- -KA, where p is the applied volume stress (pres¬ 
sure) and A is the volume strain. K indicates the extent 

to which a body can be reversibly (and hence elasti¬ 

cally) deformed in volume by an applied pressure. 

Cation is an atom that has gained positive charge by 

virtue of losing one or more electrons. Usually, metal 

atoms can lose electrons easily to become cations. 

Cations become attracted to the cathode (negative ter¬ 

minal) in ionic conduction, as in gaseous discharge. 

The alkali metals, Li, Na, K,..., easily lose their va¬ 

lence electron to become cations, Li+, Na+, K+, ... 

Coordination number is the number of nearest 

neighbors around a given atom in the crystal. 

Covalent bond is the sharing of a pair of valence 

electrons between two atoms. For example, in H2, the 

two hydrogen atoms share their electrons, so that each 

has a closed shell. 

Crystal is a three-dimensional periodic arrangement 

of atoms, molecules, or ions. A characteristic property 

of the crystal structure is its periodicity and a degree of 

symmetry. For each atom, the number of neighbors and 

their exact orientations are well defined; otherwise the 

periodicity will be lost. Therefore, a long-range order 
results from strict adherence to a well-defined bond 

length and relative bond angle (that is, exact orienta¬ 

tion of neighbors). 

* Crystallization is a process by which crystals of a sub¬ 

stance are formed from another phase of that substance. 
Examples are solidification just below the fusion tem¬ 

perature from the melt, or condensation of the molecules 

from the vapor phase onto a substrate. The crystalliza¬ 

tion process initially requires the formation of small 

crystal nuclei, which contain a limited number (perhaps 

103—104) of atoms or molecules of the substance. 
Following nucleation, the nuclei grow by atomic diffu¬ 

sion from the melt or vapor. 

Diffusion is the migration of atoms by virtue of their 

random thermal motions. 

Diffusion coefficient is a measure of the rate at 

which atoms diffuse. The rate depends on the nature of 
the diffusion process and is typically temperature de¬ 

pendent. The diffusion coefficient is defined as the 

magnitude of diffusion flux per unit concentration 

gradient. 

Dislocation is a line imperfection within a crystal that 

extends over many atomic distances. 

Edge dislocation is a line imperfection within a crys¬ 

tal that occurs when an additional, short plane of atoms 
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does not extend as far as its neighbors. The edge of this 

short plane constitutes a line of atoms where the bond¬ 

ing is irregular, that is, a line of imperfection called an 
edge dislocation. 

Elastic modulus or Young’s modulus (Y) is a mea¬ 
sure of the ease with which a solid can be elastically 

deformed. The greater Y is, the more difficult it is to 

deform the solid elastically. When a solid of length l is 

subjected to a tensile stress a (force per unit area), the 

solid will extend elastically by an amount 81 where 

81/1 is the strain e. Stress and strain are related by 

a — Ye, so Y is the stress needed per unit elastic strain. 

Electric dipole moment is formed when a positive 
charge + Q is separated from a negative charge — Q of 

equal magnitude. Even though the net charge is zero, 

there is nonetheless an electric dipole moment formed 

by the two charges — Q and + Q being separated by a 

finite distance. Just as two charges exert a Coulombic 

force on each other, two dipoles also exert an electro¬ 

static force on each other that depends on the separa¬ 

tion of dipoles and their relative orientation. 

Electron affinity represents the energy that is needed 

to add an electron to a neutral atom to create a negative 

ion (anion). When an electron is added to Cl to form 

Cl-, energy is actually released. 

Electronegativity is a relative measure of the ability 
of an atom to attract the electrons in a bond it forms 

with another atom. The Pauling scale of electronega¬ 

tivity assigns an electronegativity value (a pure num¬ 

ber) X to various elements, the highest being 4 for F, 

and the lowest values being for the alkali metal atoms, 

for which X are less than 1. The difference XA — XB 

in the electronegativities of two atoms A and B is a 

measure of the polar or ionic character of the bond 
A-B between A and B. A molecule A-B would be 

polar, that is, possess a dipole moment, if XA and XB 
are different. 

Equilibrium between two systems requires mechani¬ 

cal, thermal, and chemical equilibrium. Mechanical 

equilibrium means that the pressure should be the same 

in the two systems, so that one does not expand at the 
expense of the other. Thermal equilibrium implies that 

both have the same temperature. Equilibrium within a 

single-phase substance (e.g., steam only or hydrogen 

gas only) implies uniform pressure and temperature 

within the system. 

Equilibrium state of a system is the state in which 
the pressure and temperature in the system are uniform 
throughout. We say that the system possesses mechan¬ 

ical and thermal equilibrium. 

Eutectic composition is an alloy composition of two 

elements that results in the lowest melting temperature 

compared to any other composition. A eutectic solid has 

a structure that is a mixture of two phases. The eutectic 

structure is usually special, such as alternating lamellae. 

Face-centered cubic (FCC) lattice is a cubic lattice 

that has one lattice point at each comer of a cube and 
one at the center of each face. If there is a chemical 

species (atom or a molecule) at each lattice point, then 

the structure is an FCC crystal structure. 

Frenkel defect is an ionic crystal imperfection that 

occurs when an ion moves into an interstitial site, 

thereby creating a vacancy in its original site. The im¬ 

perfection is therefore a pair of point defects. 

Grain is an individual crystal within a polycrystalline 

material. Within a grain, the crystal structure and ori- 

t entation are the same everywhere and the crystal is ori¬ 

ented in one direction only. 

Grain boundary is a surface region between differ¬ 

ently oriented, adjacent grain crystals. The grain bound¬ 

ary contains a lattice mismatch between adjacent grains. 

Heat is the amount of energy transferred from one sys¬ 
tem to another (or between the system and its surround¬ 

ings) as a result of a temperature difference. Heat is not a 

new form of energy, but rather the transfer of energy 

from one body to another by virtue of the random mo¬ 

tions of their molecules. When a hot body is in contact 

with a cold body, energy is transferred from the hot body 
to the cold one. The energy that is transferred is the ex¬ 

cess mean kinetic energy of the molecules in the hot 
body. Molecules in the hot body have a higher mean ki¬ 

netic energy and vibrate more violently. As a result of the 

collisions between the molecules, there is a net transfer 

of energy (heat) from the hot body to the cold one, until 

the molecules in both bodies have the same mean kinetic 
energy, that is, until their temperatures become equal. 

Heat capacity at constant volume is the increase in the 

total energy E of the system per degree increase in the 
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temperature of the system with the volume remaining 

constant: C = (dE/dT)v. Thus, the heat added to the 

system does no mechanical work due to a volume 
change but increases the internal energy. Molar heat 

capacity is the heat capacity for 1 mole of a substance. 

Specific heat capacity is the heat capacity per unit mass. 

Interstitial site (interstice) is an unoccupied space 
between the atoms (or ions, or molecules) in a crystal. 

Ionization energy is the energy required to remove an 

electron from a neutral atom; normally the most outer 

electron that has the least binding energy to the nucleus 

is removed to ionize an atom. 

Isomorphous describes a structure that is the same 

everywhere (from iso, uniform, and morphology, 

structure). 

Isotropic substance is a material that has the same 
property in all directions. 

Kinetic molecular theory assumes that the atoms and 

molecules of all substances (gases, liquids, and solids) 

above absolute zero of temperature are in constant 

motion. Monatomic molecules (e.g., He, Ne) in a gas 
exhibit constant and random translational motion, 

whereas the atoms in a solid exhibit constant vibra¬ 
tional motion. 

Lattice is a regular array of points in space with a dis¬ 

cernible periodicity. There are 14 distinct lattices pos¬ 

sible in three-dimensional space. When an atom or 

molecule is placed at each lattice point, the resulting 

regular structure is a crystal structure. 

Lattice parameters are (a) the lengths of the sides of 

the unit cell, and (b) the angles between the sides. 

Mechanical work is qualitatively defined as the en¬ 

ergy expended in displacing a constant force through a 

distance. When a force F is moved a distance dx, work 
done dW = F ■ dx. When we lift a body such as an 

apple of mass m (100 g) by a distance h (l m), we do 

work by an amount F Ax = mgh (1 J), which is then 

stored as the gravitational potential energy of the 
body. We have transferred energy from ourselves to 
the potential energy of the body by exchanging energy 

with it in the form of work. Further, in lifting the apple, 
the molecules have been displaced in orderly fashion, 

all upwards. Work therefore involves an orderly dis¬ 

placement of atoms and molecules of a substance in 

complete contrast to heat. When the volume V of a 

substance changes by dV when the pressure is P, the 

mechanical work involved is P dV and is called the 
PV work. 

Metallic bonding is the binding of metal atoms in a 
crystal through the attraction between the positive 

metal ions and the mobile valence electrons in the 

crystal. The valence electrons permeate the space be¬ 
tween the ions. 

Miller indices (hkl) are indices that conveniently 
identify parallel planes in a crystal. Consider a plane 

with the intercepts, xi, yi, and z\, in terms of lattice 
parameters a, b, and c. (For a plane passing through 

the origin, we shift the origin or use a parallel plane.) 

Then, (hkl) are obtained by taking the reciprocals of 

x\, yi, and z\ and clearing all fractions. 

Miscibility of two substances is a measure of the mu¬ 

tual solubility of those two substances when they are in 

the same phase, such as liquid. 

Mole of a substance is that amount of the substance 

that contains NA number of atoms (or molecules), 

% where NA is Avogadro’s number (6.023 x 1023). One 

mole of a substance has a mass equal to its atomic 

(molecular) mass, in grams. For example, 1 mole of 

copper contains 6.023 x 1023 atoms and has a mass of 

63.55 g. 

Phase of a system is a homogeneous portion of the 

chemical system that has the same composition, struc¬ 

ture, and properties everywhere. In a given chemical 

system, one phase may be in contact with another phase 

of the system. For example, iced water at 0 °C will have 

solid and liquid phases in contact. Each phase, solid ice 

and liquid water, has a distinct structure. 

Phase diagram is a temperature versus composition 

diagram in which the existence and coexistence of var¬ 
ious phases are identified by regions and lines. Be¬ 

tween the liquidus and solidus lines, for example, the 

material is a heterogeneous mixture of the liquid and 

solid phases. 

Planar concentration of atoms is the number of 
atoms per unit area on a given (hkl) plane in a crystal. 

Polarization is the separation of positive and negative 

charges in a system, which results in a net electric di¬ 

pole moment. 
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Polymorphism or allotropy is a material attribute 
that allows the material to possess more than one crys¬ 

tal structure. Each possible crystal structure is called a 

polymorph. Generally, the structure of the polymorph 

depends on the temperature and pressure, as well as on 

the method of preparation of the solid. (For example, 

diamond can be prepared from graphite by the applica¬ 
tion of very high pressures.) 

Primary bond is a strong interatomic bond, typically 

greater then 1 eV/atom, that involves ionic, covalent, or 

metallic bonding. 

Property is a system characteristic or an attribute that 
we can measure. Pressure, volume, temperature, mass, 

energy, electrical resistivity, magnetization, polarization, 

and color are all properties of matter. Properties such as 

pressure, volume, and temperature can only be attributed 
to a system of many particles (which we treat as a con¬ 

tinuum). Note that heat and work are not properties of a 
substance; instead, they represent energy transfers in¬ 
volved in producing changes in the properties. 

Saturated solution is a solution that has the maximum 

possible amount of solute dissolved in a given amount 

of solvent at a specified temperature and pressure. 

Schottky defect is an ionic crystal imperfection that * 

occurs when a pair of ions is missing, that is, when 
there is a cation and anion pair vacancy. 

Screw dislocation is a crystal defect that occurs when 
one portion of a perfect crystal is twisted or skewed with 

respect to another portion on only one side of a line. 

Secondary bond is a weak bond, typically less than 

0.1 eV/atom, which is due to dipole-dipole interac¬ 

tions between the atoms or molecules. 

Solid solution is a homogeneous crystalline phase 

that contains two or more chemical components. 

Solute is the minor chemical component of a solution; 

the component that is usually added in small amounts 
to a solvent to form a solution. 

Solvent is the major chemical component of a solution. 

Stoichiometric compounds are compounds with an 
integer ratio of atoms, as in CaF2, in which two fluo¬ 

rine atoms bond with one calcium atom. 

Strain is a relative measure of the deformation a ma¬ 

terial exhibits under an applied stress. Under an ap¬ 

plied tensile (or compressive) stress, strain e is the 
change in the length per unit original length. When a 

shear stress is applied, the deformation involves a 

shear angle. Shear strain is the tangent of the shear 

angle that is developed by the application of the shear¬ 

ing stress. Volume strain A is the change in the vol¬ 

ume per unit original volume. 

Stress is force per unit area. When the applied force 
F is perpendicular to the area A, stress a = F/A is 

either tensile or compressive. If the applied force is 

tangential to the area, then stress is shear stress, 
r = F/A. 

Thermal expansion is the change in the length or vol¬ 

ume of a substance due to a change in the temperature. 

Linear coefficient of thermal expansion k is the 

fractional change in the length per unit temperature 
change or AL/L0 = k AT. Volume coefficient of ex¬ 

pansion av is the fractional change in the volume per 
unit temperature change; av 3k. 

Unit cell is the most convenient small cell in a crystal 
structure that carries the characteristics of the crystal. 

The repetition of the unit cell in three dimensions 

generates the whole crystal structure. 

Vacancy is a point defect in a crystal, where a nor¬ 
mally occupied lattice site is missing an atom. 

Valence electrons are the electrons in the outer shell 

of an atom. Since they are the farthest away from the 

nucleus, they are the first electrons involved in atom- 
to-atom interactions. 

Young’s modulus see elastic modulus. 

QUESTIONS AND PROBLEMS 
1.1 Virial theorem The Li atom has a nucleus with a +3e positive charge, which is surrounded by a full 

1 s shell with two electrons, and a single valence electron in the outer 2s subshell. The atomic radius of 

the Li atom is about 0.17 nm. Using the Virial theorem, and assuming that the valence electron sees the 

nuclear +3e shielded by the two Is electrons, that is, a net charge of +e, estimate the ionization energy 
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of Li (the energy required to free the 2s electron). Compare this value with the experimental value of 

5.39 eV. Suppose that the actual nuclear charge seen by the valence electron is not -he but a little higher, 

say + 1.25e, due to the imperfect shielding provided by the closed Is shell. What would be the new ion¬ 

ization energy? What is your conclusion? 

1.2 Atomic mass and molar fractions 

a. Consider a multicomponent alloy containing N elements. If w\, u>2,..., wn are the weight frac¬ 

tions of components 1,2,...,# in the alloy and M\, A/2,..., Mn are the respective atomic 

masses of the elements, show that the atomic fraction of the ith component is given by 

ni 
wij Mi 

W2 WN 

Mi M2 + + Mn 

Weight to atomic 

percentage 

b. Suppose that a substance (compound or an alloy) is composed of N elements, A, B, C,... and 

that we know their atomic (or molar) fractions ha, ns, ric,.... Show that the weight fractions 

u>a, ujjj, wc,... are given by 

wA = 
_tiaMa_ 

uaMa + nBMB + ncMc H- 

wB 
nBMB 

nAMA + nBMB + ncMc + • • • 

Atomic to 

weight 

percentage 

c. Consider the semiconducting II-VI compound cadmium selenide, CdSe. Given the atomic masses 

of Cd and Se, find the weight fractions of Cd and Se in the compound and grams of Cd and Se 

needed to make 100 grams of CdSe. 

d. A Se-Te-P glass alloy has the composition 77 wt.% Se, 20 wt.% Te, and 3 wt.% P. Given their 

atomic masses, what are the atomic fractions of these constituents? 

1.3 The covalent bond Consider the H2 molecule in a simple way as two touching H atoms, as depicted 

in Figure 1.73. Does this arrangement have a lower energy than two separated H atoms? Suppose that 

electrons totally correlate their motions so that they move to avoid each other as in the snapshot in Fig¬ 

ure 1.73. The radius rQ of the hydrogen atom is 0.0529 nm. The electrostatic potential energy of two 

charges Q1 and Qi separated by a distance r is given by Q\ Q2/(^tve0r). Using the virial theorem as in 

Example 1.1 consider the following: 

a. Calculate the total electrostatic potential energy PE of all the charges when they are arranged as 

shown in Figure 1.73. In evaluating the PE of the whole collection of charges you must consider all 

pairs of charges and, at the same time, avoid double counting of interactions between the same pair 

of charges. The total PE is the sum of the following: electron 1 interacting with the proton at a dis¬ 

tance r0 on the left, proton at r0 on the right, and electron 2 at a distance 2rQ + electron 2 interact¬ 

ing with a proton at rQ and another proton at 3r0 + two protons, separated by 2r0, interacting with 

each other. Is this configuration energetically favorable? 

b. Given that in the isolated H atom the PE is 2 x (—13.6 eV), calculate the change in PE in going from 

two isolated H atoms to the H2 molecule. Using the virial theorem, find the change in the total energy 

and hence the covalent bond energy. How does this compare with the experimental value of 4.51 eV? 

Hydrogen Hydrogen 
Figure 1.73 A simplified view of the covalent bond in H2. 

A snapshot at one instant. 
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Energy per ion 

pair in ionic 

crystals 

Madelung 

constant Mfor 

NaCl 

General PE 

curve for 

bonding 

Bulk modulus 

definition 

Bulk modulus 

1.4 Ionic bonding and CsCi The potential energy E per Cs+-Cl pair within the CsCl crystal depends on 

the interionic separation r in the same fashion as in the NaCl crystal, 

E(r) = - 
e2M 

4ne0r 
[1.38] 

where for CsCl, M = 1.763, B = 1.192 x 10“104 J m9 or 7.442 x 10-5 eV (nm)9, and m = 9. Find 

the equilibrium separation (r0) of the ions in the crystal and the ionic bonding energy, that is, the 

ionic cohesive energy, and compare the latter value to the experimental value of 657 kJ mol-1. 

Given that the ionization energy of Cs is 3.89 eV and the electron affinity of Cl (energy released 

when an electron is added) is 3.61 eV, calculate the atomic cohesive energy of the CsCl crystal as 

joules per mole. 

1.5 Madelung constant If we were to examine the NaCl crystal in three dimensions, we would find that 

each Na+ ion has 

6 Cl- ions as nearest neighbors at a distance r 

12 Na+ ions as second nearest neighbors at a distance ry/l 

8 Cl” ions as third nearest neighbors at a distance rV3 

and so on. Show that the electrostatic potential energy of the Na+ atom can be written as 

e2M 

4ne0r 

where M, called the Madelung constant, is given by the summation in the square brackets for this par¬ 

ticular ionic crystal structure (NaCl). Calculate M for the first three terms and compare it with 

M = 1.7476, its value had we included the higher terms. What is your conclusion? 

E(r) = - 
4 7te0r 

, 12 8 
6-p 4—p 

V2 >/3 

*1.6 Bonding and bulk modulus In general, the potential energy E per atom, or per ion pair, in a crystal 

as a function of interatomic (interionic) separation r can be written as the sum of an attractive PE and a 

repulsive PE, % 

£(r) = -4 + 4r [1.39] 

where A and n are constants characterizing the attractive PE and B and m are constants characteriz¬ 

ing the repulsive PE. This energy is minimum when the crystal is in equilibrium. The magnitude of 

the minimum energy and its location r0 define the bonding energy and the equilibrium interatomic 

(or interionic) separation, respectively. 

When a pressure P is applied to a solid, its original volume V0 shrinks to V by an amount 

AV = V — Vc. The bulk modulus K relates the volume strain AV/V to the applied pressure P by 

p = n.4o] 
Vo 

The bulk modulus K is related to the energy curve. In its simplest form (assuming a simple cubic 

unit cell) K can be estimated from Equation 1.39 by 

K = 
1 

9cr0 

d2E 

dr2 
[1.41] 

where c is a numerical factor, of the order of unity, given by b/p where p is the number of atoms or ion 

pairs in the unit cell and b is a numerical factor that relates the cubic unit cell lattice parameter aQ to the 

equilibrium interatomic (interionic) separation rQ by b = . 

a. Show that the bond energy and equilibrium separation are given by 

^bond — “ and r0 = 

1 f{m-n) 
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b. Show that the bulk modulus is given by 

K = 
An 

9cr”+3 
(m — n) or K = 

WltlEbond 

9 cr\ 

c. For a NaCl-type crystal, Na+ and Cl” ions touch along the cube edge so that rQ — (a0/2). Thus, 

cz3 = 23r3 and b = 23 = 8. There are four ion pairs in the unit cell, p = 4. Thus, 

c = b/p = 8/4 = 2. Using the values from Example 1.2, calculate the bulk modulus of NaCl. 

*1.7 Van der Waals bonding Below 24.5 K, Ne is a crystalline solid with an FCC structure. The inter¬ 

atomic interaction energy per atom can be written as 

E(r) = -2s (eV/atom) 

where s and a are constants that depend on the polarizability, the mean dipole moment, and the extent 

of overlap of core electrons. For crystalline Ne, e = 3.121 x 10“3 eV and a = 0.274 nm. 

a. Show that the equilibrium separation between the atoms in an inert gas crystal is given by 

rQ — (1,090)a. What is the equilibrium interatomic separation in the Ne crystal? 

b. Find the bonding energy per atom in solid Ne. 

c. Calculate the density of solid Ne (atomic mass = 20.18). 

1.8 Kinetic molecular theory 

a. In a particular Ar-ion laser tube the gas pressure due to Ar atoms is about 0.1 torr at 25 °C when the 

laser is off. What is the concentration of Ar atoms per cm3 at 25 °C in this laser? (760 torr = 1 atm = 

1.013 x 105 Pa.) 

b. In the He-Ne laser tube He and Ne gases are mixed and sealed. The total pressure P in the gas is 

given by contributions arising from He and Ne atoms: 

p = Phc + Pti* 

where Pne and P^e are the partial pressures of He and Ne in the gas mixture, that is, pressures due to 

He and Ne gases alone, 

In a particular He-Ne laser tube the ratio of He and Ne atoms is 7:1, and the total pressure is about 1 torr 

at 22 °C. Calculate the concentrations of He and Ne atoms in the gas at 22 °C. What is the pressure at an 

operating temperature of 130 °C? 

1.9 Kinetic molecular theory Calculate the effective (rms) speeds of the He and Ne atoms in the He-Ne 

gas laser tube at room temperature (300 K). 

*1.10 Kinetic molecular theory and the Ar-ion laser An argon-ion laser has a laser tube that contains Ar 

atoms that produce the laser emission when properly excited by an electrical discharge. Suppose that the 

gas temperature inside the tube is 1300 °C (very hot). 

a. Calculate the mean speed (uav), rms velocity (Unns = Vu^), and the rms speed (Unns,* = \A^) 
in one particular direction of the Ar atoms in the laser tube, assuming 1300 °C . (See Exam¬ 

ple 1.10.) 

b. Consider a light source that is emitting waves and is moving toward an observer, somewhat like a 

whistling train moving toward a passenger. If f0 is the frequency of the light waves emitted at the 

source, then, due to the Doppler effect, the observer measures a higher frequency / that depends on 

the velocity i>at of the source moving toward the observer and the speed c of light, 

f = fo 
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It is the Ar ions that emit the laser output light in the Ar-ion laser. The emission wavelength k0 = c/f0 

is 514.5 nm. Calculate the wavelength k registered by an observer for those atoms that are moving with 

a mean speed uav toward the observer. Those atoms that are moving away from the observer will result 

in a lower observed frequency because v&T will be negative. Estimate the width of the wavelengths (the 

difference between the longest and shortest wavelengths) emitted by the Ar-ion laser. 

* 1.11 Vacuum deposition Consider air as composed of nitrogen molecules N2. 

a. What is the concentration n (number of molecules per unit volume) of N2 molecules at 1 atm and 

27 °C? 

b. Estimate the mean separation between the N2 molecules. 

c. Assume each molecule has a finite size that can be represented by a sphere of radius r. Also as¬ 

sume that t is the mean free path, defined as the mean distance a molecule travels before col¬ 

liding with another molecule, as illustrated in Figure 1.74a. If we consider the motion of one N2 

molecule, with all the others stationary, it is apparent that if the path of the traveling molecule 

crosses the cross-sectional area S — 7r(2r)2, there will be a collision. Since £ is the mean dis¬ 

tance between collisions, there must be at least one stationary molecule within the volume Si, 

S = n(2r)2 (a) A molecule moving with a 
velocity v travels a mean distance 
€ between collisions. Since the 
collision cross-sectional area is 5, 
in the volume Sf, there must be at 
least one molecule. 
Consequently, n(S€) = 1. 

(b) Vacuum deposition of metal 
electrodes by thermal evaporation. 

Figure 1.74 

Walter Houser Brattain (1902-1987), experimenting with metal contacts on copper oxide (1935) 
at Bell Telephone Labs. A vacuum evaporation chamber is used to deposit the metal electrode. 

I SOURCE: Bell Telephone Laboratories, courtesy AIP Emilio Segre Visual Archives. 
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as shown in Figure 1.74a. Since n is the concentration, we must have n(Si) = 1 or 

i = l/(n4r2n). However, this must be corrected for the fact that all the molecules are in motion, 

which only introduces a numerical factor, so that 

t- 1 
2l/24nr2n 

Assuming a radius r of 0.1 nm, calculate the mean free path of N2 molecules between collisions at 

27 °C and 1 atm. 

d. Assume that an Au film is to be deposited onto the surface of a Si chip to form metallic interconnec¬ 

tions between various devices. The deposition process is generally carried out in a vacuum chamber 

and involves the condensation of Au atoms from the vapor phase onto the chip surface. In one pro¬ 

cedure, a gold wire is wrapped around a tungsten filament, which is heated by passing a large current 

through the filament (analogous to the heating of the filament in a light bulb) as depicted in Fig¬ 

ure 1.74b. The Au wire melts and wets the filament, but as the temperature of the filament increases, 

the gold evaporates to form a vapor. Au atoms from this vapor then condense onto the chip surface, 

to solidify and form the metallic connections. Suppose that the source (filament)-to-substrate (chip) 

distance L is 10 cm. Unless the mean free path of air molecules is much longer than L, collisions 

between the metal atoms and air molecules will prevent the deposition of the Au onto the chip sur¬ 

face. Taking the mean free path i to be 100L, what should be the pressure inside the vacuum system? 

(Assume the same r for Au atoms.) 

1.12 Heat capacity 

a. Calculate the heat capacity per mole and per gram of N2 gas, neglecting the vibrations of the mole¬ 

cule. How does this compare with the experimental value of 0.743 J g”1 K”1 ? 

fe. Calculate the heat capacity per mole and per gram of CO2 gas, neglecting the vibrations of the 

molecule. How does this compare with the experimental value of 0.648 J K”1 g""1? Assume that 

the CO2 molecule is linear (O-C-O) so that it has two rotational degrees of freedom. 

c. Based on the Dulong-Petit rule, calculate the heat capacity per mole and per gram of solid silver. 

How does this compare with the experimental value of 0.235 J K”1 g”1 ? 

d. Based on the Dulong-Petit rule, calculate the heat capacity per mole and per gram of the silicon 

crystal. How does this compare with the experimental value of 0.71 J K”1 g-1 ? 

1.13 Dulong-Petit atomic heat capacity Express the Dulong-Petit rule for the molar heat capacity as 

heat capacity per atom and in the units of eV K”1 per atom, called the atomic heat capacity. Csl is 

an ionic crystal used in optical applications that require excellent infrared transmission at very long 

wavelengths (up to 55 pm). It has the CsCl crystal structure with one Cs+ and one 1“ ion in the unit 

cell. Given the density of Csl as 4.51 g cm-3, calculate the specific heat capacity of Csl and com¬ 

pare it with the experimental value of 0.2 J K”1 g”1. What is your conclusion? 

1.14 Dulong-Petit specific heat capacity of alloys and compounds 

a. Consider an alloy AB, such as solder, or a compound material such as MgO, composed of ha, 

atomic fractions of A, and ns, atomic fractions of B. (The atomic fraction of A is the same as its 

molar fraction.) Let Ma and Mb be the atomic weights of A and £, in g mol”1. The mean atomic 

weight per atom in the alloy or compound is then 

M = nAMA +nsMs 

Show that the Dulong-Petit rule for the specific heat capacity cs leads to 

Average atomic 

weight 

Specific heat 
capacity 

b. Calculate the specific heat capacity of Pb-Sn solder assuming that its composition is 38 wt.% Pb 

and 62 wt.% Sn. 

c = =__25__ 

s M nAMA+nsMB 
JKTV1 
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GaAs linear 
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c. Calculate the specific heat capacities of Pb and Sn individually as csa and csb , respectively, and 
then calculate the cs for the alloy using 

Cs = CsAWA + csbwb 

where wa and wb are the weight fractions of A (Pb) and B (Sn) in the alloy (solder). Compare your 

result with part (a). What is your conclusion? 

d. ZnSe is an important optical material (used in infrared windows and lenses and high-power CO2 

laser optics) and also an important II-VI semiconductor that can be used to fabricate blue-green 

laser diodes. Calculate the specific heat capacity of ZnSe, and compare the calculation to the 

experimental value of 0.345 J K-1 g”1. 

1.15 Thermal expansion 

a. If k is the thermal expansion coefficient, show that the thermal expansion coefficient for an area is 

2k. Consider an aluminum square sheet of area 1 cm2. If the thermal expansion coefficient of A1 at 

room temperature (25 °C) is about 24 x 10-6 K”1, at what temperature is the percentage change 

in the area +1%? 

b. A particular incandescent light bulb (100 W, 120 V) has a tungsten (W) filament of length 57.9 cm 

and a diameter of 63.5 |im. Calculate the length of the filament at 2300 °C, the approximate oper¬ 

ating temperature of the filament inside the bulb. The linear expansion coefficient k of W is approx¬ 

imately 4.50 x 10“6 K""1 at 300 K. How would you improve your calculation? 

1.16 Thermal expansion of Si The expansion coefficient of silicon over the temperature range 120-1500 K 

is given by Okada and Tokumaru (1984) as 

A. = 3.725 x 10_6[1 - e-3-725xio-3(r-i24)j + 5 548 x i()-10r 

where k is in K”1 (or °C_1) and T is in kelvins. 

a. By expanding the above function around 20 °C (293 K) show that, 

k = 2.5086 x 10“6 + (8.663 x 10’9)(r - 293) - (2.3839 x 10“n)(r - 293)2 
% 

b. The change Sp in the density due to a change ST in the temperature, from Example 1.5, is given by 

Sp = —Po®v 8T = —3pak ST 

Given the density of Si as 2.329 g cm-3 at 20 °C, calculate the density at 1000 °C by using the full 

expression and by using the polynomials expansion of k. What is your conclusion? 

1.17 Thermal expansion of GaP and GaAs 

a. GaP has the zinc blende structure. The linear expansion coefficient in GaP has been measured as 

follows: k = 4.65 x 10”6 K"1 at 300 K; 5.27 x 10“6 K_1 at 500 K; 5.97 x 10“6 K_1 at 800 K. 

Calculate the coefficients, A, 2?, and C in 

JL- =A(D = A + B(T-To) + C(T-To)2 + --- 
Liq U 1 

where T0 = 300 K. The lattice constant of GaP, a, at 27 °C is 0.5451 nm. Calculate the lattice con¬ 

stant at 300 °C. 

b. The linear expansion coefficient of GaAs over 200-1000 K is given by 

k = 4.25 x 10"6 + (5.82 x 10-9)7 - (2.82 x 10"12)T2 

where T is in kelvins. The lattice constant a at 300 K is 0.56533 nm. Calculate the lattice constant 

and the density at —40PC. 

1.18 Electrical noise Consider an amplifier with a bandwidth B of 5 kHz, corresponding to a typical 

speech bandwidth. Assume the input resistance of the amplifier is 1 MQ. What is the rms noise voltage 

at the input? What will happen if the bandwidth is doubled to 10 kHz? What is your conclusion? 
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1.19 Thermal activation A certain chemical oxidation process (e.g., SiC>2) has an activation energy of 

2 eV atom-1. 

a. Consider the material exposed to pure oxygen gas at a pressure of 1 atm at 27 °C. Estimate how 

many oxygen molecules per unit volume will have energies in excess of 2 eV? (Consider the 

numerical integration of Equation 1.24.) 

b. If the temperature is 900 °C, estimate the number of oxygen molecules with energies more than 

2 eV. What happens to this concentration if the pressure is doubled? 

1.20 Diffusion in Si The diffusion coefficient of boron (B) atoms in a single crystal of Si has been 

measured to be 1.5 x 10"18 m2 s"1 at 1000 °C and 1.1 x 10"16 m2 s-1 at 1200 °C. 

a. What is the activation energy for the diffusion of B, in eV/atom? 

b. What is the preexponential constant D01 

c. What is the rms distance (in micrometers) diffused in 1 hour by the B atom in the Si crystal at 

1200 °C and 1000 °C? 

d. The diffusion coefficient of B in polycrystalline Si has an activation energy of 2.4-2.S eV/atom and 

D0 = (1.5 - 6) x 10-7 m2 s-1. What constitutes the diffusion difference between the single crys¬ 

tal sample and the polycrystalline sample? 

1.21 Diffusion in Si(>2 The diffusion coefficient of P atoms in Si02 has an activation energy 

of 2.30 eV/atom and D0 = 5.73 x 10“9 m2 s-1. What is the rms distance diffused in 1 hour by P atoms 

in Si02 at 1200 °C? 

1.22 BCC and FCC crystals 

a. Molybdenum has the BCC crystal structure, a density of 10.22 g cm-3, and an atomic mass of 

95.94 g mol-1. What is the atomic concentration, lattice parameter a, and atomic radius of molyb¬ 

denum? 

b. Gold has the FCC crystal structure, a density of 19.3 g cm"3, and an atomic mass of 196.97 g 

mol-1. What is the atomic concentration, lattice parameter a, and atomic radius of gold? 

1.23 BCC and FCC crystals 

a. Tungsten (W) has the BCC crystal structure. The radius of the W atom is 0.1371 nm. The atomic 

mass of W is 183.8 amu (g mol"1). Calculate the number of W atoms per unit volume and density 

of W. 

b. Platinum (Pt) has the FCC crystal structure. The radius of the Pt atom is 0.1386 nm. The atomic 

mass of Pt is 195.09 amu (g mol-1). Calculate the number of Pt atoms per unit volume and density 

ofPt. 

1.24 Planar and surface concentrations Niobium (Nb) has the BCC crystal with a lattice parameter 

a = 0.3294 nm. Find the planar concentrations as the number of atoms per nm2 of the (100), (110), and 

(111) planes. Which plane has the most concentration of atoms per unit area? Sometimes the number of 

atoms per unit area ^surface on the surface of a crystal is estimated by using the relation nsurface = ^buik* 

where ^buik is the concentration of atoms in the bulk. Compare ^surface values with the planar concen¬ 

trations that you calculated and comment on the difference. [Note: The BCC (111) plane does not cut 

through the center atom and the (111) has one-sixth of an atom at each comer.] 

1.25 Diamond and zinc blende Si has the diamond and GaAs has the zinc blende crystal structure. Given 

the lattice parameters of Si and GaAs, a = 0.543 nm and a = 0.565 nm, respectively, and the atomic 

masses of Si, Ga, and As as 28.08, 69.73, and 74.92, respectively, calculate the density of Si and GaAs. 

What is the atomic concentration (atoms per unit volume) in each crystal? 

1.26 Zinc blende, NaCl, and CsCl 

a. InAs is a III-V semiconductor that has the zinc blende structure with a lattice parameter of 0.606 nm. 

Given the atomic masses of In (114.82 g mol"1) and As (74.92 g mol"1), find the density. 

b. CdO has the NaCl Crystal structure with a lattice parameter of 0.4695 nm. Given the atomic masses 

of Cd (112.41 g mol-1) and O (16.00 g mol"1), find the density. 
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c. KC1 has the same crystal structure as NaCl. The lattice parameter a of KC1 is 0.629 nm. The atomic 

masses of K and Cl are 39.10 g mol”1 and 35.45 g mol”1, respectively. Calculate the density of KC1. 

1.27 Crystallographic directions and planes Consider the cubic crystal system. 

a. Show that the line [hkt] is perpendicular to the (hkt) plane. 

b. Show that the spacing between adjacent (hki) planes is given by 

V/i2-\-k2 + e2 

1.28 Si and Si02 

a. Given the Si lattice parameter a = 0.543 nm, calculate the number of Si atoms per unit volume, in 

nm-3. 

fe. Calculate the number of atoms per m2 and per nm2 on the (100), (110), and (111) planes in the Si 

crystal as shown in Figure 1.75. Which plane has the most number of atoms per unit area? 

c. The density of SiC>2 is 2.27 g cm”3. Given that its structure is amorphous, calculate the number of 

molecules per unit volume, in nm-3. Compare your result with (a) and comment on what happens 

when the surface of an Si crystal oxidizes. The atomic masses of Si and O are 28.09 and 16, re¬ 

spectively. 

a 
(100) plane (110) plane (111) plane 

Figure 1.75 Diamond cubic crystal structure and planes. 

Determine what portion of a black-colored atom belongs to the plane that is hatched. 

1.29 Vacancies in metals 

a. The energy of formation of a vacancy in the copper crystal is about 1 eV. Calculate the con¬ 

centration of vacancies at room temperature (300 K) and just below the melting temperature, 

1084 °C. Neglect the change in the density which is small. 

b. The following table shows the energies of vacancy formation in various metals with close-packed 

crystal structures and the melting temperature Tm. Plot Ev in eV versus. Tm in kelvins, and explore 

if there is a correlation between a and Tm. Some materials engineers take Ev to be very roughly 

10fcrm. Do you think that they are correct? (Justify.) 

Metal 

Al Ag Au Cu Mg Pt Pb Ni Pd 

Crystal FCC FCC FCC FCC HCP FCC FCC FCC FCC 

Ev (eV) 0.70-0.76 l.O-l. 1 0.90-0.98 1-1.28 0.89 1.3-1.5 0.50 1.63-1.79 1.54-1.85 

Tm (°C) 660 962 1064 1085 650 1768 328 1455 1555 
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1.30 Vacancies in silicon In device fabrication, Si is frequently doped by the diffusion of impurities 

(dopants) at high temperatures, typically 950-1200°C. The energy of vacancy formation in the Si crys¬ 

tal is about 3.6 eV. What is the equilibrium concentration of vacancies in a Si crystal at 1000 °C? Ne¬ 

glect the change in the density with temperature which is less than 1 percent in this case. 

1.31 Pb-Sn solder Consider the soldering of two copper components. When the solder melts, it wets both 

metal surfaces. If the surfaces are not clean or have an oxide layer, the molten solder cannot wet the sur¬ 

faces and the soldering fails. Assume that soldering takes place at 250 °C, and consider the diffusion of 

Sn atoms into the copper (the Sn atom is smaller than the Pb atom and hence diffuses more easily). 

a. The diffusion coefficient of Sn in Cu at two temperatures is D = 1.69 x 10“9 cm2 hr-1 at 400 °C 

and D = 2.48 x 10"7 cm2 hr-1 at 650 °C. Calculate the rms distance diffused by an Sn atom into 

the copper, assuming the cooling process takes 10 seconds. 

b. What should be the composition of the solder if it is to begin freezing at 250 °C? 

c. What are the components (phases) in this alloy at 200 °C? What are the compositions of the phases 

and their relative weights in the alloy? 

d. What is the microstructure of this alloy at 25 °C? What are weight fractions of the a and fi phases 

assuming near equilibrium cooling? 

1.32 Pb-Sn solder Consider 50% Pb-50% Sn solder. 

a. Sketch the temperature-time profile and the microstructure of the alloy at various stages as it is 

cooled from the melt. 

ft. At what temperature does the solid melt? 

c. What is the temperature range over which the alloy is a mixture of melt and solid? What is the 

structure of the solid? 

d. Consider the solder at room temperature following cooling from 182 °C. Assume that the rate of 

cooling from 182 °C to room temperature is faster than the atomic diffusion rates needed to change 

the compositions of the a and fi phases in the solid. Assuming the alloy is 1 kg, calculate the masses 

of the following components in the solid: ♦ 
1. The primary a. 

2. a in the whole alloy. 

3. a in the eutectic solid. 

4. fi in the alloy. (Where is the j8-phase?) 

e. Calculate the specific heat of the solder given the atomic masses of Pb (207.2) and Sn (118.71). 

Walter Houser Brattain (1902-1987), one of the inventors of the 
transistor, looking at a vacuum evaporator used for depositing metal film 
electrodes on semiconductors (1937). 

I SOURCE: AIP Emilio Segre Visual Archives, Brattain Collection. 



Highly magnified scanning electron microscope (SEM) view of 
IBM's six-level copper interconnect technology in an integrated 
circuit chip. The aluminum in transistor interconnections in a 
silicon chip has been replaced by copper that has a higher 
conductivity (by nearly 40%) ana also a better ability to carry 
higher current densities without electromigration. Lower copper 
interconnect resistance means higher speeds and lower RC 
constants (1997). 

I SOURCE: Courtesy of IBM Corporation. 

SEM view of three levels of copper interconnect metallization in 
IBM's new faster CMOS integrated circuits (1997). 

I SOURCE: Courtesy of IBM Corporation. 



Electrical 
and 

Thermal Conduction 
in Solids 

Electrical conduction involves the motion of charges in a material under the influence 
of an applied electric field. A material can generally be classified as a conductor if it 
contains a large number of “free” or mobile charge carriers. In metals, due to the na¬ 
ture of metallic bonding, the valence electrons from the atoms form a sea of electrons 
that are free to move within the metal and are therefore called conduction electrons. In 
this chapter, we will treat the conduction electrons in metal as “free charges” that can 
be accelerated by an applied electric field. In the presence of an electric field, the con¬ 
duction electrons attain an average velocity, called the drift velocity, that depends on 
the field. By applying Newton’s second law to electron motion and using such con¬ 
cepts as mean free time between electron collisions with lattice vibrations, crystal de¬ 
fects, impurities, etc., we will derive the fundamental equations that govern electrical 
conduction in solids. A key concept will be the drift mobility, which is a measure of the 
ease with which charge carriers in the solid drift under the influence of an external 
electric field. 

Good electrical conductors, such as metals, are also known to be good thermal 
conductors. The conduction of thermal energy from higher to lower temperature re¬ 
gions in a metal involves the conduction electrons carrying the energy. Consequently, 
there is an innate relationship between the electrical and thermal conductivities, which 
is supported by theory and experiments. 
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2.1 CLASSICAL THEORY: THE DRUDE MODEL 

2.1.1 Metals and Conduction by Electrons 

Current 

density 

definition 

Definition of 
drift velocity 

Current 

density and 

drift velocity 

The electric current density J is defined as the net amount of charge flowing across a 
unit area per unit time, that is, 

J = — 
A At 

where Aq is the net quantity of charge flowing through an area A in time At. Figure 2.1 
shows the net flow of electrons in a conductor section of cross-sectional area A in the 
presence of an applied field (EX. Notice that the direction of electron motion is opposite 
to that of the electric field /EX and of conventional current, because the electrons experi¬ 
ence a Coulombic force eHx in the x direction, due to their negative charge. 

We know that the conduction electrons are actually moving around randomly1 in 
the metal, but we will assume that as a result of the application of the electric field “Ex, 
they all acquire a net velocity in the x direction. Otherwise, there would be no net flow 
of charge through area A. 

The average velocity of the electrons in the x direction at time t is denoted VdX(t). 

This is called the drift velocity, which is the instantaneous velocity vx in the x direc¬ 
tion averaged over many electrons (perhaps, ~1028 m-3); that is 

Vdx = Trt^l +Vx2 + V*3 + --- + VxAl] 12.U 
*N 

where vxi is the x direction velocity of the ith electron, and N is the number of 
conduction electrons in the metal. Suppose that n is the number of electrons per unit 
volume in the conductor (n = N/V). In time At, electrons move a distance 
Ax = Vdx At, so the total charge Aq crossing the area A is enA Ax. This is valid 
because all the electrons within distance Ax pass through A; thus, n(A Ax) is the total 
number of electrons crossing A in time At. 

The current density in the x direction is 

Aq 

A At 

enAVdx At 

A~At 
= envdx 

This general equation relates Jx to the average velocity VdX of the electrons. It must be 
appreciated that the average velocity at one time may not be the same as at another 
time, because the applied field, for example, may be changing: *EX = *Ex(t). We there¬ 
fore allow for a time-dependent current by writing 

Jx(t) = envdx(t) 12.2] 

To relate the current density Jx to the electric field fEx, we must examine the effect 
of the electric field on the motion of the electrons in the conductor. To do so, we will 
consider the copper crystal. 

1 All the conduction electrons are "free" within the metal and move around randomly, being scattered from vibrating 
metal ions, as we discuss in this chapter. 
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Figure 2.1 Drift of electrons in a 

conductor in the presence of an applied 

electric field. 

Electrons drift with an average velocity Vdx 

in the x direction. 

The copper atom has a single valence electron in its 4s subshell, and this electron 
is loosely bound. The solid metal consists of positive ion cores, Cu+, at regular sites, 
in the face-centered cubic (FCC) crystal structure. The valence electrons detach them¬ 
selves from their parents and wander around freely in the solid, forming a kind of elec¬ 
tron cloud or gas. These mobile electrons are free to respond to an applied field, creat¬ 
ing a current density Jx. The valence electrons in the electron gas are therefore 
conduction electrons. 

The attractive forces between the negative electron cloud and the Cu+ ions are re¬ 
sponsible for metallic bonding and the existence of the solid metal. (This simplistic 
view of metal was depicted in Figure 1.7 for copper.) The electrostatic attraction be¬ 
tween the conduction electrons and the positive metal ions, like the electrostatic attrac¬ 
tion between the electron and the proton in the hydrogen atom, results in the conduction 
electron having both potential energy PE and kinetic energy KE. The conduction elec¬ 
trons move about the crystal lattice in the same way that gas atoms move randomly in a 
cylinder. Although the average KE for gas atoms is |kT* this is not the case for electrons 
in a metal, because these electrons strongly interact with the metal ions and with each 
other as a result of electrostatic interactions. 

The mean KE of the conduction electrons in a metal is primarily determined 
by the electrostatic interaction of these electrons with the positive metal ions and 
also with each other. For most practical purposes, we will therefore neglect the 
temperature dependence of the mean KE compared with other factors that control 
the behavior of the conduction electrons in the metal crystal. We can speculate 
from Example 1.1, that the magnitude of mean KE must be comparable to the 
magnitude of the mean PE of electrostatic interaction2 or, stated differently, to the 
metal bond energy which is several electron volts per atom. If u is the mean speed 
of the conduction electrons, then, from electrostatic interactions alone, we expect 
^meu2 to be several electron volts which means that u is typically ~106 m s-1. This 
purely classical and intuitive reasoning is not sufficient, however, to show that the 
mean speed u is relatively temperature insensitive and much greater than that 
expected from kinetic molecular theory. The true reasons are quantum mechanical 
and are discussed in Chapter 4. (They arise from what is called the Pauli exclusion 
principle.) 

2 There is a theorem in classical mechanics called the virial theorem, which states that for a collection of particles, 
the mean KE has half the magnitude of the mean PE if the only forces acting on the particles are such that they 
follow an inverse square law dependence on the particle-particle separation (as in Coulombic and gravitational 
forces). 



116 chapter 2 • Electrical and Thermal Conduction in Solids 

(a) A conduction electron in the electron gas moves 
about randomly in a metal (with a mean speed u) 
being frequently and randomly scattered by 
thermal vibrations of the atoms. In the absence of 
an applied field there is no net drift in any direction 

(b) In the presence of an applied field, ‘Ex, there 
is a net drift along the x direction. This net drift 
along the force of the field is superimposed on 
the random motion of the electron. After many 
scattering events the electron has been displaced 
by a net distance, A x, from its initial position 
toward the positive terminal. 

Figure 2.2 Motion of a conduction electron in a metal. 

In general, the copper crystal will not be perfect and the atoms will not be sta¬ 
tionary. There will be crystal defects, vacancies, dislocations, impurities, etc., which 
will scatter the conduction electrons. More importantly, due to their thermal energy, 
the atoms will vibrate about their lattice sites (equilibrium positions), as depicted in 
Figure 2.2a. An electron will not be able to avoid collisions with vibrating atoms; 
consequently, it will be “scattered” from one atom to another. In the absence of an 
applied field, the path of an electron may be visualized as illustrated in Figure 2.2a, 
where scattering from lattice vibrations causes the electron to move randomly in the 
lattice. On those occasions when the electron reaches a crystal surface, it becomes 
“deflected” (or “bounced”) back into the crystal. Therefore, in the absence of a 
field, after some duration of time, the electron crosses its initial x plane position 
again. Over a long time, the electrons therefore show no net displacement in any one 
direction. 

When the conductor is connected to a battery and an electric field is applied to the 
crystal, as shown in Figure 2.2b, the electron experiences an acceleration in the x 

direction in addition to its random motion, so after some time, it will drift a finite dis¬ 
tance in the x direction. The electron accelerates along the x direction under the action 
of the force e*Ex, and then it suddenly collides with a vibrating atom and loses the 
gained velocity. Therefore, there is an average velocity in the x direction, which, if cal¬ 
culated, determines the current via Equation 2.2. Note that since the electron experi¬ 
ences an acceleration in the x direction, its trajectory between collisions is a parabola, 
like the trajectory of a golf ball experiencing acceleration due to gravity. 

To calculate the drift velocity vdx of the electrons due to applied field *EX, we first 
consider the velocity vxi of the zth electron in the x direction at time t. Suppose its last 
collision was at time t,-; therefore, for time (t — t{), it accelerated free of collisions, as 
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Velocity gained alongx Present time vx2-ux2 vx2-ux3 

Figure 2.3 Velocity gained in the x direction at time t from the electric field (£x) for three electrons. 

There will be N electrons to consider in the metal. 

indicated in Figure 2.3. Let uXi be the velocity of electron i in the x direction just after 
the collision. We will call this the initial velocity. Since e'Ex/mg is the acceleration of 
the electron, the velocity vxi in the x direction at time t will be 

€<£, 
Vxi = Mxi -p (t f,-) 

me 

However, this is only for the ith electron. We need the average velocity vdx for all 
such electrons along x. We average the expression for / = 1 to TV electrons, as in Equa¬ 
tion 2.1. We assume that immediately after a collision with a vibrating ion, the electron 
may move in any random direction; that is, it can just as likely move along the nega¬ 
tive or positive x, so that uxi averaged over many electrons is zero. Thus, 

1 _ 
Vdx = — [u*i + Vx2 + --- + = —-{t - ti) Drift velocity 

N me 

where (t - t{) is the average free time for N electrons between collisions. 
Suppose that r is the mean free time, or the mean time between collisions (also 

known as the mean scattering time). For some electrons, (t — t{) will be greater than 
r, and for others, it will be shorter, as shown in Figure 2.3. Averaging (t — r,) for N 

electrons will be the same as r. Thus, we can substitute r for (t — rf) in the previous 
expression to obtain 

ex 
Vdx ~ 'D'X 

me 
[2.3] 

Equation 2.3 shows that the drift velocity increases linearly with the applied field. 
The constant of proportionality ex fme has been given a special name and symbol. It is 
called the drift mobility fid, which is defined as 

Vdx = l^d £* [2.4] 
where 

ex 
lid — — [2-5] 

me 

Equation 2.5 relates the drift mobility of the electrons to their mean scattering 
time r. To reiterate, r, which is also called the relaxation time, is directly related to 

Definition of 

drift mobility 

Drift mobility 

and mean free 

time 
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the microscopic processes that cause the scattering of the electrons in the metal; that is, 
lattice vibrations, crystal imperfections, and impurities, to name a few. 

From the expression for the drift velocity vdx, the current density Jx follows im- j 
mediately by substituting Equation 2.4 into 2.2, that is, 

Ohm’s law Jx = eniid%x 12*61 

Therefore, the current density is proportional to the electric field and the conduc¬ 
tivity a is the term multiplying %x, that is, 

Unipolar a = en»d [2.7] 
conductivity 

It is gratifying that by treating the electron as a particle and applying classical me¬ 
chanics (F = ma), we are able to derive Ohm’s law. We should note, however, that we 
assumed r to be independent of the field. 

Drift mobility is important because it is a widely used electronic parameter in 
semiconductor device physics. The drift mobility gauges how fast electrons will drift 
when driven by an applied field. If the electron is not highly scattered, then the mean 
free time between collisions will be long, r will be large, and by Equation 2.5, the 
drift mobility will also be large; the electrons will therefore be highly mobile and be 
able to “respond” to the field. However, a large drift mobility does not necessarily 
imply high conductivity, because a also depends on the concentration of conduction 
electrons n. 

The mean time between collisions r has further significance. Its reciprocal 1 jx 

represents the mean frequency of collisions or scattering events; that is, 1 jx is the 
mean probability per unit time that the electron will be scattered (see Example 2.1). 
Therefore, during a small time interval <$/, the probability of scattering will be 8t/x. 

The probability of scattering per unit time 1 jx is time independent and depends only 
on the nature of the electron scattering mechanism. 

There is one important assumption in the derivation of the drift velocity vdx in 
Equation 2.3. We obtained vdx by averaging the velocities vxi of N electrons along * 
at one instant, as defined in Equation 2.1. The drift velocity therefore represents the 
average velocity of all the electrons along x at one instant; that is, t^x'is a number av¬ 
erage at one instant. Figure 2.2b shows that after many collisions, after a time interval 
At » r, an electron would have been displaced by a net distance Ax along x. The 
term Ax/At represents the effective velocity with which the electron drifts along x. It 
is an average velocity for one electron over many collisions, that is, over a long time 
(hence. At » r), so Ax/At is a time average. Provided that At contains many colli¬ 
sions, it is reasonable to expect that the drift velocity Ax/At from the time average for 
one electron is the same as the drift velocity vdx per electron from averaging for all 
electrons at one instant, as in Equation 2.1, or 

Ax 
Drift velocity -= vdx 

At 

The two velocities are the same only under steady-state conditions (At » r). The 
proof may be found in more advanced texts. 
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PROBABILITY OF SCATTERING PER UNIT TIME AND THE MEAN FREE TIME If 1/r is defined 
as the mean probability per unit time that an electron is scattered, show that the mean time be¬ 
tween collisions is x. 

EXAMPLE 2.1 

SOLUTION 

Consider an infinitesimally small time interval dt at time t. Let N be the number of unscattered 
electrons at time t. The probability of scattering during dt is (1/r) dt, and the number of scat¬ 
tered electrons during dt is N(1/r) dt. The change dN in N is thus 

dN = dt 

The negative sign indicates a reduction in N because, as electrons become scattered, N de¬ 
creases. Integrating this equation, we can find N at any time t, given that at time t = 0, N0 is 
the total number of unscattered electrons. Therefore, ( v Unscattered 

— J electron 

r' concentration 

This equation represents the number of unscattered electrons at time t. It reflects an expo¬ 
nential decay law for the number of unscattered electrons. The mean free time t can be calcu¬ 
lated from the mathematical definition of t, 

_ /0°° tN dt Mean free 

1 ~ /0°° N dt ~ T time 

where we have used N = N0 exp(—t/r). Clearly, 1/r is the mean probability of scattering per 
unit time. 

ELECTRON DRIFT MOBILITY IN METALS Calculate the drift mobility and the mean scattering 
time of conduction electrons in copper at room temperature, given that the conductivity of copper 
is 5.9 x 10s Q~1 cm-1. The density of copper is 8.96 g cm-3 and its atomic mass is 63.5 g mol-1. 

EXAMPLE 2.2 

SOLUTION 

We can calculate fxd from a = enfid because we already know the conductivity a. The number 
of free electrons n per unit volume can be taken as equal to the number of Cu atoms per unit 
volume, if we assume that each Cu atom donates one electron to the conduction electron gas in 
the metal. One mole of copper has NA (6.02 x 1023) atoms and a mass of 63.5 g. Therefore, the 
number of copper atoms per unit volume is 

dNA 
n — - 

Mat 

where d = density = 8.96 g cm-3, and Mat = atomic mass = 63.5 (g mol-1). Substituting for 
d, Na, and Mat, we find n = 8.5 x 1022 electrons cm-3. 

The electron drift mobility is therefore 

a 5.9 x 10s S2-1 cm-1 

IXd~~en~ [(1.6 x 10-19 C)(8.5 x 1022cm-3)] 

= 43.4 cm2 V-1 s-1 
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From the drift mobility we can calculate the mean free time r between collisions by using 
Equation 2.5, 

r = 
lidme (43.4 x 10 4m1 2V ‘s *)(9.1 x 10 31 kg) 

~ = 1.6 x 10~19C 
= 2.5 x 10 -14 

Note that the mean speed u of the conduction electrons is about 1.5 x 106 m s-1, so that 
their mean free path is about 37 nm. 

EXAMPLE 2.3 DRIFT VELOCITY AND MEAN SPEED What is the applied electric field that will impose a drift 
velocity equal to 0.1 percent of the mean speed m(~106 m s-1) of conduction electrons in 
copper? What is the corresponding current density and current through a Cu wire of diameter 
1 mm? 

SOLUTION 

The drift velocity of the conduction electrons is vdx = where pd is the drift mobility, which 
for copper is 43.4 cm2 V-1 s"1 (see Example 2.2). With vdx = 0.001 u = 103 m s"1, we have 

Vdx 

(*d 

103ms 1 

43.4 x 10-4 m2 V-1 s-1 
= 2.3 x 105 V m'1 or 230 kV m_1 

This is an unattainably large electric field in a metal. Given the conductivity a of copper, the 
equivalent current density is 

/, = cr<Ex = (5.9 x 107 fir1 m"1)(2.3 x 105 V m-1) 

= 1.4 x 1013 A m-2 or 1.4 x 107 A mm-2 

This means a current of 1.1 x 107 A through a 1 mm diameter wire! It is clear from this 
example that for all practical purposes, even under the highest working currents and volt¬ 
ages, the drift velocity is much smaller than the mean speed of the electrons. Consequently, 
when an electric field is applied to a conductor, for all practical purposes, the mean speed is 
unaffected. 

EXAMPLE 2.4 

Distance 

traversed 

along x before 
collision 

DRIFT VELOCITY IN A FIELD: A CLOSER LOOK There is another way to explain the observed 
dependence of the drift velocity on the field, and Equation 2.3. Consider the path of a conduc¬ 
tion electron in an applied field £ as shown in Figure 2.4, Suppose that at time t = 0 the elec¬ 
tron has just been scattered from a lattice vibration. Let be the initial velocity in the 
x direction just after this initial collision (to which we assign a collision number of zero). We 
will assume that immediately after a collision, the velocity of the electron is in a random direc¬ 
tion. Suppose that the first collision occurs at time t\. Since eT.x/me is the acceleration, the dis¬ 
tance covered in the x direction during the free time f, will be 

1 2 s 1 = Uxiti + -I - If, 
2 \ me ) 

At time f,, the electron collides with a lattice vibration (its first collision), and the velocity 
is randomized again to become ux2. The whole process is then repeated during the next interval 
which lasts for a free time r2, and the electron traverses a distance s2 along x, and so on. To find 
the overall distance traversed by the electron after p such scattering events, we sum all the 
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Electric field 

£ 

Figure 2.4 The motion of a single 

electron in the presence of an electric 

field During a time interval t„ the 

electron traverses a distance s,- along x. 

After p collisions, it has drifted a distance 

s = Ax. 

above distances si,s2,... for p free time intervals, 

S = 5] + $2 + • • • + Sp = [Uxih + uxlh + • • • + Uxptp] + — ^[*12 + A + ■ ' ■ + tp] 12.8] 

Since after a collision the “initial” velocity ux is always random, the first term has ux val¬ 
ues that are randomly negative and positive, so for many collisions (large p) the first term on the 
right-hand side of Equation 2.8 is nearly zero and can certainly be neglected compared with the 
second term. Thus, after many collisions, the net distance s = Ax traversed in the x direction is 
given by the second term in Equation 2.8, which is the electric field induced displacement term. 
If f2is the mean square free time, then 

s 
1 

2 
Pt2 

Distance 

drifted after p 

scattering 

events 

where '2 = ^D? + *i2 + -" + fl 
Suppose that x is the mean free time between collisions, where x =_(fi + t2 H-1- tp)/p. 

Then from straightforward elementary statistics it can be shown that t2 = 2(F)2 = 2r2. So in 
terms of the mean free time r between collisions, the overall distance s = Ax drifted in the 
x direction after p collisions is 

Mean square 

free time 

definition 

e% , 
^ =-(pr) 

me 

Further, since the total time At taken for these p scattering events is simply px, the drift 
velocity vdx is given by Ax/At or s/(pr), that is, 

Drift velocity 

vdx = — “Ex [2.9] and mean free 
me 

time 
This is the same expression as Equation 2.3, except that r is defined here as the average 

free time for a single electron over a long time, that is, over many collisions, whereas previously 
it was the mean free time averaged over many electrons. Further, in Equation 2.9 vdx is an 
average drift for an electron over a long time, over many collisions. In Equation 2.1 vdx is the 
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Drift mobility 

and conducti¬ 

vity and mean 

free path 

average velocity averaged over all electrons at one instant. For all practical purposes, the two 
are equivalent. (The equivalence breaks down when we are interested in events over a time 
scale that is comparable to one scattering, ~10-14 second.) 

The drift mobility pd from Equation 2.9 is identical to that of Equation 2.5, pd = ex/me. 

Suppose that the mean speed of the electrons (not the drift velocity) is u. Then an electron 
moves a distance l = ux in mean free time t, which is called the mean free path. The drift 
mobility and conductivity become, 

e& e^nt 
p,d = - and a = enp,d = - [2.10] 

meu meu 

Equations 2.3 and 2.10 both assume that after each collision the velocity is randomized. 
The scattering process, lattice scattering, is able to randomize the velocity in one single scatter¬ 
ing. In general not all electron scattering processes can randomize the velocity in one scattering 
process. If it takes more than one collision to randomize the velocity, then the electron is able to 
carry with it some velocity gained from a previous collision and hence possesses a higher drift 
mobility. In such cases one needs to consider the effective mean free path a carrier has to move 
to eventually randomize the velocity gained; this is a point considered in Chapter 4 when we 
calculate the resistivity at low temperatures. 

2.2 TEMPERATURE DEPENDENCE OF RESISTIVITY: 
IDEAL PURE METALS 

When the conduction electrons are only scattered by thermal vibrations of the 
metal ions, then r in the mobility expression fid = ex/me refers to the mean time 
between scattering events by this process. The resulting conductivity and resistivity 
are denoted by aT and pTt where the subscript T represents “thermal vibration scat¬ 

tering.” 
To find the temperature dependence of cr, we first consider the temperature 

dependence of the mean free time r, since this determines the drift mobility. An elec¬ 
tron moving with a mean speed u is scattered when its path crosses the cross- 
sectional area 5 of a scattering center, as depicted in Figure 2.5. The scattering center 

Figure 2.5 Scattering of an electron from 

the thermal vibrations of the atoms. 

The electron travels a mean distance l = in 
between collisions. Since the scattering cross- 

sectional area is S, in the volume St there 

must be at least one scattered Ns (Sur) = 1. 
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may be a vibrating atom, impurity, vacancy, or some other crystal defect. Since r is 
the mean time taken for one scattering process, the mean free path i of the electron 
between scattering processes is ux. If Ns is the concentration of scattering centers, 
then in the volume St, there is one scattering center, that is, (Sux)Ns = 1. Thus, the 
mean free time is given by 

_1_ 
SuNs 

[2.11] 

The mean speed u of conduction electrons in a metal can be shown to be only 
slightly temperature dependent.3 In fact, electrons wander randomly around in the 
metal crystal with an almost constant mean speed that depends largely on their con¬ 
centration and hence on the crystal material. Taking the number of scattering centers 
per unit volume to be the atomic concentration, the temperature dependence of r then 
arises essentially from that of the cross-sectional area S. Consider what a free electron 
“sees” as it approaches a vibrating crystal atom as in Figure 2.5. Because the atomic 
vibrations are random, the atom covers a cross-sectional area na2, where a is the am¬ 
plitude of the vibrations. If the electron’s path crosses na2, it gets scattered. Therefore, 
the mean time between scattering events x is inversely proportional to the area na2 

that scatters the electron, that is, t a \/na2. 

The thermal vibrations of the atom can be considered to be simple harmonic 
motion, much the same way as that of a mass M attached to a spring. The average 
kinetic energy of the oscillations is \Ma2co2, where co is the oscillation frequency. 
From the kinetic theory of matter, this average kinetic energy must be on the order 
of \kT. Therefore, 

\Ma2ai2 % \kT 

so a2 a T. Intuitively, this is correct because raising the temperature increases the am¬ 
plitude of the atomic vibrations. Thus, 

Mean free 
time between 

collisions 

1 1 C 
x oc —- a — or r = — 

na1 T T 

where C is a temperature-independent constant. Substituting for r in fid = ex/me, we 
obtain 

Vd 
eC 

meT 

So, the resistivity of a metal is 

1 1 meT 

^T oj enfid e2nC 

3 The fact that the mean speed of electrons in a metal is only weakly temperature dependent can be proved from 
what it called the Fermi-Dirac statistics for the collection of electrons in a metal (see Chapter 4). This result contrasts 
sharply with the kinetic molecular theory of gases (Chapter 1), which predicts that the mean speed of molecules is 
proportional to vT. For the time being, we simply use a constant mean speed u for the conduction electrons in a 
metal. 
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Pure metal 

resistivity due 

to thermal 

vibrations of 

the crystal 

that is, 

pT = AT [2.12] 

where A is a temperature-independent constant. This shows that the resistivity of a pure metal 
wire increases linearly with the temperature, and that the resistivity is due simply to the scatter¬ 
ing of conduction electrons by the thermal vibrations of the atoms. We term this conductivity 
lattice-scattering-limited conductivity. 

EXAMPLE 2.5 TEMPERATURE DEPENDENCE OF RESISTIVITY What is the percentage change in the resistance 
of a pure metal wire from Saskatchewan’s summer to winter, neglecting the changes in the di¬ 
mensions of the wire? 

SOLUTION 

Assuming 20 °C for the summer and perhaps — 30 °C for the winter, from R oc p = A T, we have 

R summer - R winter 

R summer 

Summer ~ ^winter _ (20 + 273) - (-30 + 273) 

^summer (20 + 273) 

= 0.171 or 17% 

Notice that we have used the absolute temperature for T. How will the outdoor cable power 
losses be affected? 

EXAMPLE 2.6 DRIFT MOBILITY AND RESISTIVITY DUE TO LATTICE VIBRATIONS Given that the mean speed 
of conduction electrons in copper is 1.5 x 106 m s-1 and the frequency of vibration of the cop¬ 
per atoms at room temperature is about 4 x 1012 s~1, estimate the drift mobility of electrons and 
the conductivity of copper. The density d of copper is 8.96 g cm-3 and the atomic mass Mat is 
63.56 g mol-1. 

SOLUTION 

The method for calculating the drift mobility and hence the conductivity is based on evaluating 
the mean free time r via Equation 2.11, that is, x = \/SuNs. Since r is due to scattering from 
atomic vibrations, Ns is the atomic concentration, 

_ dNA _ (8.96 x 103 kg m~3)(6.02 x 1023 mol-1) 

* Mat 63.56 x 10-3 kg mol-1 

= 8.5 x 1028 m-3 

The cross-sectional area S = na2 depends on the amplitude a of the thermal vibrations as 
shown in Figure 2.5. The average kinetic energy KEav associated with a vibrating mass M 
attached to a spring is given by KE&V = \Ma2oo2, where co is the angular frequency of the 
vibration (co = 27t4 x 1012 rad s-1). Applying this equation to the vibrating atom and equating 
the average kinetic energy KEHV to \kT, by virtue of equipartition of energy theorem, we have 
a2 = 2kT/Mco2 and thus 

S = Ti a2 
2nkT 

Mco2 

2jr(1.38 x 10-23 J K-1)(300 K) 

/63.56 x 10 3 kg mol 1 \ 

V 6.022 x 1023 mol-1 / 
(2n x 4 x 1012 rad s ')2 

=3.9 x 10 22 m2 
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Therefore, 

1_1_ 

SuNs (3.9 x 10-22 m2)(1.5 x 106ms-1)(8.5 x 1028 m-3) 

= 2.0 x 10-14 s 

The drift mobility is 

ez (1.6 x KT19 C)(2.0 x lO"14 s) 

>Xd ~ ~me ~ (9.1 x 10-31 kg) 

= 3.5 x 10"3 m2 V"1 s“' = 35 cm2 V-1 s_1 

The conductivity is then 

a = enixd = (1.6 x 10~19C)(8.5 x 1022 cm“3)(35 cm2 V-1 s*1) 

= 4.8 x 105 ST1 cm-1 

The experimentally measured value for the conductivity is 5.9 x 105 cm-1, so our 
crude calculation based on Equation 2.11 is actually only 18 percent lower, which is not bad for 
an estimate. (As we might have surmised, the agreement is brought about by using reasonable 
values for the mean speed u and the atomic vibrational frequency on. These values were taken 
from quantum mechanical calculations, so our evaluation for r was not truly based on classical 
concepts.) 

2.3 MATTHIESSEN’S AND NORDHEIM’S RULES 

2.3.1 MATTHIESSEN’S RULE AND THE TEMPERATURE 

Coefficient of Resistivity (a) 

The theory of conduction that considers scattering from lattice vibrations only works 
well with pure metals; unfortunately, it fails for metallic alloys. Their resistivities are 
only weakly temperature dependent. We must therefore search for a different type of 
scattering mechanism. 

Consider a metal alloy that has randomly distributed impurity atoms. An electron 
can now be scattered by the impurity atoms because they are not identical to the host 
atoms, as illustrated in Figure 2.6. The impurity atom need not be larger than the host 
atom; it can be smaller. As long as the impurity atom results in a local distortion of the 
crystal lattice, it will be effective in scattering. One way of looking at the scattering 
process from an impurity is to consider the scattering cross section. What actually 
scatters the electron is a local, unexpected change in the potential energy PE of the 
electron as it approaches the impurity, because the force experienced by the electron 
is given by 

d(PE) 

dx 

For example, when an impurity atom of a different size compared to the host atom is 
placed into the crystal lattice, the impurity atom distorts the region around it, either by 
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frequency of 

scattering 

Figure 2.6 Two different types of 

scattering processes involving 

scattering from impurities alone and 

from thermal vibrations alone. 

Strained region by impurity exerts a 
scattering force F = - d(PE) /dx 
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pushing the host atoms farther away, or by pulling them in, as depicted in Figure 2.6. 
The cross section that scatters the electron is the lattice region that has been elastically 
distorted by the impurity (the impurity atom itself and its neighboring host atoms), so 
that in this zone, the electron suddenly experiences a force F = —d(PE)Jdx due to a 
sudden change in the PE. This region has a large scattering cross section, since the dis¬ 
tortion induced by the impurity may extend a number of atomic distances. These impu¬ 
rity atoms will therefore hinder the motion of the electrons, thereby increasing the 
resistance. 

We now effectively have two types of mean free times between collisions: one, xT, 
for scattering from thermal vibrations only, and the other, r/, for scattering from im¬ 
purities only. We define xT as the mean time between scattering events arising from 
thermal vibrations alone and r/ as the mean time between scattering events arising 
from collisions with impurities alone. Both are illustrated in Figure 2.6. 

In general, an electron may be scattered by both processes, so the effective mean 
free time x between any two scattering events will be less than the individual scatter¬ 
ing times xT and r/. The electron will therefore be scattered when it collides with either 
an atomic vibration or an impurity atom. Since in unit time, 1 /r is the net probability 
of scattering, \/xj is the probability of scattering from lattice vibrations alone, and 
1/r/ is the probability of scattering from impurities alone, then within the realm of 
elementary probability theory for independent events, we have 

1 1 1 
- = — -I- — [2.13] 
X XT XI 

In writing Equation 2.13 for the various probabilities, we make the reasonable as¬ 
sumption that, to a greater extent, the two scattering mechanisms are essentially inde¬ 
pendent. Here, the effective mean scattering time r is clearly smaller than both xT and 
r/. We can also interpret Equation 2.13 as follows: In unit time, the overall number of 
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collisions (1/r) is the sum of the number of collisions with thermal vibrations alone 
(l/tf) and the number of collisions with impurities alone (1/r/). 

The drift mobility fid depends on the effective scattering time r via fid — exfme, 
so Equation 2.13 can also be written in terms of the drift mobilities determined by the 
various scattering mechanisms. In other words, 

1 1 1 
— = — + — [2.14] 
Hd Ml M/ 

where fii is the lattice-scattering-limited drift mobility, and fij is the impurity - 
scattering-limited drift mobility. By definition, fiL = exT/me and fii = ex[/me. 

The effective (or overall) resistivity p of the material is simply 1 /enfid, or 

1 1 1 
P = —'— =-1- 

enfid enfii enfii 

which can be written 

p — Pt + Pi [2.15] 

where 1 fenpi is defined as the resistivity due to scattering from thermal vibrations, 
and 1 /enfii is the resistivity due to scattering from impurities, or 

1 , 1 
pT =- and pi = - 

enfii enfii 

The final result in Equation 2.15 simply states that the effective resistivity p is the 
sum of two contributions. First, pj — 1 /enfiL is the resistivity due to scattering by ther¬ 
mal vibrations of the host atoms. For those near-perfect pure metal crystals, this is the 
dominating contribution. As soon as we add impurities, however, there is an additional 
resistivity, pt = 11 enfii, which arises from the scattering of the electrons from the im¬ 
purities. The first term is temperature dependent because xT <x T~l (see Section 2.2), 
but the second term is not. 

The mean time r/ between scattering events involving electron collisions with im¬ 
purity atoms depends on the separation between the impurity atoms and therefore on 
the concentration of those atoms (see Figure 2.6). If l / is the mean separation between 
the impurities, then the mean free time between collisions with impurities alone will be 
ii/u, which is temperature independent because i/ is determined by the impurity con¬ 
centration Ni (i.e., ii = jV/-1/3), and the mean speed of the electrons u is nearly con¬ 
stant in a metal. In the absence of impurities, x{ is infinitely long, and thus pi = 0. The 
summation rule of resistivities from different scattering mechanisms, as shown by 
Equation 2.15, is called Matthiessen’s rule. 

There may also be electrons scattering from dislocations and other crystal defects, 
as well as from grain boundaries. All of these scattering processes add to the resistiv¬ 
ity of a metal, just as the scattering process from impurities. We can therefore write the 
effective resistivity of a metal as 

p = Pt + Pr [2.16] 

Effective drift 

mobility 

Matthiessen’s 

rule 

Resistivities 

due to lattice 

and impurity 

scattering 

Matthiessen’s 

rule 



128 chapter 2 • Electrical and Thermal Conduction in Solids 

where pr is called the residual resistivity and is due to the scattering of electrons by 
impurities, dislocations, interstitial atoms, vacancies, grain boundaries, etc. (which 
means that pr also includes pt). The residual resistivity shows very little temperature 
dependence, whereas pj = AT, so the effective resistivity p is given by 

p % AT + B [2.171 

Definition of 

temperature 

coefficient of 

resistivity 

Temperature 

dependence 

of resistivity 

where A and B are temperature-independent constants. 
Equation 2.17 indicates that the resistivity of a metal varies almost linearly with 

the temperature, with A and B depending on the material. Instead of listing A and B in 
resistivity tables, we prefer to use a temperature coefficient that refers to small, nor¬ 
malized changes around a reference temperature. The temperature coefficient of 
resistivity (TCR) ao is defined as the fractional change in the resistivity per unit tem¬ 
perature increase at the reference temperature To, that is, 

where po is the resistivity at the reference temperature T0, usually 273 K (0 °C) or 
293 K (20 °C), and 8p = p — p0 is the change in the resistivity due to a small increase 
in temperature, 8T = T — To. 

When the resistivity follows the behavior p AT + B in Equation 2.17, then 
according to Equation 2.18, ao is constant over a temperature range T0 to T, and Equa¬ 
tion 2.18 leads to the well-known equation, 

p = Poll + &q(T — 7o)] [2.19] 

Equation 2.19 is actually only valid when ao is constant over the temperature 
range of interest, which requires Equation 2.17 to hold. Over a limited temperature 
range, this will usually be the case. Although it is not obvious from Equation 2.19, 
we should note that ao depends on the reference temperature To, by virtue of po j 
depending on T0. 

The equation p = AT, which we used for pure-metal crystals to find the change 
in the resistance with temperature, is only approximate; nonetheless, for pure metals, 
it is useful to recall in the absence of tabulated data. To determine how good the 
formula p = AT is, put it in Equation 2.19, which leads to ao = Tq1. If we take the 
reference temperature Tq as 273 K (0 °C), then ao is simply 1 /273 K; stated differently, 
Equation 2.19 is then equivalent to p = AT. 

Table 2.1 shows that p oc T is not a bad approximation for some of the familiar 
pure metals used as conductors (Cu, Al, Au, etc.), but it fails badly for others, such as 
indium, antimony, and, in particular, the magnetic metals, iron and nickel. 

The temperature dependence of the resistivity of various metals is shown in Fig¬ 
ure 2.7, where it is apparent that except for the magnetic materials, such as iron and 
nickel, the linear relationship p oc T seems to be approximately obeyed almost all the 
way to the melting temperature for many pure metals. It should also be noted that for 
the alloys, such as nichrome (Ni-Cr), the resistivity is essentially dominated by the 
residual resistivity, so the resistivity is relatively temperature insensitive, with a very 
small TCR. 
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Table 2.1 Resistivity, thermal coefficient of resistivity cto at 273 K (0 °C) for various metals. The 

resistivity index n in p oc Tn for some of the metals is also shown. 

Metal Po (n£2 m) "(s) n Comment 

Aluminum, A1 25.0 
1 

233 
1.20 

Antimony, Sb 38 
1 

1% 
1.40 

Copper, Cu 15.7 
1 

232 
1.15 

Gold, Au 22.8 
1 

251 
1.11 

Indium, In 78.0 
1 

196 
1.40 

Platinum, Pt 98 
1 

255 
0.94 

Silver, Ag 14.6 
1 

244 
1.11 

Tantalum, Ta 117 
1 

294 
0.93 

Tin, Sn 110 
1 

217 
1.11 

Tungsten, W 50 
1 

220 
1.20 

Iron, Fe 84.0 
1 

152 
1.80 Magnetic metal; 273 < T < 1043 K 

Nickel, Ni 59.0 
1 

125 
1.72 Magnetic metal; 273 < T < 627 K 

I SOURCE: Data were extracted and combined from several sources. Typical values. 

Frequently, the resistivity versus temperature behavior of pure metals can be 
empirically represented by a power law of the form 

P = [2.20] 
Resistivity of 

pure metals 

where p0 is the resistivity at the reference temperature 7o, and n is a characteristic 
index that best fits the data. Table 2.1 lists some typical n values for various pure met¬ 
als above 0 °C. It is apparent that for the nonmagnetic metals, n is close to unity, 
whereas it is closer to 2 than 1 for the magnetic metals Fe and Ni. In iron, for example, 
the conduction electron is not scattered simply by atomic vibrations, as in copper, but 
is affected by its magnetic interaction with the Fe ions in the lattice. This leads to a 
complicated temperature dependence. 

Although our oversimplified theoretical analysis predicts a linear p = AT + B 

behavior for the resistivity down to the lowest temperatures, this is not true in reality, 
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Temperature (K) 

Figure 2.7 The resistivity of various metals as a function of temperature 

above 0 °C. 

Tin melts at 505 K, whereas nickel and iron go through a magnetic-to- 

nonmagnetic (Curie) transformation at about 627 K and 1043 K, respectively. 

The theoretical behavior (p ~ T) is shown for reference. 

I SOURCE: Data selectively extracted from various sources, including sections in Metals 
I Handbook, 10th ed., 2 and 3. Metals Park, Ohio: ASM, 1991. 

as depicted for copper in Figure 2.8. As the temperature decreases, typically below 
~100 K for many metals, our simple and gross assumption that all the atoms are 
vibrating with a constant frequency fails. Indeed, the number of atoms that are vibrat¬ 
ing with sufficient energy to scatter the conduction electrons starts to decrease rapidly 
with decreasing temperature, so the resistivity due to scattering from thermal vibra¬ 
tions becomes more strongly temperature dependent. The mean free time r = l/SuNs 

becomes longer and strongly temperature dependent, leading to a smaller resistivity 
than the p oc T behavior. A full theoretical analysis, which is beyond the scope of this 
chapter, shows that p oc T5. Thus, at the lowest temperature, from Matthiessen’s rule, 
the resistivity becomes p = DT5 + pr, where D is a constant. Since the slope of p ver¬ 
sus T is dp/dT = 5DT4, which tends to zero as T becomes small, we have p curving 
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Figure 2.8 The resistivity of copper from lowest to highest temperatures (near 

melting temperature, 1358 K) on a log-log plot. 

Above about 100 K, p oc T, whereas at low temperatures, p a T5, and at the lowest 

temperatures p approaches the residual resistivity pa. The inset shows the p vs. T 
behavior below 100 K on a linear plot, [pg is too small on this scale.) 

toward pR as T decreases toward 0 K. This is borne out by experiments, as shown in 
Figure 2.8 for copper. Therefore, at the lowest temperatures of interest, the resistivity 
is limited by scattering from impurities and crystal defects.4 

MATTHIESSEN'S RULE Explain the typical resistivity versus temperature behavior of annealed 
and cold-worked (deformed) copper containing various amounts of Ni as shown in Figure 2.9. 

EXAMPLE 2.7 

SOLUTION 

When small amounts of nickel are added to copper, the resistivity increases by virtue of 
Matthiessen’s rule, p = Pt + Pr + Pi, where pT is the resistivity due to scattering from ther¬ 
mal vibrations; pR is the residual resistivity of the copper crystal due to scattering from crystal 
defects, dislocations, trace impurities, etc.; and pi is the resistivity arising from Ni addition 

4 At sufficiently low temperatures (typically, below 10-20 K for many metals and below — 135 K for certain 
ceramics) certain materials exhibit superconductivity in which the resistivity vanishes (p = 0), even in the presence of 
impurities and crystal defects. Superconductivity and its quantum mechanical origin will be explained in Chapter 8. 
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Figure 2.9 Typical temperature 

dependence of the resistivity of 

annealed and cold-worked (deformed) 

copper containing various amounts of 

Ni in atomic percentage. 

I SOURCE: Data adapted fromJ.O. Linde, 
I Ann Pkysik, 5, 219 (Germany, 1932), Temperature (K) 

alone (scattering from Ni impurity regions). Since pi is temperature independent, for small 
amounts of Ni addition, pr will simply shift up the p versus T curve for copper, by an amount pro¬ 
portional to the Ni content, pf oc /VNi, where iVNi is the Ni impurity concentration. This is apparent 
in Figure 2.9, where the resistivity of Cu-2.16% Ni is almost twice that of Cu-1.12% Ni. Cold 
working (CW) or deforming a metal results in a higher concentration of dislocations and therefore 
increases the residual resistivity pR by pCw- Thus, cold-worked samples have a resistivity curve 
that is shifted up by an additional amount pCw that depends on the extent of cold working. 

EXAMPLE 2.8 TEMPERATURE COEFFICIENT OF RESISTIVITY a AND RESISTIVITY INDEX n If a0 is the tem¬ 
perature coefficient of resistivity (TCR) at temperature T0 and the resistivity obeys the equation 

show that 

ao 
n 

T~0 

n-1 

What is your conclusion? 
Experiments indicate that n = 1.2 for W. What is its ao at 20 °C? Given that, experimen¬ 

tally, a0 = 0.00393 for Cu at 20 °C, what is n? 

SOLUTION 

Since the resistivity obeys p = po(T/T0)n, we substitute this equation into the definition of TCR, 

_1 r^i _n m--1 
“° PoldTj ToLToJ 

It is clear that, in general, a0 depends on the temperature T, as well as on the reference 
temperature T0. The TCR is only independent of T when n = 1. 
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At T = T0, we have 

= 1 or n = a 0T0 
n 

For W, n = 1.2, so at T = T0 = 293 K, we have a 293 k = 0.0041, which agrees reasonably 
well with c*293 k = 0.0045, frequently found in data books. 

For Cu, a293 k = 0.00393, so that n = 1.15, which agrees with the experimental value of n. 

TCR AT DIFFERENT REFERENCE TEMPERATURES If of 1 is the temperature coefficient of resis¬ 
tivity (TCR) at temperature Tx and a0 is the TCR at T0, show that 

EXAMPLE 2.9 

1 + a0(T, - T0) 

SOLUTION 

Consider the resistivity at temperature T in terms of a0 and ai: 

P = Poll + ao(T - T0)] and p = p,[l + ax(T - Tj)] 

These equations are expected to hold at any temperature T, so the first and second equa¬ 
tions at Tx and T0, respectively, give 

Pi = Potl + «o(Ti - T0)] and Po = Pi[l + ai(T0 - T,)] 

These two equations can be readily solved to eliminate p0 and p\ to obtain 

_dtp 

“1_ l+aoCTt-To) 

TEMPERATURE OF THE FILAMENT OF A LIGHT BULB EXAMPLE 2.10 

a. Consider a 40 W, 120 V incandescent light bulb. The tungsten filament is 0.381 m long and 
has a diameter of 33 ixm. Its resistivity at room temperature is 5.51 x 10~8 £2 m. Given that 
the resistivity of the tungsten filament varies at T12, estimate the temperature of the bulb 
when it is operated at the rated voltage, that is, when it is lit directly from a power outlet, 
as shown schematically in Figure 2.10. Note that the bulb dissipates 40 W at 120 V. 

b. Assume that the electrical power dissipated in the tungsten wire is radiated from the sur¬ 
face of the filament. The radiated electromagnetic power at the absolute temperature T can 

120 V 

Figure 2.10 Power radiated from a light bulb is 

equal to the electrical power dissipated in the 

filament. 
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be described by Stefan’s law, as follows: 

Pradiated = €(T$A(T Tq ) 

where os is Stefan’s constant (5.67 x 10-8 W m-2 K-4), e is the emissivity of the surface 
(0.35 for tungsten), A is the surface area of the tungsten filament, and Tb is the room 
temperature (293 K). For T4 T04, the equation becomes 

Pradiated = €(XsAT 

Assuming that all the electrical power is radiated as electromagnetic waves from the 
surface, estimate the temperature of the filament and compare it with your answer in part (a). 

SOLUTION 

a. When the bulb is operating at 120 V, it is dissipating 40 W, which means that the current is 

P 40 W 
/ = — = —-= 0.333 A 

V 120 V 

The resistance of the filament at the operating temperature T must be 

V 120 
R = — = —— = 360 S2 

/ 0.333 

Since R = pL/A, the resistivity of tungsten at the operating temperature T must be 

R(jtD2/A) 360£2tt(33 x 10'6 m)2 7 
p(T) = —-— = ---- = 8.08 x 10-7 £2m 

L 4(0.381 m) 

But, p(T) = pq(T/To)1-2, so that 

—8 \ 1/1-2 / 80.8 x 10"8\ 

~ T°V5.51 x 10~8 / 

= 2746 K or 2473 °C (melting temperature of W is about 3680, K) 

b. To calculate T from the radiation law, we note that T = [Pradiated /eosA]I/4. 
The surface area is 

A = L(jtD) = (0.381 )(?r33 x 10-6) = 3.95 x 10“5 m2 

Then, 

p n i/4 r 
r radiated 

. €<tsa J L(0. 
40 w 

€<rsA J L(0.35)(5.67 x 10"8 Wm"2 K"4)(3.95 x 10-5m2 

= [5.103 x 1013]1/4 = 2673 K or 2400 °C 

The difference between the two methods is less than 3 percent. 

)- 

1/4 

2.3.2 Solid Solutions and Nordheim’s Rule 

In an isomorphous alloy of two metals, that is, a binary alloy that forms a solid solution, 
we would expect Equation 2.15 to apply, with the temperature-independent impurity 
contribution pi increasing with the concentration of solute atoms. This means that as the 
alloy concentration increases, the resistivity p increases and becomes less temperature 
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Table 2.2 The effect of alloying on the resistivity 

Material 
Resistivity at 20 °C 

(n£2 m) 
a at 20 °C 

(1/K) 

Nickel 69 0.006 
Chrome 129 0.003 
Nichrome 1120 0.0003 

(a) Phase diagram of fhe Cu-Ni alloy system. (b) The resistivity of the Cu-Ni alloy as a 
Above the liquidus line only the liquid phase function of Ni content (at.%) at room 
exists. In the L + S region, the liquid (/. j and temperature. 
solid (5) phases coexist whereas below the 
solidus line, only the solid phase (a solid 
solution) exists. 

Figure 2.11 The Cu-Ni alloy system. 

I SOURCE: Data extracted from Metals Handbook, 10th ed., 2 and 3, Metals Park, Ohio: ASM, 1991, and M. Hansen and 
I K. Anderko, Constitution of Binary Alloys, New York: McGraw-Hill, 1958. 

dependent as p/ overwhelms pr, leading to a <5C 1 /273. This is the advantage of alloys 
in resistive components. Table 2.2 shows that when 80% nickel is alloyed with 20% 
chromium, the resistivity of Ni increases almost 16 times. In fact, the alloy is called 
nichrome and is widely used as a heater wire in household appliances and industrial 
furnaces. 

As a further example of the resistivity of a solid solution, consider the copper- nickel 
alloy. The phase diagram for this alloy system is shown in Figure 2.11 a. It is clear that the 
alloy forms a one-phase solid solution for all compositions. Both Cu and Ni have the 
same FCC crystal structure, and since the Cu atom is only slightly larger than the Ni atom 
by about ~3 percent (easily checked on the Periodic Table), the Cu-Ni alloy will there¬ 
fore still be FCC, but with Cu and Ni atoms randomly mixed, resulting in a solid solu¬ 
tion. When Ni is added to copper, the impurity resistivity p/ in Equation 2.15 will 
increase with the Ni concentration. Experimental results for this alloy system are shown 
in Figure 2.1 lb. It should be apparent that when we reach 100% Ni, we again have a pure 
metal whose resistivity must be small. Therefore, p versus Ni concentration must pass 
through a maximum, which for the Cu-Ni alloy seems to be at around ~50% Ni. 
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Nordheim’s 

rule for solid 

solutions 

There are other binary solid solutions that reflect similar behavior to that depicted 
in Figure 2.11, such as Cu-Au, Ag-Au, Pt-Pd, Cu-Pd, to name a few. Quite often, the 
use of an alloy for a particular application is necessitated by the mechanical properties, 
rather than the desired electrical resistivity alone. For example, brass, which is 70% 
Cu-30% Zn in solid solution, has a higher strength compared to pure copper; as such, 
it is a suitable metal for the prongs of an electrical plug. 

An important semiempirical equation that can be used to predict the resistivity of 
an alloy is Nordheim’s rule which relates the impurity resistivity pt to the atomic 
fraction X of solute atoms in a solid solution, as follows: 

Pi = CX( 1 - X) [2.21] 

where C is the constant termed the Nordheim coefficient, which represents the effec¬ 
tiveness of the solute atom in increasing the resistivity. Nordheim’s rule assumes that 
the solid solution has the solute atoms randomly distributed in the lattice, and these 
random distributions of impurities cause the electrons to become scattered as they 
whiz around the crystal. For sufficiently small amounts of impurity, experiments show 
that the increase in the resistivity pi is nearly always simply proportional to the impu¬ 
rity concentration X, that is, pi oc X, which explains the initial approximately equal in¬ 
crements of rise in the resistivity of copper with 1.11% Ni and 2.16% Ni additions as 
shown in Figure 2.9. For dilute solutions, Nordheim’s rule predicts the same linear be¬ 
havior, that is, pi = CX for X <$: 1. 

Table 2.3 lists some typical Nordheim coefficients for various additions to copper 
and gold. The value of the Nordheim coefficient depends on the type of solute and the 
solvent. A solute atom that is drastically different in size to the solvent atom will result 
in a bigger increase in p/ and will therefore lead to a larger C. An important assumption 

Table 2.3 Nordheim coefficient C (at 20 °C) for dilute alloys obtained from 

Pi = CX and X < 1 at.%* 

Solute in Solvent 

(element in matrix) 

c 
(n£2 m) 

Maximum Solubility at 25 °C 

(at.%) 

Au in Cu matrix 5500 100 

Mn in Cu matrix 2900 24 

Ni in Cu matrix 1200 100 

Sn in Cu matrix 2900 0.6 

Zn in Cu matrix 300 30 

Cu in Au matrix 450 100 

Mn in Au matrix 2410 25 

Ni in Au matrix 790 100 

Sn in Au matrix 3360 5 

Zn in Au matrix 950 15 

*NOTE: For many isomorphous alloys C may be different at higher concentrations; that is, it may 
depend on the composition of the alloy. 

SOURCES: D.G. Fink and D. Christiansen, eds., Electronics Engineers' Handbook, 2nd ed., 
New York, McGraw-Hill, 1982. J. K. Stanley, Electrical and Magnetic Properties of Metals, Metals 
Park, OH, American Society for Metals, 1963. Solubility data from M. Hansen and K. Anderko, 
Constitution of Binary Alloys, 2nd ed., New York, McGraw-Hill, 1985. 
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in Nordheim’s rule in Equation 2.21 is that the alloying does not significantly vary the 
number of conduction electrons per atom in the alloy. Although this will be true for al¬ 
loys with the same valency, that is, from the same column in the Periodic Table (e.g., 
Cu-Au, Ag-Au), it will not be true for alloys of different valency, such as Cu and Zn. 
In pure copper, there is just one conduction electron per atom, whereas each Zn atom 
can donate two conduction electrons. As the Zn content in brass is increased, more con¬ 
duction electrons become available per atom. Consequently, the resistivity predicted by 
Equation 2.21 at high Zn contents is greater than the actual value because C refers to 
dilute alloys. To get the correct resistivity from Equation 2.21 we have to lower C, 
which is equivalent to using an effective Nordheim coefficient Ceff that decreases as 
the Zn content increases. In other cases, for example, in Cu-Ni alloys, we have to in¬ 
crease C at high Ni concentrations to account for additional electron scattering mech¬ 
anisms that develop with Ni addition. Nonetheless, the Nordheim rule is still useful for 
predicting the resistivities of dilute alloys, particularly in the low-concentration region. 

With Nordlieim’s rule in Equation 2.21, the resistivity of an alloy of composition 
X is 

P — Anatrix + CX( 1 — X) [2.22] 

where pmatrix = Pt + Pr is the resistivity of the matrix due to scattering from thermal 
vibrations and from other defects, in the absence of alloying elements. To reiterate, the 
value of C depends on the alloying element and the matrix. For example, C for gold in 
copper would be different than C for copper in gold, as shown in Table 2.3. 

In solid solutions, at some concentrations of certain binary alloys, such as 75% 
Cu-25% Au and 50% Cu-50% Au, the annealed solid has an orderly structure; that 
is, the Cu and Au atoms are not randomly mixed, but occupy regular sites. In fact, 
these compositions can be viewed as pure compound—like the solids CU3AU and 
CuAu. The resistivities of CU3AU and CuAu will therefore be less than the same 
composition random alloy that has been quenched from the melt. As a consequence, 
the resistivity p versus composition X curve does not follow the dashed parabolic 
curve throughout; rather, it exhibits sharp falls at these special compositions, as illus¬ 
trated in Figure 2.12. 

Combined 

Matthiessen 

and Nordheim 

rules 

Figure 2.12 Electrical resistivity vs. composition at room 

temperature in Cu-Au alloys. 

The quenched sample (dashed curve) is obtained by quenching the 

liquid, and the Cu and Au atoms are randomly mixed. The resistivity 

obeys the Nordheim rule. When the quenched sample is annealed 

or the liquid is slowly cooled (solid curve), certain compositions 

(Cu3Au and CuAu) result in an ordered crystalline structure in which 

the Cu and Au atoms are positioned in an ordered fashion in the 

crystal and the scattering effect is reduced. 

0 10 20 30 40 50 60 70 80 90 100 

Composition (at.% Au) 
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EXAMPLE 2.11 

EXAMPLE 2.12 

Conductivity 

and mean free 

path 

NORDHEIM'S RULE The alloy 90 wt.% Au—10 wt.% Cu is sometimes used in low-voltage dc 

electrical contacts, because pure gold is mechanically soft and the addition of copper increases the 

hardness of the metal without sacrificing the corrosion resistance. Predict the resistivity of the 
alloy and compare it with the experimental value of 108 n£2 m. 

SOLUTION 

We apply Equation 2.22, p(X) = pAu + CX( 1 — X) but with 10 wt.% Cu converted to the 

atomic fraction for X. If w is the weight fraction of Cu, w = 0.1, and if MAu and MCu are the 

atomic masses of Au and Cu, then the atomic fraction X of Cu is given by (see Example 1.2), 

x = w/Mqm = 0-1/63.55 = 256 

w/Mca + (1 - w)/MAu (0.1/63.55) +(0.90/197) 

Given that pAu = 22.8 n£2 m and C = 450 n£2 m, 

P = Pau + CX( 1 - X) = (22.8 n£2 m) + (450 n£2 m)(0.256)(l - 0.256) 

= 108.5 n£2 m 

This value is only 0.5% different from the experimental value. 

RESISTIVITY DUE TO IMPURITIES The mean speed of conduction electrons in copper is about 

1.5 x 106 m s-1. Its room temperature resistivity is 17 n£2 m, and the atomic concentration Nat 

in the crystal is 8.5 x 1022 cm-3. Suppose that we add 1 at.% Au to form a solid solution. What 

is the resistivity of the alloy, the effective mean free path, and the mean free path due to colli¬ 
sions with Au atoms only? 

SOLUTION 

According to Table 2.3, the Nordheim coefficient C of Au in Cu is 5500 n£2 m. With X = 0.01 
(1 at.%), the overall resistivity from Equation 2.22 is 

P = Anatrix + CX(1 - X) = 17 n£2 m + (5500 n£2 m)(0.01)(l - 0.01) 

= 17 n£2 m + 54.45 n£2 m = 71.45 n£2 m 

Suppose that £ is the overall or effective mean free path and x is the effective mean free time be¬ 

tween scattering events (includes both scattering from lattice vibrations and impurities). Since 

£ = ur, and the effective drift mobility pd = ex/me, the expression for the conductivity be¬ 

comes 

e‘«r e2n£ 
a = enp,d =- = - 

me meu 

We can now calculate the effective mean free path £ in the alloy given that copper has a valency 

of I and the electron concentration n = Nat, 

_1_(1.6 x 10_19C)2(8.5 x 1028 m“3K 

71.5 x 10-9 £2 m (9.1 x 10-31kg)(1.5 x 106 m s-1) 

which gives £ = 8.8 nm. We can repeat the calculation for pure copper using a = 

1/Anatrix = 1/(17 x 10-9 £2 m) to find £Ca = 37 nm. The mean free path is reduced approxi¬ 
mately by 4 times by adding only 1 at.% Au. The mean free path £ / due to scattering from im¬ 

purities only can be found from Equation 2.13 multiplied through by 1/m, or by using 
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Matthiessen’s rule in Equation 2.14: 

1 _ i 1 

i ~ 7^ + h 
Substituting €Cu = 37 nm and l = 8.8 nm, we find l/ = 11.5 nm. 

We can take these calculations one step further. If Nt is the impurity concentration in the 
alloy, then N, = 0.01 N.dt = 0.01(8.5 x 1028 m~3) = 8.5 x 1026 m~3. The mean separation di 

between the impurities can be estimated roughly from dt ^ 1 /W,1/3, which gives d] as 1.0 nm. 
It is clear that not all Au atoms can be involved in scattering the electrons since l / is much 
longer than dt. (Another way to look at it is to say that it takes more than just one collision with 
an impurity to randomize the velocity of the electron.) 

2.4 RESISTIVITY OF MIXTURES AND POROUS 
MATERIALS 

2.4.1 Heterogeneous Mixtures 

Nordheim’s rule only applies to solid solutions that are single-phase solids. In other 
words, it is valid for homogeneous mixtures in which the atoms are mixed at the 
atomic level throughout the solid, as in the Cu-Ni alloy. The classic problem of 
determining the effective resistivity of a multiphase solid is closely related to the 
evaluation of the effective dielectric constant, effective thermal conductivity, effec¬ 
tive elastic modulus, effective Poisson’s ratio, etc., for a variety of mixtures, includ¬ 
ing such composite materials as fiberglass. Indeed, many of the mixture rules are 
identical. 

Consider a material with two distinct phases a and ft, which are stacked in layers 
as illustrated in Figure 2.13a. Let us evaluate the effective resistivity for current flow 

L 

Continuous phase 

(b) (c) 

Figure 2.13 The effective resistivity of a material with a layered structure. 

(a) Along a direction perpendicular to the layers. 

(b) Along a direction parallel to the plane of the layers. 

(c) Materials with a dispersed phase in a continuous matrix. 



140 

Effective 

resistance 

Resistivity- 

mixture rule 

Conductivity- 

mixture rule 

Mixture rule 

chapter 2 • Electrical and Thermal Conduction in Solids 

in the x direction. Since the layers are in series, the effective resistance /?eff for the 
whole material is 

Keff = 
LgPa LpPp 

A A 
[2.23] 

where La is the total length (thickness) of the a-phase layers, and Lp is the total length 
of the fi-phase layers, La + Lp = L is the length of the sample, and A is the cross- 
sectional area. Let x« and xp be the volume fractions of the a and /J phases. The 
effective resistance is defined by 

^eff = 
Lpefi 

A 

where peff is the effective resistivity. Using x« = La/L and xp = in Equa¬ 
tion 2.23, we find 

Pc ff = XaPa + XpPp [2.24] 

which is called the resistivity-mixture rule (or the series rule of mixtures). 
If we are interested in the effective resistivity in the y direction, as shown in Fig¬ 

ure 2.13b, obviously the a and f3 layers are in parallel, so an effective conductivity 
could be calculated in the same way as we did for the series case to find the parallel 
rule of mixtures, that is, 

tfeff = XaCtg + xpvp [2.25] 

where a is the electrical conductivity of those phases identified by the subscript. No¬ 
tice that the parallel rule uses the conductivity, and the series rule uses the resistivity. 
Equation 2.25 is often referred to as the conductivity-mixture rule. 

Although these two rules refer to special cases, in general, for a random mixture 
of phase a and phase fi, we would not expect either equation to apply rigorously. 
When the resistivities of two randomly mixed phases are not markedly different, the 
series mixture rule can be applied at least approximately, as we will show in Exam¬ 
ple 2.13. 

However, if the resistivity of one phase is appreciably different than the other, 
there are two semiempirical rules that are quite useful in materials engineering.5 Con¬ 
sider a heterogeneous material that has a dispersed phase (labeled d), in the form of 
particles, in a continuous phase (labeled c) that acts as a matrix, as depicted in Fig¬ 
ure 2.13c. Assume that pc and Pd are the resistivities of the continuous and dispersed 
phases, and Xc and Xd are their volume fractions. If the dispersed phase is much more 
resistive with respect to the matrix, that is, pd > 10pc, then 

(l 
Peff = Pc-—-- (Pd > 10Pc) [2.261 

(1 - Xd) 

5 Over the years, the task of predicting the resistivity of a mixture has challenged many theorists and 
experimentalists, including Lord Rayleigh who, in 1892, published an excellent exposition on the subject in the 
Philosophical Magazine. An extensive treatment of mixtures can be found in a paper by J. A. Reynolds and 
J. M. Hough published in 1957 (Proceedings of the Physical Society, 70, no. 769, London), which contains nearly 
all the mixture rules for the resistivity. 
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On the other hand, if Pd < {pc/10), then 

Peff = Pc 
0 ~ Xd) 

(1 + 2xd) 
(pd < 0Apc) [2.27] 

We therefore have at least four mixture rules at our disposal, the uses of which de¬ 
pend on the mixture geometry and the resistivities of the various phases. The problem 
is identifying which one to use for a given material, which in turn requires a knowl¬ 
edge of the microstructure and properties of the constituents. It should be emphasized 
that, at best, Equations 2.24 to 2.27 provide only a reasonable estimate of the effective 
resistivity of the mixture.6 

Equations 2.26 and 2.27 are simplified special cases of a more general mixture 
rule due to Reynolds and Hough (1957). Consider a mixture that consists of a contin¬ 
uous conducting phase with a conductivity ac that has dispersed spheres of another 
phase of conductivity Od and of volume fraction x, similar to Figure 2.13c. The effec¬ 
tive conductivity of the mixture is given by 

- — = X-r— [2.28] 
a + 2 ac ad + 2 ac 

It is assumed that the spheres are randomly dispersed in the material. It is left as an 
exercise to show that if ad <&. ac, then Equation 2.28 reduces to Equation 2.26. A good 
application would be the calculation of the effective resistivity of porous carbon elec¬ 
trodes, which can be 50-100 percent higher than the resistivity of bulk polycrystalline 
carbon (graphite). If, on the other hand, ad ac, the dispersed phase is very conduct¬ 
ing, for example, silver particles mixed into a graphite paste to increase the conductiv¬ 
ity of the paste, then Equation 2.28 reduces to Equation 2.27. The usefulness of Equa¬ 
tion 2.28 cannot be underestimated inasmuch as there are many types of materials in 
engineering that are mixtures of one type or another. 

THE RESISTIVITY-MIXTURE RULE Consider a two-phase alloy consisting of phase a and phase 
p randomly mixed as shown in Figure 2.14a. The solid consists of a random mixture of 
two types of resistivities, pa of a and pp of fi. We can divide the solid into a bundle of N parallel 
fibers of length L and cross-sectional area A/N, as shown in Figure 2.14b. In this fiber (infini¬ 
tesimally thin), the a and fi phases are in series, so if x« = V„/ V is the volume fraction of phase 
a and xp is that of fi, then the total length of all a regions present in the fiber is XaL, and the 
total length of fi regions is xpL. The two resistances are in series, so the fiber resistance is 

D Pa(XaL) . Pp(XpL) 
i\ fiber =-r - 

(A/N) (A/N) 

But the resistance of the solid is made up of N such fibers in parallel, that is, 

R solid 
R fiber 

N 

Pa XaL PpXpL 

A A 
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Mixture rule 

Reynolds and 

Hough rule 

for mixture of 

dispersed 

phases 

EXAMPLE 2.13 

6 More accurate mixture rules have been established for various types of mixtures with components possessing 
widely different properties, which the keen reader can find in P. L. Rossiter, The Electrical Resistivity of Metals and 
Alloys (Cambridge University Press, Cambridge, 1987). 
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Resistivity 

mixture rule 

By definition, Rsom = peffL/A, where pef{ is the effective resistivity of the material, so 

PeffL _ PaXgL PpXfiL 

A ~ A A 

Thus, for a two-phase solid, the effective resistivity will be 

Peff = XaPa + XfiPfi 

If the densities of the two phases are not too different, we can use weight fractions instead of 
volume fractions. The series rule fails when the resistivities of the phases are vastly different. A 
major (and critical) tacit assumption here is that the current flow lines are all parallel, so that no cur¬ 
rent crosses from one fiber to another. Only then can we say that the effective resistance is R^/N. 

EXAMPLE 2.14 A COMPONENT WITH DISPERSED AIR PORES What is the effective resistivity of 95/5 (95% 
Cu-5% Sn) bronze, which is made from powdered metal containing dispersed pores at 15% 
(volume percent, vol.%). The resistivity of 95/5 bronze is 1 x 10-7 £2 m. 

SOLUTION 

Pores are infinitely more resistive (pd = oo) than the bronze matrix, so we use Equation 2.26, 

Pt ff — Pc 
1 + ^Xd 

1 - Xd 
= (1 x 1(T7 £2 m) 

1 + £(0.15) 

1-0.15 
= 1.27 x 10-7 £2 m 

EXAMPLE 2.15 COMBINED NORDHEIM AND MIXTURE RULES Brass is an alloy composed of Cu and Zn. The 
alloy is a solid solution for Zn content less than 30 wt.%. Consider a brass component made 
from sintering 90 at.% Cu and 10 at.% Zn brass powder. The component contains dispersed air 
pores at 15% (vol.%). The Nordheim coefficient C of Zn in Cu is 300 n£2 m, under very dilute 
conditions. Each Zn atom donates two, whereas each Cu atom of the matrix donates one con¬ 
duction electron, so that the Cu-Zn alloy has a higher electron concentration than in the Cu 
crystal itself. Predict the effective resistivity of this brass component. 

SOLUTION 

We first calculate the resistivity of the alloy without the pores, which forms the continuous 
phase in the powdered material. The simple Nordheim’s rule predicts that 

Pbrass = Pcopper + CX( 1 - X) = 17 n£2 m + 300(0.1)(1 - 0.1) = 44 n£2 m 

The experimental value, about 40 n£2 m, is actually less because Zn has a valency of 2, and 
when a Zn atom replaces a host Cu atom, it donates two electrons instead of one. We can very 
roughly adjust the calculated resistivity by noting that a 10 at.% Zn addition increases the 
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conduction electron concentration by 10% and hence reduces the resistivity Pbrass by 10% to 
40 n£2 m. 

The powdered metal has Xd = 0.15, which is the volume fraction of the dispersed phase, 
that is, the air pores, and pc = Pbrass = 40 nft m is the resistivity of the continuous matrix. The 
effective resistivity of the powdered metal is given by 

Peff = Pc 
1+2 Xd 

1 - Xd 
(40 n£2 m) 

1 + £(0.15) 

1 - (0.15) 
= 50.6 n£2 m 

If we use the simple conductivity mixture rule, peff is 47.1 n£2 m, and it is underestimated. 
The effective Nordheim coefficient Ceff at the composition of interest is about 255 n£2 m, 

which would give Pbrass = p0 + CeffX (1 — X) = 40 n£2 m. It is left as an exercise to show that 
the effective number of conduction electrons per atom in the alloy is 1 + X so that we must divide 
the Pbrass calculated above by (1 + X) to obtain the correct resistivity of brass if we use the listed 
value of C under dilute conditions. (See Question 2.8.) 

2.42 Two-Phase Alloy (Ag-Ni) Resistivity 

and Electrical Contacts 

Certain binary alloys, such as Pb-Sn and Cu-Ag, only exhibit a single-phase alloy 
structure over very small composition ranges. For most compositions, these alloys 
form a two-phase heterogeneous mixture of phases a and fi. A typical phase diagram 
for such a eutectic binary alloy system is shown in Figure 2.15a, which could be a 

(b) 
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schematic scheme for the Cu-Ag system or the Pb-Sn system. The phase diagram 
identifies the phases existing in the alloy at a given temperature and composition. If the 
overall composition X is less than X i, then at 7), the alloy will consist of phase a only. 
This phase is Cu rich. When the composition X is between X\ and X2, then the alloy 
will consist of the two phases a and fi randomly mixed. The phase a is Cu rich (that is, 
it has composition Xi) and the phase is Ag rich (composition X2). The relative 
amounts of each phase are determined by the well-known lever rule, which means that 
we can determine the volume fractions of a and j3, xa and xp, as the alloy composition 
is changed from Xi to X2. 

For this alloy system, the dependence of the resistivity on the alloy composition is 
shown in Figure 2.15b. Between O and Xi (% Ag), the solid is one phase (isomor- 
phous); therefore, in this region, p increases with the concentration of Ag by virtue of 
Nordheim’s rule. At X i, the solubility limit of Ag in Cu is reached, and after X \, a sec¬ 
ond phase, which is (5 rich, is formed. Thus, in the composition range Xi to X2, we 
have a mixture of a and ft phases, so p is given by Equation 2.24 for mixtures and is 
therefore less than that for a single-phase alloy of the same composition. Similarly, at 
the Ag end (X2 < X < 100%), as Cu is added to Ag, between 100% Ag and the solu¬ 
bility limit at X2, the resistivity is determined by Nordheim’s rule. The expected 
behavior of the resistivity of an eutectic binary alloy over the whole composition range 
is therefore as depicted in Figure 2.15b. 

Electrical, thermal, and other physical properties make copper the most widely 
used metallic conductor. For many electrical applications, high-conductivity copper, 
having extremely low oxygen and other impurity contents, is produced. Although alu¬ 
minum has a conductivity of only about half that of copper, it is also frequently used 
as an electrical conductor. On the other hand, silver has a higher conductivity than cop¬ 
per, but its cost prevents its use, except in specialized applications. Switches often 
have silver contact specifications, though it is likely that the contact metal is actually a 
silver alloy. In fact, silver has the highest electrical and thermal conductivity and is 
consequently the natural choice for use in electrical contacts. In the form of alloys with 
various other metals, it is used extensively in make-and-break switching applications 
for currents of up to about 600 A. The precious metals, gold, platinum, and palladium, 
are extremely resistant to corrosion; consequently, in the form of various alloys, 
particularly with Ag, they are widely used in electrical contacts. For example, Ag-Ni 
alloys are common electrical contact materials for the switches in many household 
appliances. 

It is frequently necessary to improve the mechanical properties of a metal alloy 
without significantly impairing its electrical conductivity. Solid-solution alloying im¬ 
proves mechanical strength, but at the expense of conductivity. A compromise must 
often be found between electrical and mechanical properties. Most often, strength is 
enhanced by introducing a second phase that does not have such an adverse effect on 
the conductivity. For example, Ag-Pd alloys form a solid solution such that the 
resistivity increases appreciably due to Nordheim’s rule. The resistivity of Ag-Pd is 
mainly controlled by the scattering of electrons from Pd atoms randomly mixed in the 
Ag matrix. In contrast, Ag and Ni form a two-phase alloy, a mixture of Ag-rich and 
Ni-rich phases. The Ag-Ni alloy is almost as strong as the Ag-Pd alloy, but it has a 
lower resistivity because the mixture rule volume averages the two resistivities. 
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2.5 THE HALL EFFECT AND HALL DEVICES 

An important phenomenon that we can comfortably explain using the “electron as a 
particle” concept is the Hall effect, which is illustrated in Figure 2.16. When we apply 
a magnetic field in a perpendicular direction to the applied field (which is driving the 
current), we find there is a transverse field in the sample that is perpendicular to the 
direction of both the applied field T,x and the magnetic field Bz, that is, in the y direc¬ 
tion. Putting a voltmeter across the sample, as in Figure 2.16, gives a voltage reading 
Vh. The applied field £* drives a current Jx in the sample. The electrons move in the — x 

direction, with a drift velocity vdx. Because of the magnetic field, there is a force (called 
the Lorentz force) acting on each electron and given by Fy = —evdxBz. The direction 
of this Lorentz force is the — y direction, which we can show by applying the cork¬ 
screw rule, because, in vector notation, the force F acting on a charge q moving with a 
velocity v in a magnetic field B is given through the vector product 

F = qy x B [2.29] Lorentz force 

All moving charges experience the Lorentz force in Equation 2.29 as shown 
schematically in Figure 2.17. In our example of a metal in Figure 2.16, this Lorentz 
force is the — y direction, so it pushes the electrons downward, as a result of which 
there is a negative charge accumulation near the bottom of the sample and a positive 
charge near the top of the sample, due to exposed metal ions (e.g., Cu+). 

Figure 2.16 Illustration of the Hall effect. 

The z direction is out of the plane of the paper. The 

externally applied magnetic field is along the z direction. 

F = <7V x B F = q\xB 

Figure 2.17 A moving charge experiences a 

Lorentz force in a magnetic field. 

(a) A positive charge moving in the x direction 

experiences a force downward. 

(b) A negative charge moving in the -x direction 

also experiences a force downward. 
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The accumulation of electrons near the bottom results in an internal electric field 
Eh in the —y direction. This is called the Hall field and gives rise to a Hall voltage 
VH between the top and bottom of the sample. Electron accumulation continues until 
the increase in Eh is sufficient to stop the further accumulation of electrons. When 
this happens, the magnetic-field force evdx Bz that pushes the electrons down just bal¬ 
ances the force eEH that prevents further accumulation. Therefore, in the steady state, 

eEH = evdxBz 

However, Jx = envdx. Therefore, we can substitute for vdx to obtain eEH = Jx Bz/n or 

[2.30] 

Definition 

of Hall 

coefficient 

Hall 

coefficient for 

electron 

conduction 

A useful parameter called the Hall coefficient Rh is defined as 

Rh = 
Ey_ 

JxBz 
[2.31] 

The quantity RH measures the resulting Hall field, along y, per unit transverse 
applied current and magnetic field. The larger RH, the greater Ey for a given Jx and Bz. 

Therefore, RH is a gauge of the magnitude of the Hall effect. A comparison of Equa¬ 
tions 2.30 and 2.31 shows that for metals, 

1 
Rh =- [2.32] 

en 

The reason for the negative sign is that EH = —Ey, which means that Eh is in the —y 

direction. 
Inasmuch as Rh depends inversely on the free electron concentration, its value in 

metals is much less than that in semiconductors. In fact, Hall-effect devices (such as 
magnetometers) always employ a semiconductor material, simply because the RH is 
larger. Table 2.4 lists the Hall coefficients of various metals. Note that this is negative 

Table 2.4 Hall coefficient and Hall mobility (an = |cr /?hI) of selected metals 

Magnetically operated Hall-effect 
position sensor as available from 
Micro Switch. 

Metal 

n 

[m-3] 
(xtO28) 

Rh (Experimental) 

[m3 A-1 s_1] 

(xl<Tu) 

Uh = \oRh\ 

[m2V-‘ s-1] 

(x 10~4) 

Ag 5.85 -9.0 57 

A1 18.06 -3.5 13 

Au 5.90 -7.2 31 

Be 24.2 +3.4 ? 

Cu 8.45 -5.5 32 

Ga 15.3 -6.3 3.6 

In 11.49 -2.4 2.9 
Mg 8.60 -9.4 22 

Na 2.56 -25 53 

SOURCES: Data from various sources, including C. Nording and J. Osterman, Physics Handbook, 
Bromley, England: Chartwell-Bratt Ltd., 1982. 
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for most metals, although a few metals exhibit a positive Hall coefficient (see Be in 
Table 2.4). The reasons for the latter involve the band theory of solids, which we will 
discuss in Chapter 4. 

Since the Hall voltage depends on the product of two quantities, the current density 
Jx and the transverse applied magnetic field Bz, we see that the effect naturally multi¬ 
plies two independently variable quantities. Therefore, it provides a means of carrying 
out a multiplication process. One obvious application is measuring the power dissipated 
in a load, where the load current and voltage are multiplied. There are many instances 
when it is necessary to measure magnetic fields, and the Hall effect is ideally suited to 
such applications. Commercial Hall-effect magnetometers can measure magnetic fields 
as low as 10 nT, which should be compared to the earth’s magnetic field of ~50 pT. 
Depending on the application, manufacturers use different semiconductors to obtain the 
desired sensitivity. Hall-effect semiconductor devices are generally inexpensive, small, 
and reliable. Typical commercial, linear Hall-effect sensor devices are capable of pro¬ 
viding a Hall voltage of ~ 10 mV per mT of applied magnetic field. 

The Hall effect is also widely used in magnetically actuated electronic switches. 
The application of a magnetic field, say from a magnet, results in a Hall voltage that is 
amplified to trigger an electronic switch. The switches invariably use Si and are read¬ 
ily available from various companies. Hall-effect electronic switches are used as non¬ 
contacting keyboard and panel switches that last almost forever, as they have no me¬ 
chanical contact assembly. Another advantage is that the electrical contact is “bounce” 
free. There are a variety of interesting applications for Hall-effect switches, ranging 
from ignition systems, to speed controls, position detectors, alignment controls, brush¬ 
less dc motor commutators, etc. 

HALL-EFFECT WATTMETER The Hall effect can be used to implement a wattmeter to measure 
electrical power dissipated in a load. The schematic sketch of the Hall-effect wattmeter is shown 
in Figure 2.18, where the Hall-effect sample is typically a semiconductor material (usually Si). 
The load current IL passes through two coils, which are called current coils and are shown as C 

in Figure 2.18. These coils set up a magnetic field Bz such that Bz oc IL. The Hall-effect sample 
is positioned in this field between the coils. The voltage VL across the load drives a current 

EXAMPLE 2.16 

Load 

Figure 2.18 Wattmeter based on the Hall effect. 

Load voltage and load current have L as subscript; C denotes the current coils for setting up a magnetic field through the 

Hall-effect sample (semiconductor). 



148 CHAPTER 2 • Electrical and Thermal Conduction in Solids 

Ix = Vl/R through the sample, where R is a series resistance that is much larger than the resis¬ 
tance of the sample and that of the load. Normally, the current Ix is very small and negligible 
compared to the load current. If w is the width of the sample, then the measured Hall voltage is 

Vh = WEh = wRhJxBz oc IxBz oc Vili 

which is the electrical power dissipated in the load. The voltmeter that measures V# can now be 
calibrated to read directly the power dissipated in the load. 



2.6 THERMAL CONDUCTION 

2.6.1 Thermal Conductivity 
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Experience tells us that metals are both good electrical and good thermal conductors. 
We may therefore surmise that the free conduction electrons in a metal must also play 
a role in heat conduction. Our conjecture is correct for metals, but not for other mate¬ 
rials. The transport of heat in a metal is accomplished by the electron gas (conduction 
electrons), whereas in nonmetals, the conduction is due to lattice vibrations. 

When a metal piece is heated at one end, the amplitude of the atomic vibrations, 
and thus the average kinetic energy of the electrons, in this region increases, as de¬ 
picted in Figure 2.19. Electrons gain energy from energetic atomic vibrations when the 
two collide. By virtue of their increased random motion, these energetic electrons then 
transfer the extra energy to the colder regions by colliding with the atomic vibrations " 
there. Thus, electrons act as “energy carriers.” 

The thermal conductivity of a material, as its name implies, measures the ease 
with which heat, that is, thermal energy, can be transported through the medium. 
Consider the metal rod shown in Figure 2.20, which is heated at one end. Heat will 
flow from the hot end to the cold end. Experiments show that the rate of heat flow, 
Q’ = dQ/dt, through a thin section of thickness 8x is proportional to the temperature 
gradient ST/8x and the cross-sectional area A, so 

^ j Fourier’s law 

Q! — —Ak— [2.34] of thermal 
conduction 

Hot Cold 

Electron gas Vibrating Cu ions 

Figure 2.19 Thermal conduction in a metal involves 

transferring energy from the hot region to the cold region 

by conduction electrons. 

More energetic electrons {shown with longer velocity 

vectors) from the hotter regions arrive at cooler regions, 

collide with lattice vibrations, and transfer their energy. 

Lengths of arrowed lines on atoms represent the 

magnitudes of atomic vibrations. 

Sx 

Figure 2.20 Heat flow in a metal rod heated at 

one end. 

Consider the rate of heat flow, dQ/dt, across a 

thin section Sx of the rod. The rate of heat flow is 

proportional to the temperature gradient ST/Sx 
and the cross-sectional area A. 
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Figure 2.21 Thermal conductivity k versus 

electrical conductivity a for various metals 

(elements and alloys) at 20 °C. 

The solid line represents the WFL law with Cwfl % 

2.44 x 10®WfiK-2. 

1 I I I I-1-1-1 
0 10 20 30 40 50 60 70 

Electrical conductivity a (106 ft'1 m'1) 

Ohm’s law of 

electrical 

conduction 

Wiedemann- 

Franz-Lorenz 

law 

where k is a material-dependent constant of proportionality that we call the thermal 
conductivity. The negative sign indicates that die heat flow direction is that of decreasing 
temperature. Equation 2.34 is often referred to as Fourier’s law of heat conduction and is 
a defining equation for k. The driving force for the heat flow is the temperature gradient 
<5 T)8x. If we compare Equation 2.34 with Ohm’s law for the electric current I, we see that 

I = -Act- [2.351 
ox 

which shows that in this case, the driving force is the potential gradient, that is, the elec¬ 
tric field.7 In metals, electrons participate in the processes of charge and heat transport, 
which are characterized by a and k, respectively. Therefore, it is not surprising to find 
that the two coefficients are related by the Wiedemann-Franz-Lorenz law,8 which is 

—— = Cwfl [2.36] 
oT 

where Cwfl = 7t2k2/3e2 = 2.44 x 10-8 W ft K-2 is a constant called the Lorenz 
number (or the Wiedemann-Franz-Lorenz coefficient). 

Experiments on a wide variety of metals, ranging from pure metals to various 
alloys, show that Equation 2.36 is reasonably well obeyed at close to room tempera¬ 
ture and above, as illustrated in Figure 2.21. Since the electrical conductivity of pure 
metals is inversely proportional to the temperature, we can immediately conclude that 
the thermal conductivity of these metals must be relatively temperature independent at 
room temperature and above. 

7 Recall that 7= uE which is equivalent to Equation 2.35. 

8 Historically, Wiedemann and Franz noted in 1853 that k/c is the same for all metals at the same temperature. 
Lorenz in 1881 showed that k/o is proportional to the temperature with a proportionality constant that is nearly 
the same for many metals. The law stated in Equation 2.36 reflects both observations. By the way, Lorenz, who was 
a Dane, should not be confused with Lorentz, who was Dutch. 
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Temperature (K) 

Figure 2.22 Thermal conductivity versus temperature 

for two pure metals (Cu and Al) and two alloys (brass and 

AM 4% Mg). 

SOURCE: Data extracted from Y. S. Touloukian, et al., 
Thermophysical Properties of Matter, vol. 1: "Thermal 
Conductivity, Metallic Elements and Alloys," New York: 
Plenum, 1970. 

\ Ww /VW^ )VW!V Vwv;v )VVV^ V)vs/vT ) Equilibrium 

Hot Cold 

Energetic atomic vibrations I S 

Figure 2.23 Conduction of heat in insulators involves the generation and propagation of atomic 

vibrations through the bonds that couple the atoms (an intuitive figure). 

Figure 2.22 shows the temperature dependence of k for copper and aluminum down to 
the lowest temperatures. It can be seen that for these two metals, above ~ 100 K, the ther¬ 
mal conductivity becomes temperature independent, in agreement with Equation 2.36. 
Qualitatively, above MOO K, k is constant, because heat conduction depends essentially 
on the rate at which the electron transfers energy from one atomic vibration to another as it 
collides with them (Figure 2.19). This rate of energy transfer depends on the mean speed 
of the electron u, which increases only fractionally with the temperature. In fact, the frac¬ 
tionally small increase in u is more than sufficient to carry the energy from one collision to 
another and thereby excite more energetic lattice vibrations in the colder regions. 

Nonmetals do not have any free conduction electrons inside the crystal to transfer 
thermal energy from hot to cold regions of the material. In nonmetals, the energy trans¬ 
fer involves lattice vibrations, that is, atomic vibrations of the crystal. We know that we 
can view the atoms and bonds in a crystal as balls connected together through springs 
as shown for one chain of atoms in Figure 2.23. As we know from the kinetic molecu¬ 
lar theory, all the atoms would be vibrating and the average vibrational kinetic energy 
would be proportional to the temperature. Intuitively, as depicted in Figure 2.23, when 
we heat one end of a crystal, we set up large-amplitude atomic vibrations at this hot 
end. The springs couple the vibrations to neighboring atoms and thus allow the large- 
amplitude vibrations to propagate, as a vibrational wave, to the cooler regions of the 
crystal. If we were to grab the left-end atom in Figure 2.23 and vibrate it violently, we 
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would be sending vibrational waves down the ball-spring-ball chain. The efficiency of 
heat transfer depends not only on the efficiency of coupling between the atoms, and 
hence on the nature of interatomic bonding, but also on how the vibrational waves 
propogate in the crystal and how they are scattered by crystal imperfections and by 
their interactions with other vibrational waves; this topic is discussed in Chapter 4. The 
stronger the coupling, the greater will be the thermal conductivity, a trend that is intu¬ 
itive but also borne out by experiments. Diamond has an exceptionally strong covalent 
bond and also has a very high thermal conductivity; k & 1000 W m-1 K-1. On the 
other hand, polymers have weak secondary bonding between the polymer chains and 
their thermal conductivities are very poor; k < 1 W m-1 K_l. 

The thermal conductivity, in general, depends on the temperature. Different classes 
of materials exhibit different k values and also different k versus T behavior. Table 2.5 

Table 2.5 Typical thermal conductivities of various classes 

of materials at 25 °C 

Material k (W nr1 K"1) 

Pure metal 

Nb 52 

Fe 80 

Zn 113 
W 178 

A1 250 

Cu 390 

Ag 420 

Metal alloys 

Stainless steel 12-16 

55% Cu-45% Ni 19.5 

70% Ni-30% Cu 25 

1080 steel 50 

Bronze (95% Cu-5% Sn) 80 

Brass (63% Cu-37% Zn) 125 

Dural (95% Al-4% Cu-1% Mg) 147 

Ceramics and glasses 

Glass-borosilicate 0.75 

Silica-fused (Si02) 1.5 

S3N4 20 

Alumina (AI2O3) 30 

Sapphire (AI2O3) 37 

Beryllium (BeO) 260 

Diamond M000 

Polymers 

Polypropylene 0.12 

PVC 0.17 

Polycarbonate 0.22 

Nylon 6,6 0.24 

Teflon 0.25 

Polyethylene, low density 0.3 

Polyethylene, high density 0.5 
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summarizes k at room temperature for various classes of materials. Notice how ce¬ 
ramics have a very large range of k values. 

THERMAL CONDUCTIVITY A 95/5 (95% Cu-5% Sn) bronze bearing made of powdered metal 
contains 15% (vol.%) porosity. Calculate its thermal conductivity at 300 K, given that the 
electrical conductivity of 95/5 bronze is 107 £2_1 m-1. 

EXAMPLE 2.19 

SOLUTION 

Recall that in Example 2.14, we found the electrical resistivity of the same bronze by using the 
mixture rule in Equation 2.26 in Section 2.4. We can use the same mixture rule again here, but 
we need the thermal conductivity of 95/5 bronze. From k/a T = Cwfl , we have 

K = oTCwfl = (1 X 107)(300)(2.44 x 10~8) = 73.2 W nT1 K~’ 

Thus, the effective thermal conductivity is 

_L = iri + ix-1 = 1 n + i(o.i5n 
*eff *cLl-XrfJ (73.2 W m-* K_1)L 1-0.15 J 

so that 

Ke{{ = 57.9 W m-1 K_1 

2.6.2 Thermal Resistance 

Consider a component of length L that has a temperature difference AT between its 
ends as in Figure 2.24a. The temperature gradient is A T/ L. Thus, the rate of heat flow, 
or the heat current, is 

. AT AT 
Q' = Ak- = - 

U (L/kA) 

This should be compared with Ohm’s law in electric circuits, 

[2.37] Fourier's law 

AV AV 

~ ~R~ ~ (L/a A) 
[2.38] Ohm’s law 

where AV is the voltage difference across a conductor of resistance R, and I is the 
electric current. 

Q' = AT/6 

<-AT-> 

•AAr 
e 

Figure 2.24 Conduction of heat through a 

component in (a) can be modeled as a thermal 

resistance 9 shown in (b) where Q' = AT/9. 

Q 

L- 

(a) lb) 
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In analogy with electrical resistance, we may define thermal resistance 6 by 

, A T 
Q = — [2.391 

9 

where, in terms of thermal conductivity, 

Thermal 

resistance 

The rate of heat flow Q' and the temperature difference AT correspond to the 
electric current / and potential difference A V, respectively. Thermal resistance is the 
thermal analog of electrical resistance and its thermal circuit representation is shown 
in Figure 2.24b. 

L 
0 = — [2.40] 

kA 

Definition of 

thermal 

resistance 

EXAMPLE 2.20 THERMAL RESISTANCE A brass disk of electrical resistivity 50 n£2 m conducts heat from 
a heat source to a heat sink at a rate of 10 W. If its diameter is 20 mm and its thickness is 
30 mm, what is the temperature drop across the disk, neglecting the heat losses from the 
surface? 

SOLUTION 

We first determine the thermal conductivity: 

k = cr rCwFL = (5 x 1(T8 Si m)-1(300 K)(2.44 x 10-8 W Si K"2) 

= 146 Wm"1 K-1 

The thermal resistance is 

L (30 x 10-3 m) , 

kA tt(10 x 10-3 m)2(146 W m'1 K"1) 

Therefore, the temperature drop is 

AT = 6Q' = (0.65 K W_1)(10 W) = 6.5 K or °C 

2.7 ELECTRICAL CONDUCTIVITY OF NONMETALS 

All metals are good conductors because they have a very large number of conduction 
electrons free inside the metal. We should therefore expect solids that do not have 
metallic bonding to be very poor conductors, indeed insulators. Figure 2.25 shows 
the range of conductivities exhibited by a variety of solids. Based on typical values 
of the conductivity, it is possible to empirically classify various materials into con¬ 
ductors, semiconductors, and insulators as in Figure 2.25. It is apparent that non- 
metals are not perfect insulators with zero conductivity. There is no well-defined 
sharp boundary between what we call insulators and semiconductors. Conductors 
are intimately identified with metals. It is more appropriate to view insulators as 
high resistivity (or low conductivity) materials. In general terms, current conduc¬ 
tion is due to the drift of mobile charge carriers through a solid by the application of 
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Insulators Semiconductors Conductors 

r 
Many ceramics 

1 
Alumina 

n 
Diamond Inorganic glasses 

n i-1 
Mica 

Polypropylene 

I PVDF 

PET I I 

I-1 
sio2 

n 

Soda silica glass 

n 
Borosilicate 

n 
Amorphous 

Pure SnO„ 

Intrinsic Si 

AS2Se3| 
Intrinsic GaAs 

Superconductors 

Metals 

Degenerately 
doped Si 

Alloys 

I I 
Te Graphite NiCr Ag 
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I I 
IO’6 10-3 
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10° 103 
n 
io6 

n 
io9 io12 

Figure 2.25 Range of conductivities exhibited by various materials. 

an electric field. Each of the drifting species of charge carriers contributes to the ob¬ 
served current. In metals, there are only free electrons. In nonmetals there are other 
types of charge carriers that can drift. 

2.7.1 Semiconductors 

A perfect Si crystal has each Si atom bonded to four neighbors, and each covalent 
bond has two shared electrons as we had shown in Figure 1.59a. We know from clas¬ 
sical physics (the kinetic molecular theory and Boltzmann distribution) that all the 
atoms in the crystal are executing vibrations with a distribution of energies. As the 
temperature increases, the distribution spreads to higher energies. Statistically some 
of the atomic vibrations will be sufficiently energetic to rupture a bond as indicated 
in Figure 2.26a. This releases an electron from the bond which is free to wander in¬ 
side the crystal. The free electron can drift in the presence of an applied field; it is 
called a conduction electron. As an electron has been removed from a region of the 
crystal that is otherwise neutral, the broken-bond region has a net positive charge. 

This broken-bond region is called a hole (h+). An electron in a neighboring bond can 
jump and repair this bond and thereby create a hole in its original site as shown in 
Figure 2.26b. Effectively, the hole has been displaced in the opposite direction to the 
electron jump by this bond switching. Holes can also wander in the crystal by the 
repetition of bond switching. When a field is applied, both holes and electrons con¬ 
tribute to electrical conduction as in Figure 2.26c. For all practical purposes, these 
holes behave as if they were free positively charged particles (independent of the 
original electrons) inside the crystal. In the presence of an applied field, holes drift 
along the field direction and contribute to conduction just as the free electrons 
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M-£ 

(a) (b) (c) 

Figure 2.26 
(a) Thermal vibrations of the atoms rupture a bond and release a free electron into the crystal. A hole is left in the broken 

bond, which has an effective positive charge. 

(b) An electron in a neighboring bond can jump and repair this bond and thereby create a hole in its original site; the hole 

has been displaced. 

(c) When a field is applied, both holes and electrons contribute to electrical conduction. 

Conductivity 

of a semi¬ 

conductor 

released from the broken bonds drift in the opposite direction and contribute to con¬ 
duction. 

It is also possible to create free electrons or holes by intentionally doping a semi¬ 
conductor crystal, that is substituting impurity atoms for some of the Si atoms. Defects 
can also generate free carriers. The simplest example is nonstoichiometric ZnO that is 
shown in Figure 1.55b which has excess Zn. The electrons from the excess Zn are free 
to wander in the crystal and hence contribute to conduction. 

Suppose that n and p are the concentrations of electrons and holes in a semicon¬ 
ductor crystal. If electrons and holes have drift mobilities of pte and p.h, respectively, 
then the overall conductivity of the crystal is given by 

a — eppLh + enpie [2.411 

Unless a semiconductor has been heavily doped, the concentrations n and p are 
much smaller than the electron concentration in a metal. Even though carrier drift mo¬ 
bilities in most semiconductors are higher than electron drift mobilities in metals, 
semiconductors have much lower conductivities due to their lower concentration of 
free charge carriers. 

EXAMPLE 2.21 HALL EFFECT IN SEMICONDUCTORS The Hall effect in a sample where there are both nega¬ 
tive and positive charge carriers, for example, electrons and holes in a semiconductor, involves 
not only the concentrations of electrons and holes, n and p, respectively, but also the electron 
and hole drift mobilities, pe and Ph • We first have to reinterpret the relationship between the 
drift velocity and the electric field *£. 



2.7 Electrical Conductivity of Nonmetals 157 

0 © B, 

e<Ey y 

+ - 

1 sF
 

1 +
 

€ Ve^ J f * 
> ievhxBz eEy ▼ *evexBz 

+ + + - + 

0— 

© © Bz 

Figure 2.27 Hall effect for ambipolar 

conduction as in a semiconductor where there 

are both electrons and holes. 

The magnetic field Bz is out from the plane of 

the paper. Both electrons and holes are 

deflected toward the bottom surface of the 

conductor and consequently the Hall voltage 

depends on the relative mobilities and 

concentrations of electrons and holes. 

If ixe is the drift mobility and ve is the drift velocity of the electrons, then we already know that 
ve = fie X. This has been derived by considering the net electrostatic force eX acting on a single 
electron and the imparted acceleration a = eX/me. The drift is therefore due to the net force 
Fnet = eE experienced by a conduction electron. If we were to keep eE as the net force Fnet acting 
on a single electron, then we would have found 

[2.421 
Drift velocity 

and net force 

Equation 2.42 emphasizes the fact that drift is due to a net force ^net acting on an electron. A sim¬ 
ilar expression would also apply to the drift of a hole in a semiconductor. 

When both electrons and holes are present in a semiconductor sample, both charge carriers 
experience a Lorentz force in the same direction since they would be drifting in the opposite di¬ 
rections as illustrated in Figure 2.27. Thus, both holes and electrons tend to pile near the bottom 
surface. The magnitude of the Lorentz force, however, will be different since the drift mobili¬ 
ties and hence drift velocities will be different in general. Once equilibrium is reached, there 
should be no current flowing in the y direction as we have an open circuit. Suppose that more 
holes have accumulated near the bottom surface so there is a built-in electric field 'Ey along ,y as 
shown in Figure 2.27. Suppose that vey and vhy are the usual electron and hole drift ve¬ 
locities in the — y and +y directions, respectively, as if the electric field Ey existed 
alone in the +y direction. The net current along y is zero, which means that 

Jy = Jh + Je = epvhy + envey = 0 [2.431 

From Equation 2.43 we obtain 

pVhy ft V fjy [2.44] 

We note that either the electron or the hole drift velocity must be reversed from its usual di¬ 
rection; for example, holes drifting in the opposite directon to Ey The net force acting on the 
charge carriers cannot be zero. This is impossible when two types of carriers are involved and 
both carriers are drifting along y to give a net current Jy that is zero. This is what Equation 2.43 
represents. We therefore conclude that, along y, both the electron and the hole must experience a 
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driving force to drift them. The net force experienced by the carriers, as shown in Figure 2.27, is 

Fhy = eEy — evhxBz and — Fey = eEy + evexBz [2.45] 

where vhx and vex are the hole and electron drift velocities, respectively, along x. In general, the drift 
velocity is determined by the net force acting on a charge carrier; that is, from Equation 2.42 

evhy 

Hh 

so that Equation 2.45 becomes, 

and —F — r ey — 

eVty 

He 

evhy 
-= e'Ey — evhx Bz and 
Hh 

ev, ey 

He 
— eEy 4“ evgxBz 

where vhy and vey are the hole and electron drift velocities along y. Substituting VhX = Hh'Ex and 
Vex = He'Fx, these become 

— = Ey - fXhExBz and — = Ey + peExBz [2.46] 
Hh He 

From Equation 2.46 we can substitute for vhy and vey in Equation 2.44 to obtain 

PHh'Fy PHh^x^z = nfieEy np,eEx Bz 

Current 

density 

along x 

Hall effect for 

ambipolar 

conduction 

Hall effect for 

ambipolar 

conduction 

or 

‘EyiPHh + np,e) = BzEx(ppfh - n/x2e) [2.47] 

We now consider what happens along the x direction. The total current density is finite and 
is given by the usual expression, 

Jx = epvhx + envex = (pp,h + njxe)eEx 

We can use Equation 2.48 to substitute for Ex in Equation 2.47, to obtain 

eEy(np,e + pp.h)2 = BzJx{pp}h - n/x2e) 

The Hall coefficient, by definition, is RH = Ey/JXBZ, so 

Rh = 

or 

Rh = 

PHl ~ np2 

e(pp,h + nfie)2 

p — nb2 

e(p + nb)2 

[2.48] 

[2.49] 

[2.50] 

where b = He! Hh- It is clear that the Hall coefficient depends on both the drift mobility ratio and 
the concentrations of holes and electrons. For p > nb2, RH will be positive and for p < nb2, it 
will be negative. We should note that when only one type of carrier is involved, for example, 
electrons only, the Jy = 0 requirement means that Jy = envey = 0, or vey =0. The drift veloc¬ 
ity along y can only be zero, if the net driving force Fey along y is zero. This occurs when 
eEy — evex Bz = 0, that is, when the Lorentz force just balances the force due to the built-in field. 

HALL COEFFICIENT OF INTRINSIC SILICON At room temperature, a pure silicon crystal (called 
intrinsic silicon) has electron and hole concentrations n = p = n, = 1.5 x 1010 cm-3, and 
electron and hole drift mobilities p,e — 1350 cm2 V-1 s-1 and ph = 450 cm2 V-1 s-1. Calcu¬ 
late the Hall coefficient and compare it with a typical metal. 

EXAMPLE 2.22 
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SOLUTION 

Given n = p = n, = 1.5 x 1010 cm-3, jue = 1350 cm2 V-1 s_I, and ^ = 450 cm2 V-1 s”1, 
we have 

H,e 1350 

Ph 450 

Then from Equation 2.50, 

(1.5 x 1016 m~3) - (1.5 x 1016 m“3)(3)2 

Rh ~ (1.6 x 10-19 C)[(1.5 x 1016 m-3) + (1.5 x 1016 m-3)(3)]2 

= -208 m3 A-1 s'1 

which is orders of magnitude larger than that for a typical metal. All Hall-effect devices use a 
semiconductor rather than a metal sample. 

2.7.2 Ionic Crystals and Glasses 

Figure 2.28a shows how crystal defects in an ionic crystal lead to mobile charges that 
can contribute to the conduction process. All crystalline solids possess vacancies and 
interstitial atoms as a requirement of thermal equilibrium. Many solids have intersti¬ 
tial impurities which are often ionized or charged. These interstitial ions can jump, 
i.e., diffuse, from one interstitial site to another and hence drift by diffusion in the 
presence of a field. A positive ion at an interstitial site such as that shown in Figure 
2.28a always prefers to jump into a neighboring interstitial site along the direction of 
the field because it experiences an effective force in this direction. When an ion with 

-£-^ 

Vacancy aids the diffusion of positive ion 

|© 0 ©\0 © 0 ©I 
0© 0j*0©0 
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Interstitial cation diffuses 

(a) (b) 

Figure 2.28 Possible contributions to the conductivity of ceramic and glass insulators. 

(a) Possible mobile charges in a ceramic. 

(b) An Na+ ion in the glass structure diffuses and therefore drifts in the direction of the field. 
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This soda glass rod when heated under a torch becomes electrically conducting. It passes 
4 mA when the voltage is 50 V (2 x 25 V); a resistance of 12.5 kJ2l Ordinary soda glass at 
room temperature is an insulator but can be quite conducting at sufficiently high temperatures. 

General 

conductivity 

charge qwn jumps a distance d along the field, its potential energy decreases by 
qioa'Ed. If it tries to jump in the opposite direction, it has to do work q\0aEd against 
the force of the field. 

Deviations from stoichiometry in compound solids often lead to the generation of 
mobile electrons (or holes) and point defects such as vacancies. Therefore, there are 
electrons, holes, and various mobile ions available for conduction under an applied 
field as depicted in Figure 2.28a. Many glasses and polymers contain a certain con¬ 
centration of mobile ions in the structure. An example of a Na+ ion in silica glass is 
shown in Figure 2.28b. Aided by the field, the Na+ can jump from one interstice to a 
neighboring interstice along the field and thereby drift in the glass and contribute to 
current conduction. The conduction process is then essentially field-directed diffusion. 
Ordinary window glass, in fact, has a high concentration of Na+ ions in the structure 
and becomes reasonably conducting above 300-400 °C. Some polymers may contain 
ions derived from the polymerization process, from the local degradation (dissocia¬ 
tion) of the polymer itself, or from water absorption. 

Conductivity a of the material depends on all the conduction mechanisms with 
each species of charge carrier making a contribution, so it is given by 

a = ^2 qifiiiii [2.511 

where n, is the concentration, q{ is the charge carried by the charge carrier species of 
type i (for electrons and holes <?, = e), and /x, is the drift mobility of these carriers. The 
dominant conduction mechanism in Equation 2.51 is often quite difficult to uniquely 
identify. Further, it may change with temperature, composition, and ambient condi¬ 
tions such as the air pressure as in some oxide ceramics. For many insulators, whether 
ceramic, glass, or polymer, it has been found that, in the majority of cases, the conducti¬ 
vity follows an exponential or Arrhenius-type temperature dependence so that a is 
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Figure 2.29 Conductivity versus reciprocal temperature for various low-conductivity 

solids. 

I SOURCE: Data selectively combined from numerous sources. 

Temperature 

dependence of 

conductivity 

where Ea is the activation energy for conductivity. 
Figure 2.29 shows examples of the temperature dependence of conductivity for 

various high-resistivity solids: oxide ceramics, glasses, and polymers. When Equa¬ 
tion 2.51 is plotted as log (a) versus 1 /T, the result is a straight line with a negative 
slope that indicates the activation energy Ea. Equation 2.52 is useful in predicting 
the conductivity at different temperatures and evaluating the temperature stability of 
the insulator. 

thermally activated, 

a = a0 exp (-H) 

CONDUCTIVITY OF A SODA-SILICATE GLASS Figure 2.29 shows the temperature dependence 
of 12% Na20-88% Si02, soda-silicate glass which has 12 mol% Na20 and 88 mol% Si02. 
Calculate the activation energy of conductivity and compare this with the activation energy 
for the diffusion of Na+ ions in the soda-silicate glass structure which is in the range 0.65- 
0.75 eV. 

EXAMPLE 2.23 

SOLUTION 

According to Equation 2.52 when In (a) is plotted against 1/7, the slope should be —Eajk. If the 
conductivity at temperatures T\ and 72 are ox and er2, respectively, then the slope of the straight 
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line for 12% Na20-88% Si02 in Figure 2.29 is 

ln(<r2/CT,) Ea 
Slope =-=- 

(1/72 ~ 1/7*,) k 

Taking o'! = 10~4 Q-1 m_1 and<r2 = 10-6 £2_1 m_l in Figure 2.29, we find 1/7*1 =0.00205 
and l/r2 = 0.00261. Then, Ea as eV is 

Ea = 

ln(<r2/(Ti) k 

(1/72 - l/7*i) c 

ln(10-6/10-4) 1.38 x lO"23 

(0.00261 - 0.00205) 1.602 x lO"19 
= 0.71 eV 

A similar calculation for the 24% Na20-76% Si02 gives an activation energy of 0.69 eV. 
Both of these activation energies are comparable with the activation energy for the diffu¬ 

sion of Na+ ions in the structure. Thus, Na+ diffusion is responsible for the conductivity. 

EXAMPLE 2.24 DRIFT MOBILITY DUE TO IONIC CONDUCTION The soda-silicate glass of composition 20% 
Na2O-80% Si02 and density of approximately 2.4 g cm-3 has a conductivity of 8.25 x 
10“6 £2-1 rrr1 at 150 °C. If conduction occurs by the diffusion of Na+ ions, what is their drift 
mobility? 

SOLUTION 

We can calculate the drift mobility /x, of the Na+ ions from the conductivity expression 
a — qiriiiXi where is the charge of the ion Na+, so that it is +e, and n,- is the concentration of 
Na+ ions in the structure. For simplicity we can take the glass to be made of (Na20)o.2(Si02)o.8 
units. The atomic masses of Na, O, and Si are 23, 16, and 28.1, respectively. The atomic mass 
of (Na20)o.2(Si02)0.8 is 

Mat = 0.2[2(23) + 1(16)]+ 0.8[1 (28.1)+ 2(16)] 

= 60.48 g mol-1 of (Na2O)0.2(SiO2)0.8 

The number of (Na20)o.2(Si02)o.8 units per unit volume can be found from the density d by 

_ dNA _ (2.4 x 103 kg m~3)(6.02 x lO^mol"1) 

Mat (10-3 kg/g)(60.48 gmol-1) 

= 2.39 x 1028(Na20)o.2(Si02)0.8 units m-3 

The concentration n, of Na+ ions is the concentration of Na atoms as each would be ionized. 
Then n, can be expressed as n, = nNa = [atomic fraction of Na in (Na20)o.2(Si02)o.8] x n. 

tii = — Lo. 
0.2(2) 

2(2+ 1) +0.8(1+ 2) 
(2.39 x 1028 m"3) = 3.186 x 10" m' 

(8.25 x 10-6 Q-1 nr1) 

(1.60 x 10-19 C)(3.186 x 1027 m-3) 
= 1.62 x 10-14 m2 V-1 s“‘ 

This is an extremely small drift mobility, by orders of magnitude, compared with the typi¬ 
cal electron drift mobility in metals and semiconductors. The reason is that the drift involves the 
Na+ ion jumping from one site to another by a diffusion process. This diffusion requires over¬ 
coming a potential energy barrier, typically 0.5 to 1 eV, which limits drastically the rate of dif¬ 
fusion by virtue of the Boltzmann factor. 
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ADDITIONAL TOPICS 

2.8 SKIN EFFECT: HF RESISTANCE OF A CONDUCTOR 

Consider the cylindrical conductor shown in Figure 2.30a, which is carrying a current 
/ into the paper (x). The magnetic field B of I is clockwise. Consider two magnetic 
field values B\ and B2, which are shown in Figure 2.30a. B\ is inside the core and B2 
is just outside the conductor. 

Assume that the conductor is divided into two conductors. The hypothetical cut is 
taken just outside of B\. The conductor in Figure 2.30a is now cut into a hollow cylin¬ 
der and a smaller solid cylinder, as shown in Figure 2.30b and c, respectively. The 
currents 7i and I2 in the solid and hollow cylinders sum to I. We can arrange things and 
choose B\ such that our cut gives I\ = I2 = \l. Obviously, I\ flowing in the inner 
conductor is threaded (or linked) by both B\ and B2. (Remember that B\ is just inside 
the conductor in Figure 2.30b, so it threads at least 99% of /].) On the other hand, the 
outer conductor is only threaded by B2, simply because I2 flows in the hollow cylinder 
and there is no current in the hollow, which means that B\ is not threaded by /2. 
Clearly, I\ threads more magnetic field than /2 and thus conductor (c) has a higher in¬ 
ductance than (b). Recall that inductance is defined as the total magnetic flux threaded 
per unit current. Consequently, an ac current will prefer paths near the surface where 
the inductive impedance is smaller. As the frequency increases, the current is confined 
more and more to the surface region. 

For a given conductor, we can assume that most of the current flows in a surface 
region of depth 8, called the skin depth, as indicated in Figure 2.31. In the central region, 

(a) Total current 
into paper is /. 

b2 

b2 

(b) Current in hollow 
outer cylinder is 1/2. 

(c) Current in solid 
inner cylinder is 1/2. 

Figure 2.30 Illustration of the skin effect. 

A hypothetical cut produces a hollow outer cylinder and a solid inner cylinder. Cut is 

placed where it would give equal current in each section. The two sections are in parallel so 

that the currents in (b) and (c) sum to that in (a). 
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Figure 2.31 At high frequencies, the core 

region exhibits more inductive impedance 

than the surface region, and the current 

flows in the surface region of a conductor 

defined approximately by the skin depth, <5. 2 a 

the current will be negligibly small. The skin depth will obviously depend on the fre¬ 
quency co. To find 8, we must solve Maxwell’s equations in a conductive medium, a te¬ 
dious task that, fortunately, has been done by others. We can therefore simply take the 
result that the skin depth 8 is given by 

Skin depth for 

conduction 

HF resistance 

per unit 

length due to 

skin effect 

1 
8 = [2.531 

y/\axrii 

where co is the angular frequency of the current, a is the conductivity (<r is constant 
from dc up to ~ 1014 Hz in metals), and p is the magnetic permeability of the medium, 
which is the product of the absolute (free space) permeability p0 and the relative 
permeability pr. 

We can imagine the central conductor as a resistance R in series with an inductance 
L. Intuitively, those factors that enhance the inductive impedance coL over the resistance 
R will also tend to emphasize the skin effect and will hence tend to decrease the skin 
depth. For example, the greater the permeability of the conducting medium, the stronger 
the magnetic field inside the conductor, and hence the larger the inductance of the cen¬ 
tral region. The higher the frequency of the current, the greater the inductive impedance 
coL compared with R and the more significant is the skin effect. The greater is the con¬ 
ductivity or, the smaller is R compared with coL and hence the more important is the skin 
effect. All these dependences are accounted for in Equation 2.53. 

With the skin depth known, the effective cross-sectional area is given approxi¬ 
mately by 

A = tv a2 — 7t(a — 8)2 % 2ita8 

where 82 is neglected (5 «a). The ac resistance rac of the conductor per unit length is 
therefore 

r ac 
p _ p 

A 2 naS 
[2.54] 

where p is the ac resistivity at the frequency of interest, which for all practical pur¬ 
poses is equal to the dc resistivity of the metal. Equation 2.54 clearly shows that as co 

increases, 8 decreases, by virtue of 8 <x co~1/2 and, as a result, rac increases. 
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From this discussion, it is obvious that the skin effect arises because the mag¬ 
netic field of the ac current in the conductor restricts the current flow to the surface 
region within a depth of 8 < a. Since the current can only flow in the surface region, 
there is an effective increase in the resistance due to a decrease in the cross-sectional 

| area for current flow. Taking this effective area for current flow as 2na8 leads to 
Equation 2.54. 

! The skin effect plays an important role in electronic engineering because it limits I the use of solid-core conductors in high-frequency applications. As the signal frequen¬ 
cies reach and surpass the gigahertz (109 Hz) range, the transmission of the signal over 
a long distance becomes almost impossible through an ordinary, solid-metal conduc¬ 
tor. We must then resort to pipes (or waveguides). 

SKIN EFFECT FROM DIMENSIONAL ANALYSIS Using dimensional analysis, obtain the general 
form of the equation for the skin depth 8 in terms of the angular frequency of the current o), con¬ 
ductivity a, and permeability /jl. 

EXAMPLE 2.25 

SOLUTION 

The skin effect depends on the angular frequency co of the current, the conductivity a, and the 
magnetic permeability of the conducting medium. In the most general way, we can group 
these effects as 

[8] = [coYlaYW 

where the indices x, y, and z are to be determined. We then substitute the dimensions of each 
quantity in this expression. The dimensions of each, in terms of the fundamental units, are as 
follows: 

Quantity Units Fundamental Units Comment 

8 m 
s"1 

m 

CO s 1 

a £2-1 m-1 C2 skg-1 m~3 £2 = V A-1 — (J C—1 )(C s~ *^ 

= N m s C~2 = (kg m s~2)(m s C-2) 

i1 Wb A-1 nr1 kg m C~2 Wb = T m2 = (N A“‘ nr1 )(m2) 

= (kg m s~2)(C_I s)(m) 

Therefore, 

jl [m] = [s-1]* [C2 s kg-1 m~3]y[kg m C~2f 

Matching the dimensions of both sides, we see that y = z\ otherwise C and kg do not 
H cancel. 

For m 1 = —3y + z 

. For s 0 = —x + y 

| For C or kg 0 = 2y — 2z or 0 = —y + z 
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Clearly, x = y = z = — | is the only possibility. Then, 8 oc [axr p,]~l/2, It should be reem¬ 
phasized that the dimensional analysis is not a proof of the skin depth expression, but a consis¬ 
tency check that assures confidence in the equation. 

EXAMPLE 2.26 SKIN EFFECT IN AN INDUCTOR What is the change in the dc resistance of a copper wire of ra¬ 
dius 1 mm for an ac signal at 10 MHz? What is the change in the dc resistance at 1 GHz? Cop¬ 
per has pdc = 1.70 x 10~8 £2 m or ordc = 5.9 x 107 £2_1 m-1 and a relative permeability near 
unity. 

SOLUTION 

Per unit length, rdc = pdc/na2 and at high frequencies, from Equation 2.54, rac = pdcj2na8. 

Therefore, rac/rdc = a/28. 

We need to find 8. From Equation 2.53, at 10 MHz we have 

8 = [±<»ffdcp]~,/2 = [i x 2n x 10 x 106 x 5.9 x 107 x 1.257 x 10"6]~‘/2 

= 2.07 x 10-5 m = 20.7 pm 

Thus 

£ac 

rdc 

a 

28 

(10~3 m) 

(2 x 2.07 x 10-5 m) 
24.13 

The resistance has increased by 24 times. At 1 GHz, the increase is 240 times. Furthermore, 
the current is confined to a surface region of about ~2 x 10-5(20 pm) at 10 MHz and 
~2 x 10~6 m (2 pm) at 1 GHz, so most of the material is wasted. This is exactly the reason why 
solid conductors would not be used for high-frequency work. As very high frequencies, in the 
gigahertz range and above, are reached, the best bet would be to use pipes (waveguides). 

One final comment is appropriate. An inductor wound from a copper wire would have a 
certain Q (quality factor) value9 that depends inversely on its resistance. At high frequencies, Q 

would drop, because the current would be limited to the surface of the wire. One way to over¬ 
come this problem is to use a thick conductor that has a surface coating of higher-conductivity 
metal, such as silver. This is what the early radio engineers practiced. In fact, tank circuits of 
high-power radio transmitters often have coils made from copper tubes with a coolant flowing 
inside. 

2.9 THIN METAL FILMS 

2.9.1 Conduction in Thin Metal Films 

The resistivity of a material, as listed in materials tables and in our analysis of con¬ 
duction, refers to the resistivity of the material in bulk form; that is, any dimension of 
the specimen is much larger than the mean free path for electron scattering. In such 
cases resistivity is determined by scattering from lattice vibrations and, if significant, 
scattering from various impurities and defects in the crystal. In certain applications, 

9 The Q value refers to the quality factor of an inductor, which is defined by Q= a)0L/R, where <w0 is the resonant 
frequency, L is the inductance, and R is the resistance due to the losses in the inductor. 
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notably microelectronics, metal films are widely used to provide electrical conduction 
paths to and from the semiconductor devices. Various methods are used to deposit thin 
films. In many applications, the metal film is simply deposited onto a substrate, such 
as a semiconductor or an insulator (e.g., SiC>2), by physical vapor deposition (PVD), 
that is, by vacuum deposition, which typically involves either evaporation or sputter¬ 
ing. In thermal evaporation, the metal is evaporated from a heated source in a vac¬ 
uum chamber as depicted in Figure 1.74. As the metal atoms, evaporated from the 
source, impinge and adhere to the semiconductor surface, they form a metal film 
which is often highly polycrystalline. Stated differently, the metal atoms in the vapor 
condense to form a metal film on a suitably placed substrate. In electron beam depo¬ 
sition, an energetic electron beam is used to melt and evaporate the metal. Sputtering 
is a vacuum deposition process that involves bombarding a metal target material with 
energetic Ar ions, which dislodges the metal atoms and then condenses them onto a 
substrate. The use of sputtering is quite common in microelectronic fabrication. Cop¬ 
per metal interconnect films used in microelectronics are usually grown by electrode¬ 
position, that is, using electroplating, an electrochemical process, to deposit the metal 
film onto the required chip areas. In many applications, especially in microelectronics, 
we are interested in the resistivity of a metal film in which the thickness of the film or 
the average size of the grains is comparable to the mean distance between scattering 
events £buik (the mean free path) in the bulk material. In such cases, the resistivity of the 
metal film is greater than the corresponding resistivity of the bulk crystal. A good ex¬ 
ample is the resistivity of interconnects and various metal films used in the “shrinking” 
world of microelectronics, in which more and more transistors are packed into a single 
Si crystal, and various device dimensions are scaled down. 

2.9.2 Resistivity of Thin Films 

Polycrystalline Films and Grain Boundary Scattering In a highly polycrys¬ 
talline sample the conduction electrons are more likely to be scattered by grain bound¬ 
aries than by other processes as depicted in Figure 2.32a. Consider the resistivity due 
to scattering from grain boundaries alone as shown in Figure 2.32b. The conduction 
electron is free within a grain, but becomes scattered at the grain boundary. Its mean 
free path £grains is therefore roughly equal to the average grain size d. If k = £crystai is 

Grain 2 

Grain 1 
OOOOOOOo , 
00000000u00' 
OO^OQOO Oq 

OOOOGOO&Q^On 
OOOOOOcrOo °C oooooqqepo oQ 

o 

Grain ^ ^Oq^P 
boundary o 

Figure 2.32 

(a) Grain boundaries cause scattering of 

the electron and therefore add to the 

resistivity by Matthiessen's rule. 

(b) For a very grainy solid, the electron 

is scattered from grain boundary to 

grain boundary and the mean free path 

is approximately equal to the mean 

grain diameter. 

(a) (b) 
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Mean free 

path in 

polycrystalline 

sample 

Resistivity of a 

polycrystalline 

sample 

Resistivity 

due to grain 

boundary 

scattering 

the mean free path of the conduction electrons in the single crystal (no grain bound¬ 
aries), then 

11 111 
- =-1-= - + - [2.55] 
£ ^crystal ^grains ^ d 

The resistivity is inversely proportional to the mean free path which means that the 
resistivity of the bulk single crystal pcrystai oc 1 /X and the resistivity of the polycrys¬ 
talline sample p a 1 ji. Thus, 

= l + [2.56] 
/^crystal \d / 

Polycrystalline metal films with a smaller grain diameter d (i.e., more grainy films) 
will have a higher resistivity. 

In a more rigorous theory we have to consider a number of effects. It may take 
more than one scattering at a grain boundary to totally randomize the velocity, so we 
need to calculate the effective mean free path that accounts for how many collisions 
are needed to randomize the velocity. There is a possibility that the electron may be to¬ 
tally reflected back at a grain boundary (bounce back). Suppose that the probability of 
reflection at a grain boundary is R. If d is the average grain size (diameter), then the 
popular Mayadas-Shatkez formula is approximately given by10 

where 

P 

Pcrystal 

1 + 1.33)8 [2.57a] 

[2.57b] 

' Equation 2.57a is in the form of Matthiessen’s rule and indicates that the grain bound¬ 
ary’scattering contribution grainst0 the overall resistivity is (1.33/3)pcrystal. The approxi¬ 
mate sign in Equation 2.57 implies that Matthiessen’s rule is “approximately,” though rea¬ 
sonably well, obeyed. For copper, typical R values are 0.24 to 0.40, and R is somewhat 
smaller for Al. Equation 2.57 for a Cu film with R & 0.3 predicts p /pcrystai % 1.20 for 
d « 3X or a grain size d « 120 nm since the bulk crystal X & 40 nm. 

Surface Scattering Consider the scattering of electrons from the surfaces of a con¬ 
ducting film as in Figure 2.33. Take the film thickness as D. Assume that the scatter¬ 
ing from the surface is inelastic; that is, the electron loses the gained velocity from the 
field. Put differently, the direction of the electron after the scattering process is inde¬ 
pendent of the direction before the scattering process. This type of scattering is called 
nonspecular. (If the electron is elastically reflected from the surface just like a rubber 
ball bouncing off a wall, then there is no increase in the resistivity.) It is unlikely that 
one surface scattering will completely randomize the electron’s velocity. The mean 
free path €surf of the electron will depend on its direction right after the scattering 

10 This is obtained by expanding the original long expression about = 1 to the first term. To two decimal places, 
the expansion is 1 +1.33/J. 
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Figure 2.33 Conduction in thin 

films may be controlled by 

scattering from the surfaces. 

Figure 2.34 The mean free 

path of the electron depends on 

the angle 9 after scattering. 

process as depicted in Figure 2.34. For example, if the angle 9 after surface scattering 
is zero, (the electron moves transversely to the film length), then £surf = D. In general, 
the mean free path lsurf will be £>/(cos 9) as illustrated in Figure 2.34. 

Consider the surface scattering example in Figure 2.34 where the electron is scat¬ 
tered from the bottom surface. If the scattering of the electron were truly random, then 
the probability of being scattered in a direction back into the film, that is, in the +y di¬ 
rection, would be 0.5 on average. However, the electron’s direction right after the sur¬ 
face scattering is not totally random because we know that the electron cannot leave 
the film; thus 9 is between — n/2 and +7t/2 and cannot be between —it and +tt . The 
electron’s velocity after the first surface scattering must have a y component along +y 
and not along —y. The electron can only acquire a velocity component along —y again 
after the second surface scattering as shown in Figure 2.34. It therefore takes two col¬ 
lisions to randomize the velocity, which means that the effective mean free path must 
be twice as long, that is 2D/ cos 9. To find the overall mean free path i for calculating 
the resistivity we must use Matthiessen’s rule. If X is the mean free path of the con¬ 
duction electrons in the bulk crystal (no surface scattering), then 

11 1 1 , COS0 

I ~ X + £surf ~ X + 2D 
[2.58] 

Mean free 

path in a film 

We have to average for all possible 9 values per scattering, that is, 9 from — it f 2 
to H-tt/2. Once this is done we can relate i to X as follows: 

X _ X 

£~l + nD 

The resistivity of the bulk crystal is pbuik oc 1/X, and the resistivity of the film is 
p <x l/l. Thus, 

P 1 /X 
—— = 1 H-( — 
Pbulk Jt \ D 

[2.59] 

Averaged 

mean free 

path in a film 

Resistivity of 

a conducting 

thin film 
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Table 2.6 Resistivities of some thin Cu and Au films at room temperature 

Film D (nm) d (nm) p (n£2 m) Comment 

Cu films (Polycrystalline) 

Cu on TiN, W, and >250 186 21 Chemical vapor deposition (CVD). 

TiW [1] 45 32 Substrate temperature 200 °C. p 

depends on d not D = 250-900 nm. 

Cu on 500 nm SiC>2 [2] 20.5 35 Thermal evaporation. Substrate at RT. 

37 27 

Cu on Si (100) [3] 52 38 Sputtered Cu films. Annealing at 150 °C has 

100 22 no effect. R % 0.40 and p 0. 

Cu on glass [4] 40 50 As deposited 

40 29 Annealed at 200 °C 

40 25 Annealed at 250 °C 

All thermal evaporated and PC. 

Au films 

Au epitaxial film on mica 30 25 Single crystal on mica, p ^ 0.8. 

Specular scattering. 

Au PC film on mica 30 54 PC. Sputtered on mica, p is small. 

Au film on glass 30 70 PC. Evaporated onto glass, p is small. 

Nonspecular scattering. 

Au on glass [51 40 8.5 92 PC. Sputtered films. R = 0.27-0.33. 

40 3.8 189 

NOTE: PC-polycrystalline film, RT-room temperature, D = film thickness, d = average grain size. At RT for Cu, A. = 38-40 nm, and for Au, 
X = 36-38 nm. 

SOURCES: Data selectively combined from various sources, including [1] S. Riedel etal., Microelec. Engirt. 33, 165, 1997; [2] H. D. Liu el 
al., Thin Solid Films. 34, 151, 2001; [3] J. W. Lim et a/., Appl. Surf. Sci. 217, 95, 2003. [4] R. Suri et al„ J. Appl. Phys., 46, 2574, 1975; 
[5] R. H. Comely and T. A. Ali, J. Appl. Phys., 49, 4094, 1978. 

Surface 

scattering 

resistivity 

A more rigorous calculation modifies the numerical factor 1 jn and also considers 
what fraction p of surface collisions is specular and results in11 

p 3X D 
— % 1 +-(1 - p) — > 0.3 [2.60 
Pbulk 8 Dy X 

which is valid down to about D ^ 0.3A. Equation 2.60 is in Matthiessen’s rule format, 
which means that the second term is the fractional contribution of the surfaces to the 
resistivity. It can be seen that for elastic or specular scattering p = 1 and there is no 
change in the resistivity. For p = 0, Equation 2.60 predicts p/pbuik ^ 1 20 for roughly 
D *=» 1.9A. or a thickness D ^ 75 nm for Cu for which X % 40 nm. The value of p de¬ 
pends on the film preparation method (e.g., sputtering, epitaxial growth) and the sub¬ 
strate on which the film has been deposited. 

Equation 2.60 involves scattering from two surfaces, that is, from the two inter¬ 
faces of the film. In general the two interfaces will not be identical and hence will 
have different p coefficients; p in Equation 2.60 is some mean p value. Table 2.6 

11 This is known as the Fuchs-Sondheimer equation in a simplified form. 
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1 Id (1/nanometer) 

(a) (b) 

Figure 2.35 
(a) pfiim of Cu polycrystalline films versus reciprocal mean grain size (diameter) l/d. Film thickness 

D= 250-900 nm does not affect the resistivity. The straight line is pfi|m = 17.8 n£2 m + (595 n£2 m 

nm)(l/c/). 

(b) Pfiim of thin Cu polycrystalline films versus film thickness D. In this case, annealing (heat treating) the 

films to reduce the polycrystallinity does not significantly affect the resistivity because pfj|m is controlled 

mainly by surface scattering. 

| SOURCES: Data extracted from (a) S. Riedel etal., Microelec. Engirt. 33, 165, 1997, and (b) W. Lim etal., Appl. 
I Surf. Sci., 217, 95, 2003. 

summarizes the resistivity of thin Cu and Au gold films deposited by various prepa¬ 
ration techniques. Notice the large difference between the Au films deposited on a 
noncrystalline glass substrate and on a crystalline mica substrate. Such differences 
between films are typically attributed to different values of p. The p value can also 
change (increase) when the film is annealed. Obviously, the polycrystallinity of the 
film will also affect the resistivity as discussed previously. Typically, most epitaxial 
thin films, unless very thin (D <$( X), deposited onto heated crystalline substrates ex¬ 
hibit highly specular scattering with p = 0.9-1. 

It is generally very difficult to separate the effects of surface and grain boundary scat¬ 
tering in thin polycrystalline films; the contribution from grain boundary scattering is 
likely to exceed that from the surfaces. In any event, both contributions, by Matthiessen’s 
general rule, increase the overall resistivity. Figure 2.35a shows an example in which the 
resistivity of thin Cu polycrystalline films is due to grain boundary scattering, and 
thickness has no effect (D was 250-900 nm and much greater than X). The resistivity pfiim 
is plotted against the reciprocal mean grain size 1 /d, which then follows the expected lin¬ 
ear behavior in Equation 2.57a. On the other hand, Figure 2.35b shows the resistivity of 
Cu films as a function of film thickness D. In this case, annealing (heat treating) the films 
to reduce the polycrystallinity does not significantly affect the resistivity because pfiim is 
controlled primarily by surface scattering and is given by Equation 2.60. 

THIN-FILM RESISTIVITY Consider the data presented in Figure 2.35a. What can you conclude 
from the plot given that the mean free path X ^ 40 nm in Cu? 

EXAMPLE 2.27 
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SOLUTION 

Consider the results in Figure 2.35a. It is stated that the film thickness D = 250-900 nm does 
not affect the resistivity, which implies that Pfiim is controlled only by the grain size d. From 
Equation 2.57a and b we expect 

Pfilm ^ Pcrystal (1 "I" 1.33^) ^ Pcrystal "H 1-33/^crystal 
A 

d 

This equation represents the observed line when Pfiim is plotted against 1 /d as in Figure 2.35a. 
The pfl]m — \/d line has an intercept given by 17.8 n£2 m and a slope given by 595 (n£2 m) 
(nm). The intercept approximately matches the bulk resistivity pCrystai of Cu. The slope is 

R 

^~R 

or 595(n£2 m)(nm) « 1.33(17.8 n£2 m) ((40 nm) 

Slope ^ 1.33 Pcrystal I 

Solving this equation yields R 0.39 for these copper films. 

2.10 INTERCONNECTS IN MICROELECTRONICS 

An integrated circuit (IC) is a single crystal of Si that contains millions of transistors 
that have been fabricated within this one crystal. Interconnects are simply metal con¬ 
ductors that are used to wire the devices together to implement the desired overall op¬ 
eration of the IC; see the photographs in Figure 2.36. Aluminum and A1 alloys, or 
A1 silicides, have been the workhouse of the interconnects, but today’s fast chips rely 
on copper interconnects, which have three distinct advantages. First, copper has a re¬ 
sistivity that is about 40 percent lower than that of Al. In high-transistor-density chips 
in which various voltages are switched on and off, what limits the speed of operation 
is the RC time constant, that is, the time constant that is involved in charging and dis¬ 
charging the capacitance between the interconnects, and the input capacitance of the 
transistor; usually the former dominates. The RC is substantially reduced with Cu re¬ 
placing Al so that the chip speed is faster. The second advantage is that a lower overall 
interconnect resistance leads to a lower power consumption, lower I2R. 

The third advantage is that copper has superior resistance to electromigration, a 
process in which metal atoms are forced to migrate by a large current density. Such 
electromigration can eventually lead to a failure of the interconnect. The current den¬ 
sity in interconnects with a small cross-sectional area can be very high, and hence the 
electron drift velocities can also be very high. As these fast electrons collide with the 
metal ions there is a momentum transfer that slowly drifts the metal ions. Thus, the 
metal ions are forced to slowly migrate as a result of being bombarded by drifting elec¬ 
trons; the migration is in the direction of electron flow (not current flow). This atomic 
migration can deplete or accumulate material in certain local regions of the intercon¬ 
nect structure. The result is that electromigration can lead to voids (material depletion) 
or hillocks (material accumulation), and eventually there may be a break or a short be¬ 
tween interconnects (an interconnect failure). The electromigration effects are reduced 
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Figure 2.36 
(a) Metal interconnects wiring devices on a silicon crystal. Three different metallization levels Ml, M2, and M3 are used. 

The dielectric between the interconnects has been etched away to expose the interconnect structure. 

(b) Cross section of a chip with seven levels of metallization, Ml to M7. The image is obtained with a scanning electron 

microscope (SEM). 

I SOURCES: (a) Courtesy of IBM. (b) Courtesy of Mark Bohr, Intel. 

in Cu interconnects because the Cu atoms are heavier and cannot be as easily migrated 
by an electric current as are A1 atoms. 

There is a relatively simple expression for estimating the RC time constant of 
multilevel interconnects that is useful in comparing various interconnect technolo¬ 
gies and the effects of interconnect metal resistance p, the relative permittivity sr of 
the interlevel dielectric (insulation) between the interconnects, and the geometry of 
the whole interconnect wiring. First consider a simple interconnect line, as in Figure 
2.37a, whose thickness is T, width is W, and length is L. Its resistance R is simply 
pL/(TW). In the chip, this interconnect will have other interconnects around it as 
shown in a simplified way in Figure 2.37b. It will couple with all these different con¬ 
ductors around it and will have an overall (effective) capacitance Ceff. RC^ is what 
we know as the RC time constant associated with the interconnect line in Figure 
2.37b. 

Suppose that the interconnect is an Mth-level metallization. It will have a series of 
many “horizontal” neighbors along this Mth level. Let X be the nearest edge-to-edge 
separation and P be the pitch of these horizontal neighbors at the Mth level. The pitch 
P refers to the separation from center to center, or the periodicity of interconnects; 
P = W + X. At a height H above the interconnect there will be a line running at the 
(M + 1) level. Similarly there will be an interconnect line at a distance H below at the 
(M — 1) level. We can identify two sets of capacitances. Cv represents the capacitance 
in the vertical direction, between the interconnect and its upper or lower neighbor. C# 
is the lateral capacitance in the horizontal direction, between a neighbor on the right or 
left. Both are shown in Figure 2.37c. The interconnect therefore has two Cv and two 
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Interconnect 

Dielectric 

(a) 

Metallization 

levels: 

interconnects 

(c) 

Figure 2.37 
(a) A single line interconnect surrounded by dielectric insulation. 

(b) Interconnects crisscross each other. There are three levels of interconnect: M — 1 ,/VI, and M + 1. 

(c) An interconnect has vertical and horizontal capacitances Cy and Chi- 

Effective 

capacitance 

in multilevel 

interconnect 

structures 

RC time 

constant in 

multilevel 

interconnect 

structures 

CH, four capacitances in total, and all are in parallel as shown in Figure 2.37c. From 
the simple parallel plate capacitance formula we can write 

Ch 
e0er TL 

X 
and Cy = 

e0sr WL 

H 

Usually CH is greater than Cv. From Figure 2.37c, the effective capacitance 

Ueff = 2 (Ch + CyX 

(T W\ r , 
Ct ff = 2e0srL\— + — J [2.61] 

which is the effective multilevel interconnect capacitance. We now multiply this 
with R = pL/(TW) to obtain the RC time constant, 

RC = 2£^{w){i + l) [2'621 

Equation 2.62 is only an approximate first-order calculation, but, nonetheless, 
it turns out to be quite a useful equation for roughly predicting the RC time constant 
and hence the speed of multilevel interconnect based high-transistor-density 
chips.12 Most significantly, it highlights the importance of three influencing effects: 
the resistivity of the interconnect metal; relative permittivity er of the dielectric in¬ 
sulation between the conductors; and the geometry or “architecture” of the inter¬ 
connects L, T, W, X, and H. Notice that L appears as L2 in Equation 2.62 and has 

12 A more rigorous theory would consider the interconnect system as having a distributed resistance and a 
distributed capacitance; similar to a transmission line; a topical research area. The treatment here is more than 
sufficient to obtain approximate results and understand the factors that control the interconnect delay time. 
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significant control on the overall RC. Equation 2.62 does not obviously include the 
time it takes to turn on and off the individual transistors connected to the intercon¬ 
nects. In a high-transistor-density chip, the latter is smaller than the interconnect 
RC time constant. 

The reduction in the interconnect resistivity p by the use of Cu instead of A1 has 
been a commendable achievement, and cuts down RC significantly. Further reduction 
in p is limited because Cu already has a very small resistivity; the smallest p is for Ag 
which is only about 5 percent lower. Current research efforts for reducing RC further 
are concentrated on mainly two factors. First is the reduction of er as much as possible 
by using dielectrics such as fluorinated SiC>2 (known as FSG) for which sr = 3.6, or, 
more importantly, using what are called low-A: dielectric materials (k stands for sr) 

such as various polymers or porous dielectrics13 that have a lower sr, typically 2-3, 
which is a substantial reduction from 3.6. The second is the development of optimized 
interconnect geometries that reduce L2 in Equation 2.62. (T, W, X, and H are all of 
comparable size, so L2 is the most dominant geometric factor.) 

The ratio of the thickness T to width W of an interconnect is called the aspect 
ratio, Ar = T/W. This ratio is typically between 1 to 2. Very roughly, in many cases, 
X and W are the same, X % W and X ~ P/2 (see Figure 2.37b). Then Equation 2.62 
simplifies further, 

RC ^ 2e0erpL 7^2) [2.63] 

The signal delays between the transistors on a chip arise from the interconnect RC 

time constant. Equations 2.62 and 2.63 are often also used to calculate the multilevel 
interconnect delay time. Suppose that we take some typical values, L « 10 mm, 
T % 1 pm, P % 1 pm, p = 17 n£2 m for a Cu interconnect, and er & 3.6 for FSG; 
then RC % 0.43 ns, not a negligible value in today’s speed hungry computing. 

RC time 

constant in 

multilevel 

interconnect 

structures 

MULTILEVEL INTERCONNECT RC TIME CONSTANT In a particular high-transistor-density IC 
where copper is used as the interconnect, one level of the multilevel interconnects has the fol¬ 
lowing characteristics: pitch P = 0.45 pm, T = 0.36 pm, AR = 1.6, H = X, and er « 3.6. 
Find the effective capacitance per millimeter of interconnect length, and the RC delay time per 
L2 as ps/mm2 (as normally used in industry). 

EXAMPLE 2.28 

SOLUTION 

Since AR = T/W, W = T/Ar = 0.36/1.6 = 0.225 pm. Further, from Figure 2.37b, 
P = W + X, so that X = P - W = 0.45 - 0.225 = 0.225 pm. H = X = 0.225 pm. 

Thus, Equation 2.61 for L = 1 mm = 10-3 m gives 

(T W\ 11 , T 0.36 0.2251 
Cm = 2^L(- + -) = 2(8.85 x 10-“)(3.6)(Hr»,[— + — J = 0.17 pF 

13 The mixture rules mentioned in this chapter turn up again in a different but recognizable form for predicting the 
overall relative permittivity of porous dielectrics. 
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which is about 0.2 pF per millimeter of interconnect. The RC time constant per L2 is 

= 2(8.85 x 10-12)(3.6)(17 x 10"9) 

1 

.(o.: .225 x 10_6)(0.225 x 10 

= 3.4 x 10-5 s m-2 or 34 ps mm-2 

1 

^ + (0.36 x 10~6)(0.225 x 10“6). 

2.11 ELECTROMIGRATION AND BLACK’S EQUATION 

Interconnects have small cross-sectional dimensions, and consequently the current 
densities can be quite large. Figure 2.38a depicts how the continual bombardment of 
lattice atoms (metal ions) by many “fast” conduction electrons in high-current-density 
regions can transfer enough momentum to a host metal atom to migrate it, that is, dif¬ 
fuse it along a suitable path in the crystal. The bombarded metal atom has to jump to a 
suitable lattice location to migrate, which is usually easiest along grain boundaries or 
surfaces where there is sufficient space as depicted in Figure 2.38a and b. Grain bound¬ 
aries that are parallel to the electron flow therefore can migrate atoms more efficiently 
than grain boundaries in other directions. Atomic diffusion can also occur along a sur¬ 
face of the interconnect, that is, along an interface between the interconnect metal and 
the neighboring material. The final result of atomic migration is usually either mater¬ 
ial depletion or accumulation as depicted in Figure 2.38c. The depletion of material 

ooo 
OOO 

qMSnOOO 
g^'OjCyooo 
0*0 OS.O 

°o°o0a 
□ o o 

o Current 

Hillock 

Grain 
boundary 

(a) (c) 

Figure 2.38 
(a) Electrons bombard the metal ions and force them to slowly migrate. 

(b) Formation of voids and hillocks in a polycrystalline metal interconnect by the electromigration of metal ions along grain 

boundaries and interfaces. 

(c) Accelerated tests on a 3 pm chemical vapor deposited Cu line: T = 200 °C and J= 6 MA cm-2. The photos show void 

formation and fatal failure (break), and hillock formation. 

I SOURCE: Courtesy of L. Arnaud et a/., Microelectronics Reliability, 40, 86, 2000. 
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leads to a void and a possible eventual break in the interconnect. The accumulation of 
material leads to a hillock and a short between lines. Interconnect failure by electromi¬ 
gration is measured by the mean time to 50 percent failure ?mtf- There are two factors 
that control the rate of electromigration Rem- First is the activation energy EA involved 
in migrating (diffusing) the metal atom, and the second is the rate at which the atoms are 
bombarded with electrons, which depends on the current density J. Thus, 

Rem oc Jn exp 
Electromigra¬ 

tion rate 

in which the rate is proportional to Jn, instead of just J because it is found 
experimentally that n >1. From the electromigration rate we can find the average time 
fMTF it takes for 50 percent failure of interconnects because this time is inversely 
proportional to the electromigration rate just given: 

*mtf = A B J exp ^ ^ j [2.64] 

where AB is a constant. Equation 2.64 is known as Black’s equation, and it is ex¬ 
tremely useful in extrapolating high-temperature failure tests to normal operating tem¬ 
peratures. Electromigration-induced interconnect failures are typically examined at 
elevated temperatures where the failure times are over a measurable time scale in the 
laboratory (perhaps several hours or a few days). These experiments are called accel¬ 
erated failure tests because they make use of the fact that at high temperatures the 
electromigration failure occurs more quickly. The results are then extrapolated to room 
temperature using Black’s equation. 

Typically electromigration occurs along grain boundaries or along various inter¬ 
faces that the interconnect has with its surroundings, the semiconductor, dielectric 
material, etc. The diffusion coefficient has a lower activation energy EA for these mi¬ 
gration paths than for diffusion within the volume of the crystal. The electromigration 
process therefore depends on the microstructure of the interconnect metal, and its in¬ 
terfaces. Usually another metal, called a barrier, is deposited to occupy the interface 
space between the interconnect and the semiconductor or the oxide. The barrier passi¬ 

vates the interface, rendering it relatively inactive in terms of providing an electromi¬ 
gration path. An interconnect can also have a temperature gradient along it. (The heat 
generated by I2R may be conducted away faster at the ends of the interconnect, leav¬ 
ing the central region hotter.) Electromigration would be faster in the hot region and 
very slow (almost stationary) in the cold region since it is a thermally activated 
process. Consequently a pileup of electromigrated atoms can occur as atoms are mi¬ 
grated from hot to cold regions along the interconnect, leading to a hillock.14 

Pure A1 suffers badly from electromigration problems and is usually alloyed with 
small amounts of Cu, called Al(Cu), to reduce electromigration to a tolerable level. But 
the resistivity increases. (Why?) In recent Cu interconnects, the most important diffu¬ 
sion path seems to be the interface between the Cu surface and the dielectric. Surface 
coating of these Cu interconnects provides control over electromigration failures. 

Black’s 

electromigra¬ 

tion failure 

equation 

I 14 Somewhat like a traffic accident pileup in which speeding cars run into stationary cars ahead of them. 
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DEFINING TERMS 

Alloy is a metal that contains more than one element. 

Brass is a copper-rich Cu-Zn alloy. 

Bronze is a copper-rich Cu-Sn alloy. 

Drift mobility is the drift velocity per unit applied field. 
If fid is the drift mobility, then the defining equation 

is vd — /idE, where vd is the drift velocity and £ is the 
field. 

Drift velocity is the average electron velocity, over 

all the conduction electrons in the conductor, in the 

direction of an applied electrical force (F = —e'E for 

electrons). In the absence of an applied field, all the 

electrons move around randomly, and the average 

velocity over all the electrons in any direction is zero. 

With an applied field £„ there is a net velocity per 

electron vdx, in the direction opposite to the field, 

where vdx depends , on <EX by virtue of vdx = fidEx, 

where /id is the drift mobility. 

Electrical conductivity (a) is a property of a material 
that quantifies the ease with which charges flow inside 

the material along an applied electric field or a voltage 

gradient. The conductivity is the inverse of electrical 
resistivity p. Since charge flow is caused by a voltage 

gradient, a is the rate of charge flow across a unit area 
per unit voltage gradient, J = <r£. 

Electromigration is current density-induced diffusion 
of host metal atoms due to their repeated bombardment 

by conduction electrons at high current densities; the 

metal atoms migrate in the direction of electron flow. 

Black’s equation describes the mean time to failure 

of metal film interconnects due to electromigration 
failure. 

Fourier’s law states that the rate of heat flow Q' 

through a sample, due to thermal conduction, is pro¬ 
portional to the temperature gradient dT/dx and the 

cross-sectional area A, that is, Q' = -icA(dT/dx), 

where k is the thermal conductivity. 

Hall coefficient (/?#) is a parameter that gauges 

the magnitude of the Hall effect. If 'Ey is the electric 

field in the y direction, due to a current density Jx 

along j: and a magnetic field Bz along z, then RH = 

Vy/J.Bt- 

Hall effect is a phenomenon that occurs in a conduc¬ 

tor carrying a current when the conductor is placed in a 

magnetic field perpendicular to the current. The charge 
earners in the conductor are deflected by the magnetic 

field, giving rise to an electric field (Hall field) that is 

perpendicular to both the current and the magnetic 
field. If the current density Jx is along * and the 

magnetic field Bz is along z, then the Hall field is along 
either +y or -y, depending on the polarity of the 
charge carriers in the material. 

Heterogeneous mixture is a mixture in which the in¬ 
dividual components remain physically separate and 

possess different chemical and physical properties; that 
is, a mixture of different phases. 

Homogeneous mixture is a mixture of two or more 

chemical species in which the chemical properties 

(e.g., composition) and physical properties (e.g., density, 
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heat capacity) are uniform throughout. A homogeneous 

mixture is a solution. 

Interconnects are various thin metal conductors in a 

Si integrated circuit that connect various devices to im¬ 
plement the required wiring of the devices. In modem 

ICs, these interconnects are primarily electrodeposited 

Cu films. 

Ionic conduction is the migration of ions in the mater¬ 

ial as a result of field-directed diffusion. When a positive 

ion in an interstitial site jumps to a neighboring 
interstitial site in the direction of the field, it lowers its 

potential energy which is a favorable process. If it jumps 
in the opposite direction, then it has to do work against 

the force of the field which is undesirable. Thus the dif¬ 

fusion of the positive ion is directed along the field. 

Isomorphous phase diagram is a phase diagram for 
an alloy that has unlimited solid solubility. 

Joule’s law relates the power dissipated per unit vol¬ 
ume Pvoi by a current-carrying conductor to the applied 

field £ and the current density J, such that Pvol — 

J*E = <r£2. 

Lorentz force is the force experienced by a moving 

charge in a magnetic field. When a charge q is moving 

with a velocity v in a magnetic field B, the charge ex¬ 

periences a force F that is proportional to the magni¬ 

tude of its charge q, its velocity v, and the field B, such 

that F = qy x B. 

Magnetic field, magnetic flux density, or magnetic 

induction (B) is a vector field quantity that describes 

the magnitude and direction of the magnetic force ex¬ 
erted on a moving charge or a current-carrying con¬ 

ductor. The magnetic force is essentially the Lorentz 

force and excludes the electrostatic force q*E. 

Magnetic permeability (/x) or simply permeability is 
a property of the medium that characterizes the effec¬ 

tiveness of a medium in generating as much magnetic 

field as possible for given external currents. It is the 

product of the permeability of free space (vacuum) or 

absolute permeability (p.a) and relative permeability of 

the medium (p,r), i.e., p. = p0Pr- 

Magnetometer is an instrument for measuring the 

magnitude of a magnetic field. 

Matthiessen’s rule gives the overall resistivity of a 

metal as the sum of individual resistivities due to 

scattering from thermal vibrations, impurities, and 

crystal defects. If the resistivity due to scattering from 

thermal vibrations is denoted pT and the resistivities 
due to scattering from crystal defects and impurities 

can be lumped into a single resistivity term called the 

residual resistivity pR, then p = pT + Pr. 

Mean free path is the mean distance traversed by an 

electron between scattering events. If r is the mean free 

time between scattering events and u is the mean speed 

of the electron, then the mean free path is € = u r. 

Mean free time is the average time it takes to scatter 

a conduction electron. If /, is the free time between 

collisions (between scattering events) for an electron 

labeled t, then r = F, averaged over all the electrons. 

The drift mobility is related to the mean free time by 

p.d = ex/me. The reciprocal of the mean free time is 
the mean probability per unit time that a conduction 

electron will be scattered; in other words, the mean 

frequency of scattering events. 

Nordheim’s rule states that the resistivity of a solid 

solution (an isomorphous alloy) due to impurities pi is 

proportional to the concentrations of the solute X and 

the solvent (1 — X). 

Phase (in materials science) is a physically homoge¬ 

neous portion of a materials system that has uniform 

physical and chemical characteristics. 

Relaxation time is an equivalent term for the mean 

free time between scattering events. 

Residual resistivity (pR) is the contribution to the 
resistivity arising from scattering processes other than 

thermal vibrations of the lattice, for example, impuri¬ 

ties, grain boundaries, dislocations, point defects. 

Skin effect is an electromagnetic phenomenon that, at 

high frequencies, restricts ac current flow to near the 
surface of a conductor to reduce the energy stored in 

the magnetic field. 

Solid solution is a crystalline material that is a homo¬ 

geneous mixture of two or more chemical species. The 

mixing occurs at the atomic scale, as in mixing alcohol 

and water. Solid solutions can be substitutional (as in 
Cu-Ni) or interstitial (for example, C in Fe). 

Stefan’s law is a phenomenological description of 

the energy radiated (as electromagnetic waves) from a 

surface per second. When a surface is heated to a 
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temperature T, it radiates net energy at a rate given by 

Pradiated = €osA(T4 - ro4), where os is Stefan’s con¬ 
stant (5.67 x 10-8 W m-2 K-4), e is the emissivity of 

the surface, A is the surface area, and T0 is the ambient 
temperature. 

Temperature coefficient of resistivity (TCR) (a0) is 
defined as the fractional change in the electrical resis¬ 

tivity of a material per unit increase in the temperature 

with respect to some reference temperature T0. 

Thermal conductivity (k) is a property of a material 

that quantifies the ease with which heat flows along the 

material from higher to lower temperature regions. 

Since heat flow is due to a temperature gradient, k is 

the rate of heat flow across a unit area per unit temper¬ 
ature gradient. 

Thermal resistance (6) is a measure of the difficulty 
with which heat conduction takes place along a material 

sample. The thermal resistance is defined as the tem¬ 

perature drop per unit heat flow, $ = A T/Q'. It de¬ 

pends on both the material and its geometry. If the heat 

losses from the surfaces are negligible, then 6 = L/kA, 

where L is the length of the sample (along heat flow) 

and A is the cross-sectional area. 

Thermally activated conductivity means that the 
conductivity increases in an exponential fashion with 

temperature as in a = o0exp(-Ea/kT) where Ea is 

the activation energy. 

Thin film is a conductor whose thickness is typically 

less than ~ 1 micron; the thickness is also much less 

than the width and length of the conductor. Typically 

thin films have a higher resistivity than the corre¬ 

sponding bulk material due to the grain boundary and 

surface scattering. 

QUESTIONS AND PROBLEMS 

2.1 Electrical conduction Na is a monovalent metal (BCC) with a density of 0.9712 g cm-3. Its atomic 

mass is 22.99 g mol-1. The drift mobility of electrons in Na is 53 cm2 V-1 s”1. 

a. Consider the collection of conduction electrons m the solid. If each Na atom donates one electron 

to the electron sea, estimate the mean separation between the electrons. (Note: If n is the concen¬ 

tration of particles, then the particles’ mean separation d = 

b. Estimate the mean separation between an electron (e~) and a metal ion (Na+), assuming that most 

of the time the electron prefers to be between two neighboring Na+ ions. What is the approximate 

Coulombic interaction energy (in eV) between an electron and an Na+ ion? 

c. How does this electron/metal-ion interaction energy compare with the average thermal energy per 

particle, according to the kinetic molecular theory of matter? Do you expect the kinetic molecular 

theory to be applicable to the conduction electrons in Na? If the mean electron/metal-ion interac¬ 

tion energy is of the same order of magnitude as the mean KE of the electrons, what is the mean 

speed of electrons in Na? Why should the mean kinetic energy be comparable to the mean 

electron/metal-ion interaction energy? 

d. Calculate the electrical conductivity of Na and compare this with the experimental value of 

2.1 x 107 £2-1 m-1 and comment on the difference. 

2.2 Electrical conduction The resistivity of aluminum at 25 °C has been measured to be 2.72 x 10“8 Q m. 

The thermal coefficient of resistivity of aluminum at 0 °C is 4.29 x 10”3 K”1. Aluminum has a valency 

of 3, a density of 2.70 g cm”3, and an atomic mass of 27. 

a. Calculate the resistivity of aluminum at —40 °C. 

b. What is the thermal coefficient of resistivity at —40 °C? 

c. Estimate the mean free time between collisions for the conduction electrons in aluminum at 25 °C, 

and hence estimate their drift mobility. 

d. If the mean speed of the conduction electrons is about 2.0 x 106 m s”1, calculate the mean free 

path and compare this with the interatomic separation in A1 (A1 is FCC). What should be the 
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thickness of an A1 film that is deposited on an IC chip such that its resistivity is the same as that 

of bulk Al? 

e. What is the percentage change in the power loss due to Joule heating of the aluminum wire when 

the temperature drops from 25 °C to —40 °C? 

2.3 Conduction in gold Gold is in the same group as Cu and Ag. Assuming that each Au atom donates one 

conduction electron, calculate the drift mobility of the electrons in gold at 22 °C. What is the mean free 

path of the conduction electrons if their mean speed is 1.4 x 106 m s”1 ? (Use p0 and ct0 in Table 2.1.) 

2.4 Effective number of conduction electrons per atom 

a. Electron drift mobility in tin (Sn) is 3.9 cm2 V-1 s”1. The room temperature (20 °C) resistivity of 

Sn is about 110 n£2 m. Atomic mass A/at and density of Sn are 118.69 g mol”1 and 7.30 g cm”3, 

respectively. How many “free” electrons are donated by each Sn atom in the crystal? How does this 

compare with the position of Sn in Group IVB of the Periodic Table? 

b. Consider the resistivity of few selected metals from Groups I to IV in the Periodic Table in Table 

2.7. Calculate the number of conduction electrons contributed per atom and compare this with the 

location of the element in the Periodic Table. What is your conclusion? 

Table 2.7 Selection of metals from Groups I to IV in the Periodic Table 

Metal 

Periodic 

Group Valency 

Density 
(g cm-3) 

Resistivity 

(n&2 m) 

Mobility 

(cm2 V-,s-1) 

Na IA 1 0.97 42.0 53 

Mg IIA 2 1.74 44.5 17 

Ag IB 1 10.5 15.9 56 

Zn I1B 2 7.14 59.2 8 
Al IIIB 3 2.7 26.5 12 

Sn IVB 4 7.30 110 3.9 

Pb IVB 4 11.4 206 2.3 

| NOTE: Mobility from Hall-effect measurements. 

2.5 TCR and Matthiessen’s rule Determine the temperature coefficient of resistivity of pure iron and of 

electrotechnical steel (Fe with 4% C), which are used in various electrical machinery, at two tempera¬ 

tures: 0 °C and 500 °C. Comment on the similarities and differences in the resistivity versus tempera¬ 

ture behavior shown in Figure 2.39 for the two materials. 

Temperature (°C) 

Figure 2.39 Resistivity versus temperature for 

pure iron and 4% C steel. 
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*2.6 TCR of isomorphous alloys 

a. Show that for an isomorphous alloy A%-B% (B% solute in A% solvent), the temperature coeffi¬ 

cient of resistivity ccab is given by 

Pab 

where pab is the resistivity of the alloy {AB) and pa and a a are the resistivity and TCR of pure A. 
What are the assumptions behind this equation? 

b. Determine the composition of the Cu-Ni alloy that will have a TCR of 4 x 10“4 K_1, that is, a 

TCR that is an order of magnitude less than that of Cu. Over the composition range of interest, the 

resistivity of the Cu-Ni alloy can be calculated from pcuNi ^ PCu + CeffX(l — X), where Ceff, the 

effective Nordheim coefficient, is about 1310 n£2 m. 

2.7 

2.8 

Resistivity of isomorphous alloys and Nordheim’s rule What are the maximum atomic and weight 

percentages of Cu that can be added to Au without exceeding a resistivity that is twice that of pure gold? 

What are the maximum atomic and weight percentages of Au that can be added to pure Cu without ex¬ 

ceeding twice the resistivity of pure copper? (Alloys are normally prepared by mixing the elements in 
weight.) 

Nordheim’s rule and brass Brass is a Cu-Zn alloy. Table 2.8 shows some typical resistivity values for 

various Cu-Zn compositions in which the alloy is a solid solution (up to 30% Zn). 

a. Plot p versus X(1 — X). From the slope of the best-fit line find the mean (effective) Nordheim co¬ 

efficient C for Zn dissolved in Cu over this compositional range. 

b. Since X is the atomic fraction of Zn in brass, for each atom in the alloy, there are X Zn atoms and 

(1 — X) Cu atoms. The conduction electrons consist of each Zn donating two electrons and each 

copper donating one electron. Thus, there are 2(X) + 1(1 — X) = 1 + X conduction electrons 

per atom. Since the conductivity is proportional to the electron concentration, the combined 

Nordheim-Matthiessens rule must be scaled up by (1 + X), 

P brass — 
A> + CX(1-X) 

(1 + X) 

Plot the data in Table 2.8 as p{\ + X) versus X(1 — X). From the best-fit line find C and pQ. What 

is your conclusion? (Compare the correlation coefficients of the best-fit lines in your two plots.15) 

Table 2.8 Cu-Zn brass alloys 

Zn at.% in Cu-Zn 0 0.34 0.5 0.93 3.06 4.65 9.66 15.6 19.59 29.39 

Resistivity n£2 m 17 18.1 18.84 20.7 26.8 29.9 39.1 49.0 54.8 63.5 

I SOURCE: H. A. Fairbank, Phys. Rev., 66, 274, 1944. 

2.9 Resistivity of solid solution metal alloys: testing Nordheim’s rule Nordheim’s rule accounts for the 

increase in the resistivity resulting from the scattering of electrons from the random distribution of im¬ 

purity (solute) atoms in the host (solvent) crystal. It can nonetheless be quite useful in approximately 

15 More rigorously, Pbrass = Pmatrix + Ceff X (1 -X), in which ^matrix is the resistivity of the perfect matrix. Accounting 
for the extra electrons, pmak\x ^ Po/ft+X), where p0 is the pure metal matrix resistivity and Ceff is the Nordheim 
coefficient at the composition of interest, given by Ceff % C/( 1 +X)2//3. (It is assumed that the atomic concentration 
does not change significantly.) As always, there are also other theories; part b is more than sufficient for most 
practical purposes. 
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predicting the resistivity at one composition of a solid solution metal alloy, given the value at another 

composition. Table 2.9 lists some solid solution metal alloys and gives the resistivity p at one composi¬ 

tion X and asks for a prediction p' based on Nordheim’s rule at another composition X\ Fill in the table 

for p' and compare the predicted values with the experimental values, and comment. 

Table 2.9 Resistivities of some solid solution metal alloys 

Alloy 

Ag-Au Au-Ag Cu-Pd Ag-Pd Au-Pd Pd-Pt Pt-Pd Cu-Ni 

X (at%) 8.8% Au 8.77% Ag 6.2% Pd 10.1% Pd 8.88% Pd 7.66% Pt 7.1% Pd 2.16% Ni 

A, (nQ m) 16.2 22.7 17 16.2 22.7 108 105.8 17 

p at X (n£2 m) 

Car 

44.2 54.1 70.8 59.8 54.1 188.2 146.8 50 

X 

p’ at X' (n£2 m) 

15.4% Au 24.4% Ag 13% Pd 15.2% Pd 17.1% Pd 15.5% Pt 13.8% Pd 23.4% Ni 

p' at X (n£2 m) 66.3 107.2 121.6 83.8 82.2 244 181 300 

Experimental 

I NOTE: First symbol [e.g., Ag in AgAu) is the matrix (solvent) and the second (Au) is the added solute. X is in at.%, converted from 
I traditional weight percentages reported with alloys. Ceff is the effective Nordheim coefficient in p = p0+Ceff X(1 -X). 

*2.10 TCR and alloy resistivity Table 2.10 shows the resistivity and TCR (a) of Cu-Ni alloys. Plot TCR 

versus 1 /p, and obtain the best-fit line. What is your conclusion? Consider the Matthiessen rule, and ex¬ 

plain why the plot should be a straight line. What is the relationship between pcu, acu * PcuNi * and crcuNi ? Can 

this be generalized? 

Table 2.10 Cu-Ni alloys, resistivity, and TCR 

Ni wt.% in Cu-Ni 

0 2 6 11 20 

Resistivity (nS2 m) 17 50 100 150 300 

TCR (ppm °C-1) 4270 1350 550 430 160 

I NOTE: ppm-parts per million, i.e., 10 6. 

2.11 Electrical and thermal conductivity of In Electron drift mobility in indium has been measured to 

be 6 cm2 V”1 s“]. The room temperature (27° C) resistivity of In is 8.37 x 10"8 Q m, and its atomic mass 

and density are 114.82 amu or g mol”*1 and 7.31 g cm-3, respectively. 

a. Based on the resistivity value, determine how many free electrons are donated by each In atom in 

the crystal. How does this compare with the position of In in the Periodic Table (Group IIIB)? 

b. If the mean speed of conduction electrons in In is 1.74 x 108 cms"1, what is the mean free path? 

c. Calculate the thermal conductivity of In. How does this compare with the experimental value of 

81.6 W m"1 K"1? 

2.12 Electrical and thermal conductivity of Ag The electron drift mobility in silver has been measured to 

be 56 cm2 V"1 s~l at 27 °C. The atomic mass and density of Ag are given as 107.87 amu or g mol-1 

and 10.50 g cm"3, respectively. 

a. Assuming that each Ag atom contributes one conduction electron, calculate the resistivity of Ag at 

27 °C. Compare this value with the measured value of 1.6 x 10"8 Qm at the same temperature and 

suggest reasons for the difference. 

b. Calculate the thermal conductivity of silver at 27 °C and at 0 °C. 
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2.13 Mixture rules A 70% Cu-30% Zn brass electrical component has been made of powdered metal and 

contains 15 vol.% porosity. Assume that the pores are dispersed randomly. Given that the resistivity of 

70% Cu-30% Zn brass is 62 nfl m, calculate the effective resistivity of the brass component using the 

simple conductivity mixture rule, Equation 2.26, and the Reynolds and Hough rule. 

2.14 Mixture rules 

a. A certain carbon electrode used in electrical arcing applications is 47 percent porous. Given that the 

resistivity of graphite (in polycrystalline form) at room temperature is about 9.1 /iQm, estimate the 

effective resistivity of the carbon electrode using the appropriate Reynolds and Hough rule and 

the simple conductivity mixture rule. Compare your estimates with the measured value of 18 /xQ m 

and comment on the differences. 

b. Silver particles are dispersed in a graphite paste to increase the effective conductivity of the paste. 

If the volume fraction of dispersed silver is 30 percent, what is the effective conductivity of this 

paste? 

2.15 Ag-Ni alloys (contact materials) and the mixture rules Silver alloys, particularly Ag alloys with the 

precious metals Pt, Pd, Ni, and Au, are extensively used as contact materials in various switches. Alloy¬ 

ing Ag with other metals generally increases the hardness, wear resistance, and corrosion resistance at 

the expense of electrical and thermal conductivity. For example, Ag-Ni alloys are widely used as con¬ 

tact materials in switches in domestic appliances, control and selector switches, circuit breakers, and au¬ 

tomotive switches up to several hundred amperes of current. Table 2.11 shows the resistivities of four 

Ag-Ni alloys used in make-and-break as well as disconnect contacts with current ratings up to MOO A. 

a. Ag-Ni is a two-phase alloy, a mixture of Ag-rich and Ni-rich phases. Using an appropriate mixture 

rule, predict the resistivity of the alloy and compare with the measured values in Table 2.11. Ex¬ 

plain the difference between the predicted and experimental values. 

b. Compare the resistivity of Ag-10% Ni with that of Ag-10% Pd in Table 2.9. The resistivity of the 

Ag-Pd alloy is almost a factor of 5 greater. Ag-Pd is an isomorphous solid solution, whereas Ag-Ni 

is a two-phase mixture. Explain the difference in the resistivities of Ag-Ni and Ag-Pd. 

Table 2.11 Resistivity of Ag-Ni contact alloys for switches 

Ni % in Ag-Ni 

0 10 15 20 30 100 

p(n£2 m) 16.9 20.9 23.6 25 31.1 71.4 

d(g cm-3) 10.5 10.3 9.76 9.4 9.47 8.9 

Hardness 30 50 55 60 65 80 

VHN 

NOTE: Compositions are in wt.%. Ag-10% Ni means 90% Ag-10% Ni. 
Vickers hardness number (VHN) is a measure of the hardness or strength of the 
alloy and d is density. 

2.16 Ag-W alloys (contact materials) and the mixture rule Silver-tungsten alloys are frequently used in 

heavy-duty switching applications (e.g., current-carrying contacts and oil circuit breakers) and in arcing 

tips. Ag-W is a two-phase alloy, a mixture of Ag-rich and W-rich phases. The measured resistivity and 

density for various Ag-W compositions are summarized in Table 2.12. 

a. Plot the resistivity and density of the Ag-W alloy against the W content (wt.%) 

b. Show that the density of the mixture, d, is given by 

d~x = wad~l +W{jdJx 

where wa is the weight fraction of phase or, wp is the weight fraction of phase j8, da is the density 

of phase or, and dp is the density of phase 
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c. Show that the resistivity mixture rule is 

P = 

where p is the resistivity of the alloy (mixture), d is the density of the alloy (mixture), and sub¬ 

scripts a and /} refer to phases a and /J, respectively. 

d. Calculate the density d and the resistivity p of the mixture for various values of W content (in 

wt.%) and plot the calculated values in the same graph as the experimental values. What is your 

conclusion? 

Table 2.12 Dependence of resistivity in Ag-W alloy on composition as a function of wt.% W 

W(wt.%) 

0 10 15 20 30 40 65 70 75 80 85 90 100 
p (n£2 m) 16.2 18.6 19.7 20.9 22.7 27.6 35.5 38.3 40 46 47.9 53.9 55.6 

d (g cm-3 ) 10.5 10.75 10.95 11.3 12 12.35 14.485 15.02 15.325 16.18 16.6 17.25 19.1 

I NOTE: p - resistivity and d = density. 

2.17 Thermal conduction Consider brass alloys with an X atomic fraction of Zn. Since Zn addition in¬ 

creases the number of conduction electrons, we have to scale the final alloy resistivity calculated from 

the simple Matthiessen-Nordheim rule in Equation 2.22 down by a factor (1 + X) (see Question 2.8) so 

that the resistivity of the alloy is p « [pQ + CX(l — X)]/(l + X) in which C = 300n£2m and 

Po = PCu = 17 nQ m. 

a. An 80 at.% Cu-20 at.% Zn brass disk of 40 mm diameter and 5 mm thickness is used to conduct 

heat from a heat source to a heat sink. 

(1) Calculate the thermal resistance of the brass disk. 

(2) If the disk is conducting heat at a rate of 100 W, calculate the temperature drop along the disk. 

b. What should be the composition of brass if the temperature drop across the disk is to be halved? 

2.18 Thermal resistance Consider a thin insulating disk made of mica to electrically insulate a semicon¬ 

ductor device from a conducting heat sink. Mica has k = 0.75 W m-1 K_1. The disk thickness is 0.1 mm, 

and the diameter is 10 mm. What is the thermal resistance of the disk? What is the temperature drop 

across the disk if the heat current through it is 25 W? 

*2.19 Thermal resistance Consider a coaxial cable operating under steady-state conditions when the cur¬ 

rent flow through the inner conductor generates Joule heat at a rate P — I2R. The heat generated per 

second by the core conductor flows through the dielectric; Qf = I2R. The inner conductor reaches a 

temperature 7}, whereas the outer conductor is at T0. Show that the thermal resistance 6 of the hollow 

cylindrical insulation for heat flow in the radial direction is 

„ = = WMa) 
Q! ItzkL 

where a is the inside (core conductor) radius, b is the outside radius (outer conductor), k is the thermal 

conductivity of the insulation, and L is the cable length. Consider a coaxial cable that has a copper core 

conductor and polyethylene (PE) dielectric with the following properties: Core conductor resistivity 

p — 19 n£2 m, core radius a — 4 mm, dielectric thickness b — a = 3.5 mm, dielectric thermal conduc¬ 

tivity k = 0.3 W m-1 K“*. The outside temperature T0 is 25 °C. The cable is carrying a current of 

500 A. What is the temperature of the inner conductor? 

2.20 The Hall effect Consider a rectangular sample, a metal or an rc-type semiconductor, with a length 

L, width W, and thickness D. A current I is passed along L, perpendicular to the cross-sectional 

Mixture rule and 

weight fractions 

Thermal 

resistance of 

hollow cylinder 
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area WD. The face W x L is exposed to a magnetic field density B. A voltmeter is connected across 

the width, as shown in Figure 2.40, to read the Hall voltage Vh . 

a. Show that the Hall voltage recorded by the voltmeter is 

IB 
Hall voltage Vh = 

b. Consider a 1 -micron-thick strip of gold layer on an insulating substrate that is a candidate for a Hall 

probe sensor. If the current through the film is maintained at constant 100 mA, what is the magnetic 

field that can be recorded per fi V of Hall voltage? 

Figure 2.40 Hall effect in a rectangular material 

with length L, width W, and thickness D. 

The voltmeter is across the width W. 

Strain gauge 

equation 

Poisson ratio 

2.21 The strain gauge A strain gauge is a transducer attached to a body to measure its fractional elongation 

AL/L under an applied load (force) F. The gauge is a grid of many folded runs of a thin, resistive wire 

glued to a flexible backing, as depicted in Figure 2.41. The gauge is attached to the body under test such 

that the resistive wire length is parallel to the strain. 

a. Assume that the elongation does not change the resistivity and show that the change in the resis¬ 

tance AR is related to the strain e = A L/L by 

AR » J?(l + 2v)e [2.661 

where v is the Poisson ratio, which is defined by 

Transverse strain et 
v =  -:—-—--r- =- 12.67J 

Longitudinal strain ei 

where £/ is the strain along the applied load, that is, £/ = A L/L = e, and et is the strain in the 

transverse direction, that is, et = AD/D, where D is the diameter (thickness) of the wire. 

b. Explain why a nichrome wire would be a better choice than copper for the strain gauge (consider 

the TCR). 

Figure 2.41 The strain gauge consists of a long, thin wire 

folded several times along its length to form a grid as shown 

and embedded in a self-adhesive tape. 

The ends of the wire are attached to terminals (solder pads) 

for external connections. The tape is stuck on the component 

for which the strain is to be measured. 

Gauge length —*\ 

Solder tab 

Adhesive tape 

Grid of metal wires 
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c. How do temperature changes affect the response of the gauge? Consider the effect of temperature 

on p. Also consider the differential expansion of the specimen with respect to the gauge wire such 

that even if there is no applied load, there is still strain, which is determined by the differential ex¬ 

pansion coefficient, ^specimen — ^gauge, where k is the thermal coefficient of linear expansion: 

L = Lo[l + k(T — 7o)], where 7o is the reference temperature. 

d. The gauge factor for a transducer is defined as the fractional change in the measured property 

AR/R per unit input signal (e). What is the gauge factor for a metal-wire strain gauge, given that 

for most metals, v ^ ^ ? 

e. Consider a strain gauge that consists of a nichrome wire of resistivity 1 pQ m, a total length of 1 m, 

and a diameter of 25 pm. What is AR for a strain of 10“3? Assume that v & ^. 

f What will AR be if constantan wire with a resistivity of 500 nQ m is used? 

2.22 Thermal coefficients of expansion and resistivity 

a. Consider a thin metal wire of length L and diameter D. Its resistance is R = pL/A, where 

A = nD2/4, By considering the temperature dependence of L, A, and p individually, show that 

\^d_R 

RdT 
= (Xq — Xq 

where ao is the temperature coefficient of resistivity (TCR), and Xo is the temperature coefficient 

of linear expansion (thermal expansion coefficient or expansivity), that is. 

Change in R 

with 

temperature 

b. 

ko = or *0 = £>o_1 
T=7o 

Note: Consider differentiating R = pL/[(nD2)/4] with respect to T with each parameter, p, L, 

and D, having a temperature dependence. 

Given that typically, for most pure metals, ao & 1/273 K_1 and ko & 2 x 10"5 K"1, con¬ 

firm that the temperature dependence of p controls R, rather than the temperature dependence 

of the geometry. Is it necessary to modify the given equation for a wire with a noncircular cross 

section? 

Is it possible to design a resistor from a suitable alloy such that its temperature dependence is al¬ 

most nil? Consider the TCR of an alloy of two metals A and £, for which aAs % aApA/pAB- 

2.23 Temperature of a light bulb filament 

a. Consider a 100 W, 120 V incandescent bulb (lamp). The tungsten filament has a length of 0.579 m 

and a diameter of 63.5 pm. Its resistivity at room temperature is 56 n£2 m. Given that the resistiv¬ 

ity of the filament can be represented as 

p = P^y j [2.68] Resistivity ofW 

where T is the temperature in K, po is the resistance of the filament at 7o K, and n — 1.2, estimate 

the temperature of the bulb when it is operated at the rated voltage, that is, directly from the main 

outlet. Note that the bulb dissipates 100 W at 120 V. 

b. Suppose that the electrical power dissipated in the tungsten wire is totally radiated from the surface 

of the filament. The radiated power at the absolute temperature T can be described by Stefan’s law 

Pradiated = COSA (t4 - T04) [2.69] Radiated power 

where as is Stefan’s constant (5.67 x 10“8 W m-2 K"4), € is the emissivity of the surface (0.35 

for tungsten), A is the surface area of the tungsten filament, and To is room temperature (293 K). 

Obviously, for T > 7o, /radiated = easAT4. 

Assuming that all the electrical power is radiated from the surface, estimate the temperature of 

the filament and compare it with your answer in part (a). 

c. If the melting temperature of W is 3407 °C, what is the voltage that guarantees that the light bulb 

will blow? 
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Einstein relation 

2.24 Einstein relation and ionic conductivity In the case of ionic conduction, ions have to jump from one 

interstice to the neighboring one. This process involves overcoming a potential energy barrier just like 

atomic diffusion, and drift and diffusion are related. The drift mobility p of ions is proportional to the 

diffusion coefficient D because drift is limited by the atomic diffusion process. The Einstein relation 

relates the two by 

D _ kT_ 

M ~ e 
[2.70] 

Diffusion coefficient of the Na+ ion in sodium silicate (Na20-Si02) glasses at 400 °C is 3.4 x 10”9 

cm2 s”1. The density of such glasses is approximately 2.4 g cm-3. Calculate the ionic conductivity and 

resistivity of (17.5 mol% Na20)(82.5 mol% Si02> sodium silicate glass at 400 °C and compare your re¬ 

sult with the experimental values of the order of 104 £1 cm for the resistivity. 

2.25 Skin effect 

a. What is the skin depth for a copper wire carrying a current at 60 Hz? The resistivity of copper at 

27 °C is 17 nQ m. Its relative permeability pr ^ 1. Is there any sense in using a conductor for 

power transmission which has a diameter more than 2 cm? 

b. What is the skin depth for an iron wire carrying a current at 60 Hz? The resistivity of iron at 27 °C 

is 97 nQ m. Assume that its relative permeability pr & 700. How does this compare with the cop¬ 

per wire? Discuss why copper is preferred over iron for power transmission even though iron is 

nearly 100 times cheaper than copper. 

2.26 Thin films 

a. Consider a polycrystalline copper film that has R = 0.40. What is the approximate mean grain size 

d in terms of the mean free path k in the bulk that would lead to the polycrystalline Cu film having 

a resistivity that is 1 .Spbuik* If the mean free path in the crystal is about 40 nm at room temperature, 

what is dl 

b. What is the thickness D of a copper film in terms of k in which surface scattering increases the film 

resistivity to 1.2pbUik if the specular scattering fraction p is 0.5? 

c. Consider the data of Lim et al (2003) presented in Table 2.13. Show that the excess resistivity, i.e. 

resistivity above that of bulk Cu, is roughly proportional to the reciprocal film thickness. 

Table 2.13 Resistivity pfj|m of a copper film as a function of thickness D. 

D (nm) 8.61 17.2 34.4 51.9 69 85.8 102.6 120.3 173.2 224.3 

pmm( n£2m) 121.8 75.3 46.1 38.5 32.1 25.2 22.0 20.5 19.9 18.8 

NOTE: Film annealed at 150 °C. 

SOURCE: Data extracted from J. W. Lim et al., Appl. Surf. Sci. 217, 95, 2003. 

2.27 Interconnects Consider a high-transistor-density CMOS chip in which the interconnects are copper 

with a pitch P of 500 nm, interconnect thickness T of 400 nm, aspect ratio 1.4, and H - X. The dielectric 

is FSG with er = 3.6. Consider two cases, L = 1mm and L = 10 mm, and calculate the overall effec¬ 

tive interconnect capacitance Ceff and the RC delay time. Suppose that Al, which is normally Al with 

about 4 wt.% Cu in the microelectronics industry with a resistivity 31 n£2 m, is used as the interconnect. 

What is the corresponding RC delay time? 

*2.28 Thin 50 nm interconnects Equation 2.60 is for conduction in a thin film of thickness D and assumes 

scattering from two surfaces, which yields an additional resistivity p2 = Pbuik|(^/^)(1 — p). An inter¬ 
connect line in an IC is not quite a thin film and has four surfaces (interfaces), because the thickness T 

of the conductor is comparable to the width W. If we assume T — W, we can very roughly take 

Pa ^ Pi + Pi ^ Pbuik | (X/D)(l — p) in which D = T. (The exact expression is more complicated, but 
the latter will suffice for this problem.) In addition there will be a contribution from grain boundary 
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scattering, (Equation 2.57a). For simplicity assume 60 nm, X = 40 nm, p = 0.5 

and er = 3.6. If the mean grain size d is roughly 40 nm and R = 0.4, estimate the resistivity of the 

interconnect and hence the RC delay for a 1 mm interconnect. 

2.29 TCR of thin films Consider Matthiessen’s rule applied to a thin film. Show that, very approximately, 

the product of the thermal coefficient of resistivity (TCR) amm and the resistivity pmm is equivalent to 

the product of the bulk TCR and resistivity: 

QffilmPfilm ^ abulkA>ulk 

2.30 Electromigration Although electromigration-induced failure in Cu metallization is less severe than in 

A1 metallization, it can still lead to interconnect failure depending on current densities and the operating 

temperature. In a set of experiments carried out on electroplated Cu metallization lines, failure of the Cu 

interconnects have been examined under accelerated tests (at elevated temperatures). The mean lifetime 

tso (time for 50 percent of the lines to break) have been measured as a function of current density 7 and 

temperature T at a given current density. The results are summarized in Table 2.14. 

a. Plot semilogarithmically f5p versus 1/7 (Tin Kelvins) for the first three interconnects. Al(Cu) and 

Cu (1.3 x 0.7pm2) have single activation energies Ea-Calculate Ea for these interconnects. Cu 

(1.3 x 0.7pm2) exhibits different activation energies for the high-and low-temperature regions. 

Estimate these Ea. 

b. Plot on a log-log plot tso versus Tat 370 °C. Show that at low 7, n ^ 1.1 and at high J,n & 1.8. 

Table 2.14 Results of electromigration failure experiments on various Al and Cu interconnects 

Al(Cu) 
[J = 25 mA/pm2, 
A = 0.35 x 0.2 (/im)2] 

Cu 
[/= 25 mA/pm2, 
A = 0.24 x 0.28 (Atm)2] 

Cu 
[7 = 25 mA/pm2, 
A s 1.3 x 0.7 (/xm)2] 

Cu 
(T = 370 °C) 

7TC) *50 (hr) r(°c> *so (hr) 7TC) *so (hr) J mA pm~2 *so (hr) 

365 0.11 397 2.87 395 40.3 3.54 131.5 
300 0.98 354 12.8 360 196 11.7 25.2 

259 5.73 315 70.53 314 825 24.8 14.9 
233 15.7 269 180 285 2098 49.2 4.28 

232 899 74.1 2.29 

140 0.69 

NOTE: A = width X height in micron2. 

SOURCE: Data extracted from R. Rosenberg etoi, (IBM, T. J. Watson Research Center, Annu. Rev. Mater. Sci., 30, 
229, 2000, figures 29 and 31, and subject to small extraction errors.) 

Gordon Teal (Left) and Morgan Sparks fabricated 
the first grown-junction Ge transistor in 
1950-1951 at Bell Labs. Gordon Teal started at 
Bell Labs but later moved to Texas Instruments 
where he lead the development of the first 
commercial Si transistor; the first Si transistor was 
made at Bell Labs by Morris Tanenbaum. 

I SOURCE: Courtesy of Bell Laboratories, Lucent 
I Technologies. 



3 x 103 photons 1.2 x 104 photons 

3.6 x 106 photons 2.8 x 107 photons 

These electronic images were made with the number of photons indicated. The discrete nature of photons means 
that a large number of photons are needed to constitute an image with satisfactorily discernable details. 

I SOURCE: A. Rose, "Quantum and noise limitations of the visual process" J. Opt. Soc. of America, vol. 43, 
I 715, 1953. (Courtesy of OSA.) 



Elementary Quantum Physics 

The triumph of modem physics is the triumph of quantum mechanics. Even the sim¬ 
plest experimental observation that the resistivity of a metal depends linearly on the 
temperature can only be explained by quantum physics, simply because we must take 
the mean speed of the conduction electrons to be nearly independent of temperature. 
The modem definitions of voltage and ohm, adopted in January 1990 and now part of 
the IEEE standards, are based on Josephson and quantum Hall effects, both of which 
are quantum mechanical phenomena. 

One of the most important discoveries in physics has been the wave-particle 
duality of nature. The electron, which we have so far considered to be a particle and 
hence to be obeying Newton’s second law (F = ma), can also exhibit wave-like prop¬ 
erties quite contrary to our intuition. An electron beam can give rise to diffraction 
patterns and interference fringes, just like a light wave. Interference and diffraction 
phenomena displayed by light can only be explained by treating light as an electro¬ 
magnetic wave. But light can also exhibit particle-like properties in which it behaves 
as if it were a stream of discrete entities (“photons”), each carrying a linear momen¬ 
tum and each interacting discretely with electrons in matter (just like a particle collid¬ 
ing with another particle). 

3.1 PHOTONS 

3.1.1 Light as a Wave 

In introductory physics courses, light is considered to be a wave. Indeed, such phe¬ 
nomena as interference, diffraction, refraction, and reflection can all be explained 
by the theory of waves. In all these phenomena, a ray of light is considered to be an 
electromagnetic (EM) wave with a given frequency, as depicted in Figure 3.1. The 
electric and magnetic fields, Ey and Bz, of this wave are perpendicular to each other and 
to the direction of propagation jc. The electric field Ey at position x at time t may be 
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Figure 3.1 The classical view of light as an electromagnetic wave. 

An electromagnetic wave is a traveling wave with time-varying electric and magnetic fields that 
are perpendicular to each other and to the direction of propagation. 

Traveling 

wave 

Intensity of 

light wave 

described by 

‘Ly{jc, t) = £0 sin(£jc — cot) [3.1] 

where k is the wavenumber (propagation constant) related to the wavelength X by 
k = 2n/X, and co is the angular frequency of the wave (or 2tcv, where v is the fre¬ 
quency). A similar equation describes the variation of the magnetic field Bz (directed 
along z) with x at any time t. Equation 3.1 represents a traveling wave in the x direc¬ 
tion, which, in the present example, is a sinusoidally varying functiori (Figure 3.1). The 
velocity of the wave (strictly the phase velocity) is 

co 
c = — = vX 

k 

where v is the frequency. The intensity J, that is, the energy flowing per unit area per 
second, of the wave represented by Equation 3.1 is given by 

13.2] 

where e0 is the absolute permittivity. 
Understanding the wave nature of light is fundamental to understanding interfer¬ 

ence and diffraction, two phenomena that we experience with sound waves almost on 
a daily basis. Figure 3.2 illustrates how the interference of secondary waves from the 
two slits Si and S2 gives rise to the dark and bright fringes (called Young’s fringes) 
on a screen placed at some distance from the slits. At point P on the screen, the waves 
emanating from Si and S2 interfere constructively, if they are in phase. This is the 
case if the path difference between the two rays is an integer multiple of the wave¬ 
length X, or 

SiP — S2P = nX 

where n is an integer. If the two waves are out of phase by a path difference of k/2, or 

SlP-S2P = 
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Constructive interference 

Destructive interference 

Photographic film showing 
Young's fringes 

Figure 3.2 Schematic illustration of Young's double-slit experiment. 

Photographic film Photographic film 
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X-rays with all 
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M (b) (c) 

Figure 3.3 Diffraction patterns obtained by passing X-rays through crystals can only be explained by using ideas based 
on the interference of waves. 

(a) Diffraction of X-rays from a single crystal gives a diffraction pattern of bright spots on a photographic film. 

(b) Diffraction of X-rays from a powdered crystalline material or a polycrystalline material gives a diffraction pattern of 
bright rings on a photographic film. 

(c) X-ray diffraction involves the constructive interference of waves being "reflected" by various atomic planes in the crystal. 

then the waves interfere destructively and the intensity at point P vanishes. Thus, in the 
y direction, the observer sees a pattern of bright and dark fringes. 

When X-rays are incident on a crystalline material, they give rise to typical dif¬ 
fraction patterns on a photographic plate, as shown in Figure 3.3a and b, which can 
only be explained by using wave concepts. For simplicity, consider two waves, 1 and 
2, in an X-ray beam. The waves are initially in phase, as shown in Figure 3.3c. Sup¬ 
pose that wave 1 is “reflected” from the first plane of atoms in the crystal, whereas 
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Bragg 

diffraction 

condition 

wave 2 is “reflected” from the second plane.1 After reflection, wave 2 has traveled an 
additional distance equivalent to 2d sin 6 before reaching wave 1. The path difference 
between the two waves is 2d sin 6, where d is the separation of the atomic planes. For 
constructive interference, this must be nX, where n is an integer. Otherwise, waves 1 

and 2 will interfere destructively and will cancel each other. Waves reflected from ad¬ 
jacent atomic planes interfere constructively to constitute a diffracted beam only when 
the path difference between the waves is an integer multiple of the wavelength, and 
this will only be the case for certain directions. Therefore the condition for the 
existence of a diffracted beam is 

2d sin 9 = nX n = 1, 2, 3,... [3.31 

The condition expressed in Equation 3.3, for observing a diffracted beam, forms 
the whole basis for identifying and studying various crystal structures (the science of 
crystallography). The equation is referred to as Bragg’s law, and arises from the con¬ 
structive interference of waves. 

Aside from exhibiting wave-like properties, light can behave like a stream of “par¬ 
ticles” of zero rest-mass. As it turns out, the only way to explain a vast number of 
experiments is to view light as a stream of discrete entities or energy packets called 
photons, each carrying a quantum of energy h v, and momentum h/X, where h is a uni¬ 
versal constant that can be determined experimentally, and v is the frequency of light. 
This photonic view of light is drastically different than the simple wave picture and 
must be examined closely to understand its origin. 

3.1.2 The Photoelectric Effect 

Consider a quartz glass vacuum tube with two metal electrodes, a photocathode and an 
anode, which are connected externally to a voltage supply V (variable and reversible) 
via an ammeter, as schematically illustrated in Figure 3.4. When the cathode is illumi¬ 
nated with light, if the frequency v of the light is greater than a certain critical value vo, 
the ammeter registers a current /, even when the anode voltage is zero (i.e., the supply 
is bypassed). When light strikes the cathode, electrons are emitted with sufficient ki¬ 
netic energy to reach the opposite electrode. Applying a positive voltage to the anode 
helps to collect more of the electrons and thus increases the current, until it saturates 
because all the photoemitted electrons have been collected. The current, then, is lim¬ 
ited by the rate of supply of photoemitted electrons. If, on the other hand, we apply a 
negative voltage to the anode, we can “push” back the photoemitted electrons and 
hence reduce the current I. Figure 3.5a shows the dependence of the photocurrent on 
the anode voltage, for one particular frequency of light. 

Recall that when an electron traverses a voltage difference V, its potential energy 
changes by eV (potential difference is defined as work done per unit charge). When a 
negative voltage is applied to the anode, the electron has to do work to get to this elec¬ 
trode, and this work comes from its kinetic energy just after photoemission. When the 
negative anode voltage V is equal to Vo> which just “extinguishes” the current /, we 

' Strictly, one must consider the scattering of waves from the electrons in individual atoms (e.g., atoms A and B in 
Figure 3.3c) and examine the constructive interference of these scattered waves, which leads to the same condition 
as that derived in Equation 3.3. 
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I 

(a) Photoelectric current versus voltage when 
the cathode is illuminated with light of 
identical wavelength but different intensities 
(l). The saturation current is proportional to the 
light intensity. 

/ 

(b) The stopping voltage and therefore the 
maximum kinetic energy of the emitted 
electron increases with the frequency of light, 
v. (The light intensity is not the same; it is 
adjusted to keep the saturation current the 
same.) 

Figure 3.5 Results from the photoelectric experiment. 

know that the potential energy “gained” by the electron is just the kinetic energy lost 
by the electron, or 

eV0= ~mev2 = KEm 

where v is the velocity and KEm is the kinetic energy of the electron just after photo¬ 
emission. Therefore, we can conveniently measure the maximum kinetic energy KEm 

of the Emitted electrons. 
For a given frequency of light, increasing the intensity of light I requires the same 

voltage Vo to extinguish the current; that is, the KEm of emitted electrons is indepen¬ 
dent of the light intensity J. This is quite surprising. However, increasing the intensity 
does increase the saturation current. Both of these effects are noted in the I-V results 
shown in Figure 3.5a. 
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Figure 3.6 The effect of varying the frequency of light 

and the cathode material in the photoelectric experiment. 

The lines for the different materials have the same slope h 
but different intercepts. 

Photoemitted 

electron 

maximum KE 

Since the magnitude of the saturation photocurrent depends on the light intensity 
I, whereas the KE of the emitted electron is independent of J, we are forced to con¬ 
clude that only the number of electrons ejected depends on the light intensity. Further¬ 
more, if we plot KEm (from the Vo value) against the light frequency v for different 
electrode metals for the cathode, we find the typical behavior shown in Figure 3.6. 
This shows that the KE of the emitted electron depends on the frequency of light. The 
experimental results shown in Figure 3.6 can be summarized by a statement that relates 
the KEm of the electron to the frequency of light and the electrode metal, as follows: 

KEm = hv — hv o [3.4] 

where h is the slope of the straight line and is independent of the type of metal, whereas 
vo depends on the electrode material for the photocathode (e.g., v0i, v02, etc.). Equa¬ 
tion 3.4 is essentially a succinct statement of the experimental observations of the photo¬ 
electric effect as exhibited in Figure 3.6. The constant h is called Planck’s constant, 
which, from the slope of the straight lines in Figure 3.6, can be shown to be about 
6.6 x 1CT34 J s. This was beautifully demonstrated by Millikan in 1915, in an excellent 
series of photoelectric experiments using different photocathode materials. 

The successful interpretation of the photoelectric effect was first given in 1905 
by Einstein, who proposed that light consists of “energy packets,” each of which has 
the magnitude hv. We can call these energy quanta photons. When one photon strikes 
an electron, its energy is transferred to the electron. The whole photon becomes ab¬ 
sorbed by the electron. Yet, an electron in a metal is in a lower state of potential energy 
(PE) than in vacuum, by an amount <I>, which we call the work function of the metal, 
as illustrated in Figure 3.7. The lower PE is what keeps the electron in the metal; 
otherwise, it would “drop out.” 



3. i Photons 197 

ffiiKttii'.'...'.", 

nmw 

Cu ions 

"Electron gas" ("free" 
electrons wandering 

around in the metal) 

Figure 3.7 The PE of an electron 

inside the metal is lower than outside by 

an energy called the workfunction of the 

metal. 

Work must be done to remove the 
electron from the metal. 

This lower PE is a result of the Coulombic attraction interaction between the elec¬ 
tron and the positive metal ions. Some of the photon energy hv therefore goes toward 
overcoming this PE barrier. The energy that is left (hv — d>) gives the electron its KE. 
The work function $ changes from one metal to another. Photoemission only occurs 
when hv is greater than <I>. This is clearly borne out by experiment, since a critical fre¬ 
quency v0 is needed to register a photocurrent. When v is less than vo, even if we use 
an extremely intense light, no current exists because no photoemission occurs, as 
demonstrated by the experimental results in Figure 3.6. Inasmuch as <l> depends on the 
metal, so does vo- Therefore, in Einstein’s interpretation hv0 = <!>. In fact, the mea¬ 
surement of v0 constitutes one method of determining the work function of the metal. 

This explanation for the photoelectric effect is further supported by the fact that the 
work function <J> from hv0 is in good agreement with that from thermionic emission ex¬ 
periments. There is an apparent similarity between the I-V characteristics of the photo¬ 
tube and that of the vacuum tube used in early radios. The only difference is that in the 
vacuum tube, the emission of electrons from the cathode is achieved by heating the cath¬ 
ode. Thermal energy ejects some electrons over the PE barrier <!>. The measurement of 
O by this thermionic emission process agrees with that from photoemission experiments. 

In the photonic interpretation of light, we still have to resolve the meaning of the 
intensity of light, because the classical intensity in Equation 3.2 

Classical 

light intensity 

is obviously not acceptable. Increasing the intensity of illumination in the photoelec¬ 
tric experiment increases the saturation current, which means that more electrons are 
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Figure 3.8 Intuitive visualization of 

light consisting of a stream of photons 

(not to be taken too literally). 

SOURCE: R. Serway, C. J. Moses, and 
C. A. Moyer, Modern Physics, Saunders 
College Publishing, 1989, p. 56, 
figure 2.16(b). 

Light 

intensity 

Photon flux 

emitted per unit time. We therefore infer that the cathode must be receiving more pho¬ 
tons per unit time at higher intensities. By definition, “intensity” refers to the amount 
of energy flowing through a unit area per unit time. If the number of photons crossing 
a unit area per unit time is the photon flux, denoted by rph, then the flow of energy 
through a unit area per unit time, the light intensity, is the product of this photon flux 
and the energy per photon, that is, 

where 

i= r phhv 

, _ AWph 

ph_ AAt 

[3.51 

[3.61 

in which ANph is the net number of photons crossing an area A in time At. With the 
energy of a photon given as hv and the intensity of light defined as Tphh v, the ex¬ 
planation for the photoelectric effect becomes self-consistent. The interpretation of 
light as a stream of photons can perhaps be intuitively imagined as depicted in 
Figure 3.8. 

EXAMPLE 3.1 ENERGY OF A BLUE PHOTON 
450 nm? 

What is the energy of a blue photon that has a wavelength of 

SOLUTION 

The energy of the photon is given by 

he (6.6 x 10—34 J s)(3 x 108ms-1) 
£Ph = hv = — = 

450 x 10"9 m 
= 4.4 x 10 -19 

Generally, with such small energy values, we prefer electron-volts (eV), so the energy of 
the photon is 

4.4 x 10"19 J 

1.6 x 10-19 J/eV 
= 2.75 eV 
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THE PHOTOELECTRIC EXPERIMENT In the photoelectric experiment, green light, with a wave¬ 
length of 522 nm, is the longest-wavelength radiation that can cause the photoemission of elec¬ 
trons from a clean sodium surface. 

a. What is the work function of sodium, in electron-volts? 

b. If UV (ultraviolet) radiation of wavelength 250 nm is incident to the sodium surface, what 
will be the kinetic energy of the photoemitted electrons, in electron-volts? 

c. Suppose that the UV light of wavelength 250 nm has an intensity of 20 mW cm-2. If the 
emitted electrons are collected by applying a positive bias to the opposite electrode, what 
will be the photoelectric current density? 

SOLUTION 

a. At threshold, the photon energy just causes photoemissions; that is, the electron just over¬ 
comes the potential barrier Thus, hc/X0 = e<t>, where <t> is the work function in eV, 
and A.0 is the longest wavelength. 

he (6.626 x 10"34 J s)(3 x 108 m s_1) 
d> =-= ----- = 2.38 eV 

ek0 (1.6 x 10-19 J/eV)(522 x 10~9 m) 

b. The energy of the incoming photon £ph is (hc/X), so the excess energy over e<P goes to the 
kinetic energy of the electron. Thus, 

KE 
(6.626 x 10“34 Js)(3 x 108ms"1) „ 

(1.6 x IQ'19 J/eV)(250 x 10"9m) “ '38 eV “ ‘58 eV 

c. The light intensity (defined as energy flux) is given by J = rph(/ic/A.), where rph is the 
number of photons arriving per unit area per unit time; that is, photon flux and (hc/X) is 
the energy per photon. Thus, if each photon releases one electron, the electron flux will be 
equal to the photon flux, and the current density, which is the charge flux, will be 

elX (1.6 x 10-19C)(20 x 10"3 x 104 Js_1 m"2)(250 x 10"9m) 

“ ^ ph “ He ~ (6.626 x 10-34 Js)(3 x 108ms-‘) 

= 40.3 A m-2 or 4.0 mA cm-2 

3.1.3 Compton Scattering 

When an X-ray strikes an electron, it is deflected, or “scattered.” In addition, the elec¬ 
tron moves away after the interaction, as depicted in Figure 3.9. The wavelength of the 
incoming and scattered X-rays can readily be measured. The frequency v' of the scat¬ 
tered X-ray is less than the frequency v of the incoming X-ray. When the KE of the 
electron is determined, we find that 

KE — hv — hv' 

Since the electron now also has a momentum pe, then from the conservation of linear mo¬ 
mentum law, we are forced to accept that the X-ray also has a momentum. The Compton 
effect experiments showed that the momentum of the photon is related to its wavelength by 

P 
h 

k 
[3.7] 

EXAMPLE 3.2 

Momentum of 

a photon 
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Recoiling electron 

Figure 3.9 Scattering of an X-ray 

photon by a "free" electron in a 

conductor. 

X-ray photon c 

>----Q- 

Photon 

energy and 

momentum 

We see that a photon not only has an energy hv, but also a momentum p, and it 
interacts as if it were a discrete entity like a particle. Therefore, when discussing the 
properties of a photon, we must consider its energy and momentum as if it were a 
particle. 

We should mention that the description of the Compton effect shown in Figure 3.9 
is, in fact, the inference from a more practical experiment involving the scattering of 
X-rays from a metal target. A collimated monochromatic beam of X-rays of wave¬ 
length A.0 strikes a conducting target, such as graphite, as illustrated in Figure 3.10a. 
A conducting target contains a large number of nearly “free” electrons (conduction 
electrons), which can scatter the X-rays. The scattered X-rays are detected at various 
angles 0 with respect to the original direction, and their wavelength X' is measured. 
The result of the experiment is therefore the scattered wavelength X' measured at var¬ 
ious scattering angles 6, as shown in Figure 3.10b. It turns out that the X' versus 9 
results agree with the conservation of linear momentum law applied to an X-ray pho¬ 
ton colliding with an electron with the momentum of the photon given precisely by 
Equation 3.7. 

The photoelectric experiment and the Compton effect are just two convincing 
experiments in modem physics that force us to accept that light can have particle-like 
properties. We already know that it can also exhibit wave-like properties, in such 
experiments as Young’s interference fringes. We are then faced with what is known as 
the wave-particle dilemma. How do we know whether light is going to behave like a 
wave or a particle? The properties exhibited by light depend very much on the nature 
of the experiment. Some experiments will require the wave model, whereas others may 
use the particulate interpretation of light. We should perhaps view the two interpreta¬ 
tions as two complementary ways of modeling the behavior of light when it interacts 
with matter, accepting the fact that light has a dual nature. Both models are needed for 
a full description of the behavior of light. 

The expressions for the energy and momentum of the photon, E = hv and 
p = h/X, can also be written in terms of the angular frequency <w(= 2tcv) and the 
wave number k, defined as k = 2n/X. If we define ft = h/2n, then 

E = hv = ha) and p — — = ftk 
X 

[3.8] 
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(a) A schematic diagram of the Compton experiment 

Intensity of Intensity of Intensity of 
X-rays X-rays X-rays 

Figure 3.10 The Compton experiment and its results. 

X-RAY PHOTON ENERGY AND MOMENTUM X-rays are photons with very short wave¬ 
lengths that can penetrate or pass through objects, hence their use in medical imaging, security 
scans at airports, and many other applications including X-ray diffraction studies of crystal 
structures. Typical X-rays used in mammography (medical imaging of breasts) have a wave¬ 
length of about 0.6 angstrom (1 A = 10“10 m). Calculate the energy and momentum of an 
X-ray photon with this wavelength, and the velocity of a corresponding electron that has the 
same momentum. 

EXAMPLE 3.3 

SOLUTION 

The photon energy Eph is given by 

he (6.6 x 10~34 J s)(3 x 108 m s-1) 
Ep-hv-j- 0.6 x 10“10 m 

= 2.06 x 104 eV or 20.6 keV 

The momentum p of this X-ray photon is 

h 6.6 x 10“34 J s 

eVJ'1 

1.6 x 10-19 

fl 0.0 X 1U J 5 „ t 

p = - = --— = 1.1 X 10-23 kg m s-' 
y X 0.6 x IQ"10 m 6 
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A corresponding electron with the same momentum, wieueiectron = P, would have a velocity 

P U x 1()-23 kgms"1 , „ in7 _ _i 
^electron — — „ , tft ,, . — 1.2 X 10 Ill S 

me 9.1 x 10-31 kg 

This is much greater than the average speed of conduction (free) electrons whizzing around in¬ 
side a metal, which is ~ 106 m s_1. 

3.1.4 Black Body Radiation 

Experiments indicate that all objects emit and absorb energy in the form of radiation, 
and the intensity of this radiation depends on the radiation wavelength and temperature 
of the object. This radiation is frequently termed thermal radiation. When the object 
is in thermal equilibrium with its surroundings, that is, at the same temperature, the 
object absorbs as much radiation energy as it emits. On the other hand, when the tem¬ 
perature of the object is above the temperature of its surroundings, there is a net emis¬ 
sion of radiation energy. The maximum amount of radiation energy that can be emitted 
by an object is called the black body radiation. Although, in general, the intensity of 
the radiated energy depends on the material’s surface, the radiation emitted from a cav¬ 
ity with a small aperture is independent of the material of the cavity and corresponds 
very closely to black body radiation. 

The intensity of the emitted radiation has the spectrum (i.e., intensity vs. wave¬ 
length characteristic), and the temperature dependence illustrated in Figure 3.11. It is 
useful to define a spectral irradiance lx as the emitted radiation intensity (power per 
unit area) per unit wavelength, so that I* 8 k is the intensity in a small range of wave¬ 
lengths 8X. Figure 3.11 shows the typical lx versus k behavior of black body radiation 
at two temperatures. We assume that the characteristics of the radiation emerging from 
the aperture represent those of the radiation within the cavity. 

Escaping black body 
radiation 

Small hole acts as a black body 

Figure 3.11 Schematic illustration of black body radiation and its characteristics. 

Spectral irradiance versus wavelength at two temperatures (3000 K is about the temperature of the incandescent 

tungsten filament in a light bulb). 
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Classical physics predicts that the acceleration and deceleration of the charges 
due to various thermal vibrations, oscillations, or motions of the atoms in the surface 
region of the cavity material result in electromagnetic waves of the emissions. These 
waves then interfere with each other, giving rise to many types of standing electro¬ 
magnetic waves with different wavelengths in the cavity. Each wave contributes an 
energy kT to the emitted intensity. If we calculate the number of standing waves within 
a small range of wavelength, the classical prediction leads to the Rayleigh-Jeans law 
in which ik oc. 1 /X4 and I* a T, which are not in agreement with the experiment, 
especially in the short-wavelength range (see Figure 3.11). 

Max Planck (1900) was able to show that the experimental results can be 
explained if we assume that the radiation within the cavity involves the emission and 
absorption of discrete amounts of light energy by the oscillation of the molecules of 
the cavity material. He assumed that oscillating molecules emit and absorb a quan¬ 
tity of energy that is an integer multiple of a discrete energy quantum that is deter¬ 
mined by the frequency v of the radiation and given by hv. This is what we now call 
a photon. He then considered the energy distribution (the statistics) in the molecular 
oscillations and took the probability of an oscillator possessing an energy nhv 
(where n is an integer) to be proportional to the Boltzmann factor, exp(-nhvfkT). 
He eventually derived the mathematical form of the black body radiation character¬ 
istics in Figure 3.11. Planck’s black body radiation formula for lx is generally ex¬ 
pressed as 

lx = 
2jrhc2 

x5 [exp(n?) - *. 
[3.91 

where k is the Boltzmann constant. Planck’s radiation law based on the emission and 
absorption of photons is in excellent agreement with all observed black body radiation 
characteristics as depicted in Figure 3.11. 

Planck’s radiation law is undoubtedly one of the major successes of modem 
physics. We can take Equation 3.9 one step further and derive Stefan’s black body ra¬ 

diation law that was used in Chapter 2 to calculate the rate of radiation energy emitted 
from the hot filament of a light bulb. If we integrate lx over all wavelengths,2 we will 
obtain the total radiative power Ps emitted by a black body per unit surface area at a 
temperature T, 

where as 
2n5k4 

15c2h3 
= 5.670 x 10"8 W m-2 K"4 

[3.10] 

[3.11] 

2The integration of Equation 3.9 can be done by looking up definite integral tables in math handbooks—we only 
need the result of the mathematics, which is Equation 3.10. The Ps in Equation 3.10 is sometimes called the radiant 
emittance. Stefan's law is also known as the Stefan-Boltzmann law. 

Planck’s 

radiation law 

Stefan’s black 

body 

radiation law 

Stefan’s 

constant 
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EXAMPLE 3.4 

Stefan’s law 

for a real 

surface 

Equation 3.10 in which Ps = asT4 is Stefan’s law for black body radiation, and the as 

in Equation 3.11 is the Stefan constant with a value of approximately 5.67 x 
10~8 W m“2 K-4. Stefan’s law was known before Planck used quantum physics to derive 
his black body radiation law embedded in Ik. A complete explanation of Stefan’s law 
and the value for as however had to wait for Planck’s law. The h in Equation 3.10 or 
3.11 is a clear pointer that the origin of Stefan’s law lies in quantum physics. 

STEFAN'S LAW AND THE LIGHT BULB Stefan’s law as stated in Equation 3.10 applies to a per¬ 
fect black body that is emitting radiation into its environment which is at absolute zero. If the 
environment or the surroundings of the black body is at a finite temperature T0, than the sur¬ 
roundings would also be emitting radiation. The same black body will then also absorb radia¬ 
tion from its environment. By definition, a black body is not only a perfect emitter of radiation 
but also a perfect absorber of radiation. The rate of radiation absorbed from the environment 
per unit surface is again given by Equation 3.10 but with Ta instead of T since it is the surround¬ 
ings that are emitting the radiation. Thus, asTf is the absorbed radiation rate from the sur¬ 
roundings, so 

Net rate of radiative power emission per unit surface — osT4 — osTf 

Further, not all surfaces are perfect black bodies. Black body emission is the maximum possi¬ 
ble emission from a surface at a given temperature. A real surface emits less than a black body. 
Emissivity e of a surface measures the efficiency of a surface in terms of a black body emitter; 
it is the ratio of the emitted radiation from a real surface to that emitted from a black body at a 
given temperature and over the same wavelength range. The total net rate of radiative power 
emission becomes 

^radiation = SeaS{TA - Tf) [3.121 

where 5 is the surface area that is emitting the radiation. Consider the tungsten filament of a 
100 W light bulb in a lamp. When we switch the lamp on, the current through the filament gen¬ 
erates heat which quickly heats up the filament to an operating temperature 7). At this tempera¬ 
ture, the electric energy that is input into the bulb is radiated away from the filament as radiation 
energy. A typical 100 W bulb filament has a length of 57.9 cm and a diameter of 63.5 pm. Its 
surface area is then 

5 = ;r(63.5 x 10“6 m)(0.579 m) = 1.155 x 10-4 m2 

The emissivity e of tungsten is about 0.35. Assuming that under steady-state operation all the 
electric power that is input into the bulb’s filament is radiated away, 

100 W = /"radiation = SsOS{TA - T*) 

= (1.155 X 10-4 m2)(0.35)(5.67 x 10"8 W m“2 K‘4)(7}4 - 3004) 

Solving we find, 

Tf = 2570 K or 2297 °C 

which is well below the melting temperature of tungsten which is 3422 °C. The second term that 
has Tf has very little effect on the calculation as radiation absorption from the environment is 
practically nil compared with the emitted radiation at Tf. 

The shift in the spectral intensity emitted from a black body with temperature is of partic¬ 
ular interest to many photoinstrumention engineers. The peak spectral intensity in Figure 3.11 
occurs at a wavelength Amax, which, by virtue of Equation 3.9, depends on the temperature of 
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the black body. By substituting a new variable x = hc/(kTk) into Equation 3.9 and differenti¬ 
ating it, or plotting it against x, we can show that the peak occurs when 

Amax T « 2.89 x 10-3 m K 

which is known as Wien’s displacement law. The peak emission shifts to lower wavelengths as 
the temperature increases. We can calculate the wavelength A.max corresponding to the peak in the 
spectral distribution of emitted radiation from our 100 W lamp: A.max = (2.89 x 10-3 m K)/ 
(2570 K) = 1.13 pm (in the infrared). 

Wien’s dis¬ 

placement 

law 

3.2 THE ELECTRON AS A WAVE 

3.2.1 De Broglie Relationship 

It is apparent from the photoelectric and Compton effects that light, which we thought 
was a wave, can behave as if it were a stream of particulate-like entities called photons. 
Can electrons exhibit wave-like properties? Again, this depends on the experiment and 
on the energy of the electrons. 

When the interference and diffraction experiments in Figures 3.2 and 3.3 are 
repeated with an electron beam, very similar results are found to those obtainable with 
light and X-rays. When we use an electron beam in Young’s double-slit experiment, 
we observe high- and low-intensity regions (i.e., Young’s fringes), as illustrated in 
Figure 3.12. The interference pattern is viewed on a fluorescent TV screen. When an 
energetic electron beam hits an A1 polycrystalline sample, it produces diffraction 
rings on a fluorescent screen (Figure 3.13), just like X-rays do on a photographic 

Fluorescent screen 

Electron diffraction fringes on 
the screen 

Figure 3.12 Young's double-slit experiment with electrons involves an electron 

gun and two slits in a cathode ray tube (CRT) (hence, in vacuum). 

Electrons from the filament are accelerated by a 50 kV anode voltage to produce a 

beam that is made to pass through the slits. The electrons then produce a visible 

pattern when they strike a fluorescent screen (e.g., a TV screen), and the resulting 

visual pattern is photographed. 

I SOURCE: Pattern from C. Jonsson, D. Brandt, and S. Hirschi, Am. J. Physics, 42, 1974, p. 9, 
I figure 8. Used with permission. 
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Screen 

Photographic plate 

(a) Thomson diffracted electrons by using a thin gold (b) In Thomson's electron diffraction apparatus a beam of 
foil and produced a diffraction pattern on the screen of electrons is generated in tube A, passed through collimating 
his apparatus in (b). The foil was polycrystalline, so tube 6, and made to impinge on a thin gold foil C The 
the diffraction pattern was circular rings. transmitted electrons impinge on the fluorescent screen E, 

or a photographic plate D, which could be lowered into 
the path. The entire apparatus was evacuated during 
the experiment. 

Thomson using a gold foil 

target. (d) Composite photograph showing diffraction 

patterns produced with an aluminum foil by 
X-rays and electrons of similar wavelength. 
Left: X-rays of A = 0.071 nm. Right: Electrons 
of energy 600 eV. 

(e) Diffraction pattern produced by 
40 keV electrons passing through zinc 
oxide powder. The distortion of the 
pattern was produced by a small 
magnet placed between the sample 
and the photographic plate. An X-ray 
diffraction pattern would not be 
affected by a magnetic field. 

Figure 3.13 The diffraction of electrons by crystals gives typical diffraction patterns that would be expected if waves 

were being diffracted, as in X-ray diffraction with crystals. 

SOURCE: (b) from G. P. Thomson, Proceedings of the Royal Society,; A117, no. 600, 1928; (c) and (d) from A. P French and 
F. Taylor, An Introduction to Quantum Mechanics, Norton, New York, 1978, p. 75; (e) from R. B. Leighton, Principles of Modern 
Physics, New York: McGraw-Hill, 1959, p. 84. 
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plate. The diffraction pattern obtained with an electron beam (Figure 3.13) means that 
the electrons are obeying the Bragg diffraction condition 2d sin 6 = n X just as much as 
the X-ray waves. 

Since we know the interatomic spacing d and we can measure the angle of diffrac¬ 
tion 20, we can readily evaluate the wavelength X associated with the wave-like behav¬ 
ior of the electrons. Furthermore, from the accelerating voltage V in the electron tube, 
we can also determine the momentum of the electrons, because the kinetic energy 
gained by the electrons, (p2/2me), is equal to eV. Simply by adjusting the accelerating 
voltage V, we can therefore study how the wavelength of the electron depends on the 
momentum. 

As a result of such studies and other similar experiments, it has been found that an 
electron traveling with a momentum p behaves like a wave of wavelength X given by 

h 
X = - [3.13] 

P 

This is just the reverse of the equation for the momentum of a photon given its 
wavelength. The same equation therefore relates wave-like and particle-like properties 
to and from each other. Thus, 

X 
h 

P 
or P 

h 

X 

is an equation that exposes the wave-particle duality of nature. It was first hypothe¬ 
sized by De Broglie in 1924. As an example, we can calculate the wavelengths of a 
number of particle-like objects: 

a. A 50 gram golf ball traveling at a velocity of 20 m s-1. 

The wavelength is 

h 
X = — 

mv 

6.63 x 10~34 Js 

(50 x 10-3kg)(20ms~l) 
= 6.63 x 10-34m 

The wavelength is so small that this golf ball will not exhibit any wave effects. 
Firing a stream of golf balls at a wall will not result in “diffraction rings” of golf balls. 

b. A proton traveling at 2200 ms-1. 
Using mp = 1.67 x 10~27 kg, we have X = (h/mv) ~ 0.18 nm. This is only 

slightly smaller than the interatomic distance in crystals, so firing protons at a 
crystal can result in diffraction. (Recall that to get a diffraction peak, we must sat¬ 
isfy the Bragg condition, 2d sin 6 = nX.) Protons, however, are charged, so they 
can penetrate only a small distance into the crystal. Hence, they are not used in 
crystal diffraction studies. 

c. Electron accelerated by 100 V. 

This voltage accelerates the electron to a KE equal to eV. From KE = 
p2/2me = eV, we can calculate p and hence X = h/p. The result is 
X = 0.123 nm. Since this is comparable to typical interatomic distances in solids, 
we would see a diffraction pattern when an electron beam strikes a crystal. The 
actual pattern is determined by the Bragg diffraction condition. 

Wavelength of 

the electron 

De Broglie 

relations 



208 chapter 3 • Elementary Quantum Physics 

3.2.2 Time-Independent Schrodinger Equation 

The experiments in which electrons exhibit interference and diffraction phenomena 
show quite clearly that, under certain conditions, the electron can behave as a wave; in 
other words, it can exhibit wave-like properties. There is a general equation that 
describes this wave-like behavior and, with the appropriate potential energy and 
boundary conditions, will predict the results of the experiments. The equation is called 
the Schrodinger equation and it forms the foundations of quantum theory. Its funda¬ 
mental nature is analogous to the classical physics assertion of Newton’s second law, 
F = ma, which of course cannot be proved. As a fundamental equation, Schrodinger’s 
has been found to successfully predict every observable physical phenomenon at the 
atomic scale. Without this equation, we will not be able to understand the properties of 
electronic materials and the principles of operation of many semiconductor devices. 
We introduce the equation through an analogy. 

A traveling electromagnetic wave resulting from sinusoidal current oscillations, or 
the traveling voltage wave on a long transmission line, can generally be described by 
a traveling-wave equation of the form 

*E(x, t) = exp j (kx — cot) = £(x) exp(—jeot) [3.14] 

where £(*) = £0 expO&jc) represents the spatial dependence, which is separate from 
the time variation. We assume that no transients exist to upset this perfect sinusoidal 
propagation. We note that the time dependence is harmonic and therefore predictable. 
For this reason, in ac circuits we put aside the exp(-jcot) term until we need the 
instantaneous magnitude of the voltage. 

The average intensity Jav = |c£02^ depends on the square of the amplitude. In 
Young’s double-slit experiment, the intensity varies along the y direction, which means 
that 2^ for the resultant wave depends on y. In the electron version of this experiment 
in Figure 3.12, what changes in the y direction is the probability of observing elec¬ 
trons; that is, there are peaks and troughs in the probability of finding electrons along 
y, just like the T,2 variation along y. We should therefore attach some probability inter¬ 
pretation to the wave description of the electron. 

In 1926, Max Bom suggested a probability wave interpretation for the wave-like 
behavior of the electron. 

£(*, t) = 2'o sin(£;c — cot) 

is a plane traveling wavefunction for an electric field; experimentally, we measure and 
interpret the intensity of a wave, namely |£(x, t)\2. There may be a similar wave func¬ 
tion for the electron, which we can represent by a function ^ (x, t). According to Bom, 
the significance of ^(x, t) is that its amplitude squared represents the probability of 
finding the electron per unit distance. Thus, in three dimensions, if ^ (x, y, z, t) repre¬ 
sents the wave property of the electron, it must have one of the following interpretations: 

1 'I' (jc, y, z, t) |2 is the probability of finding the electron per unit volume at 
x, y, z at time t. 

(x, y, z, t)\2 dx dy dz is the probability of finding the electron in a small 
elemental volume dx dy dz at y, z at time t. 
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If we are just considering one dimension, then the wavefimction is 4>(x, t), and 
|V(x, t)\2dx is the probability of finding the electron between x and (x + dx) at time t. 

We should note that since only |4>|2 has meaning, not the latter function need 
not be real; it can be a complex function with real and imaginary parts. For this reason, 
we tend to use 'l', where is the complex conjugate of 4*, instead of I'I'I2, to rep¬ 
resent the probability per unit volume. 

To obtain the wavefunction ^(x, t) for the electron, we need to know how the 
I electron interacts with its environment. This is embodied in its potential energy func- 
t tion V = V(x, t), because the net force the electron experiences is given by 

F = -dV/dx. 

For example, if the electron is attracted by a positive charge (e.g., the proton in a 
hydrogen atom), then it clearly has an electrostatic potential energy given by 

4 7te0r 

where r = yjx2 + y2 + z2 is the distance between the electron and the proton. 
If the PE of the electron is time independent, which means that V = V(x) in one 

dimension, then the spatial and time dependences of 4* (x, t) can be separated, just as 
in Equation 3.14, and the total wavefunction 4> (x, t) of the electron can be written as 

4>(x, t) = f(x) exp^-^p^ [3.15] 

where \J/(x) is the electron wavefunction that describes only the spatial behavior, and E 

is the energy of the electron. The temporal behavior is simply harmonic, by virtue of 
\ exp(-jEt/fi), which corresponds to exp(—ja>t) with an angular frequency (o = E/ft. 

j> The fundamental equation that describes the electron’s behavior by determining xfr(x)is 
I called the time-independent Schrodinger equation. It is given by the famous equation 

t d2xfr 2m 
I + -=-(£ - V)$ = 0 [3.16a] 

dx1 fi 

where m is the mass of the electron. 
This is a second-order differential equation. It should be reemphasized that the 

potential energy V in Equation 3.16a depends only on x. If the potential energy of the 
electron depends on time as well, that is, if V = V(x, r), then in general 4/(x, t) can¬ 
not be written as ^r(x)exp(—jEt/h). Instead, we must use the full version of the 
Schrodinger equation, which is discussed in more advanced textbooks. 

In three dimensions, there will be derivatives of rjr with respect to x, y, and z. We 
use the calculus notation (3^/3x), differentiating x(r(x, y,z) with respect to x but 
keeping y and z constant. Similar notations dxfs/dy and dxj/fdz are used for derivatives 
with respect to y alone and with respect to z alone, respectively. In three dimensions, 
Equation 3.16a becomes 

d2x}r d2\fr 

dx2 3y2 

d2ifr 

3 z2 

2m 
+ —(E-V)f=0 

n 
[3.16b] 

where V = V(x, y, z) and f = tfr(x, y, z). 

Steady-state 

total wave 

function 

Schrodinger’s 

equation 

for one 
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Equation 3.16b is a fundamental equation, called the time-independent Schrodinger 
equation, the solution of which gives the steady-state behavior of the electron in a 
time-independent potential energy environment described by V = y(jc,y,z). By 
solving Equation 3.16b, we will know the probability distribution and the energy of the 
electron. Once xfr(x, y, z) has been determined, the total wavefunction for the electron 
is given by Equation 3.15 so that 

|'l'(*,y,z, t)\2 = \x/r(x,y,z)\2 

which means that the steady-state probability distribution of the electron is simply 
\f(x, y, z)|2. 

The time-independent Schrodinger equation can be viewed as a “mathematical 
crank.” We input the potential energy of the electron and the boundary conditions, turn 
the crank, and get the probability distribution and the energy of the electron under 
steady-state conditions. 

Two important boundary conditions are often used to solve the Schrodinger equa¬ 
tion. First, as an analogy, when we stretch a string between two fixed points and put it 
into a steady-state vibration, there are no discontinuities or kinks along the string. We 
can therefore intelligently guess that because x}s(x) represents wave-like behavior, it 
must be a smooth function without any discontinuities. 

The first boundary condition is that V must be continuous, and the second is that 
dV/dx must be continuous. In the steady state, these two conditions translate directly 
to and dxfrfdx being continuous. Since the probability of finding the electron is 
represented by \xf/\2, this function must be single-valued and smooth, without any 
discontinuities, as illustrated in Figure 3.14. The enforcement of these boundary 
conditions results in strict requirements on the wavefunction xfr(x), as a result of 
which only certain wavefunctions are acceptable. These wavefunctions are called the 
eigenfunctions (characteristic functions) of the system, and they determine the be¬ 
havior and energy of the electron under steady-state conditions. The eigenfunctions 
x(r(x) are also called stationary states, inasmuch as we are only considering steady- 
state behavior. 

It is important to note that the Schrodinger equation is generally applicable to all 
matter, not just the electron. For example, the equation can also be used to describe 
the behavior of a proton, if the appropriate potential energy V(x,y,z) and mass 
(mproton) are used. Wavefunctions associated with particles are frequently called 
matter waves. 

y/(x) not single-valued 

x 

Figure 3.14 Unacceptable forms of ^(x). 
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THE FREE ELECTRON Solve the Schrodinger equation for a free electron whose energy is E. 
What is the uncertainty in the position of the electron and the uncertainty in the momentum of 
the electron? 

EXAMPLE 3.5 

SOLUTION 

Since the electron is free, its potential energy is zero, V = 0. In the Schrodinger equation, this 
leads to 

d2rjr 

dx2 

2m + __£V, = 0 

We can write this as 

d2\/r 

dx2 
+ k2f = 0 

where we defined k2 = (2mffi2)E. Solving the differential equation, we get 

^f{x) = A txp(jkx) or B exp(—jkx) 

The total wavefunction is obtained by multiplying if(x) by exp(,—jEt/ft). We can define 
a fictitious frequency for the electron by co = E/ti and multiply ifr(x) by exp(—jcot): 

^(x, t) = A exp j(kx — (ot) or B exp j(—kx — (ot) 

Each of these is a traveling wave. The first solution is a traveling wave in the + x direction, 
and the second one is in the —x direction. Thus, the free electron has a traveling wave solution 
with a wavenumber k = 2n/X, that can have any value. The energy E of the electron is simply 
KE, so 

KE = E = 
(tik)2 

2m 

When we compare this with the classical physics expression KE = (p2/2m), we see that 
the momentum is given by 

h 
p = tik or P = — 
F F X 

This is the de Broglie relationship. The latter therefore results naturally from the 
Schrodinger equation for a free electron. 

The probability distribution for the electron is 

IV'-OOI2 = IA exp ;'(**)|2 = A2 

which is constant over the entire space. Thus, the electron can be anywhere between x = —oo 
and x = +oo. The uncertainty Ax in its position is infinite. Since the electron has a well- 
defined wavenumber k, its momentum p is also well-defined by virtue of p = tik. The uncer¬ 
tainty Ap in its momentum is thus zero. 

WAVELENGTH OF AN ELECTRON BEAM Electrons are accelerated through a 100 V potential 
difference to strike a polycrystalline aluminum sample. The diffraction pattern obtained indi- 

| cates that the highest intensity and smallest angle diffraction, corresponding to diffraction from 
the (111) planes, has a diffraction angle of 30.4°. From X-ray studies, the separation of the (111) 

EXAMPLE 3.6 
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planes is 0.234 nm. What is the wavelength of the electron and how does it compare with that 
from the de Broglie relationship? 

SOLUTION 

Since we know the angle of diffraction 29 (= 30.4°) and the interplanar separation d(= 0.234 nm), 
we can readily calculate the wavelength of the electron from the Bragg condition for diffraction, 
2d sin 9 = nX. With n = 1, 

X — 2d sin 9 = 2(0.234 nm) sin(15.2°) = 0.1227 nm 

This is the wavelength of the electron. 
When an electron is accelerated through a voltage V, it gains KE equal to eV, so p2/2m = 

e V and p = (2meV)l/2. This is the momentum imparted by the potential difference V. From the 
de Broglie relationship, the wavelength should be 

h h 

= ~p = (ImeVy/2 

or 

-f— \2meV ) 

Substituting for e, h, and m, we obtain 

X = 
1.226 nm 

V1/2 

The experiment uses 100 V, so the de Broglie wavelength is 

1.226 nm 1.226 nm 
X = = 0.1226 nm 

yl/2 100l/2 

which is in excellent agreement with that determined from the Bragg condition. 

3.3 INFINITE POTENTIAL WELL: 
A CONFINED ELECTRON 

Consider the behavior of the electron when it is confined to a certain region, 
0 < x < a. Its PE is zero inside that region and infinite outside, as shown in 
Figure 3.15. The electron cannot escape, because it would need an infinite PE. Clearly 
the probability |iA|2 of finding the electron per unit volume is zero outside 0 < x < a. 

Thus, \}t = 0 when x < 0 and x > a, and f is determined by the Schrodinger equation 
in 0 < x < a with V = 0. Therefore, in the region 0 < x < a 

d2i{r 

dx2 
+ 

2m 

'ti2 
Ef= 0 [3.17] 

This is a second-order linear differential equation. As a general solution, we can take 

ty(x) = A expCy'fc*) + 5exp(—jkx) 
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Figure 3.15 Electron in a one-dimensional infinite PE well. 

The energy of the electron is quantized. Possible wavefunctions and the probability distributions for the electron 

are shown. 

where k is some constant (to be determined) and substitute this in Equation 3.17 to 
find k. We first note that t/r(0) = 0; therefore, B = — A, so that 

ir(x) = A[exp(jkx) — exp(—jkx)] = 2Aj sin&x [3.18] 

We now substitute this into the Schrodinger Equation 3.17 to relate the energy E 
to k. Thus, Equation 3.17 becomes 

/2m\ 
—2Ajk1 (sin kx) + ( J E(2Aj sin kx) = 0 

which can be rearranged to obtain the energy of the electron: 

fi2k2 

2m 
[3.19] 
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Since the electron has no PE within the well, its total energy E is kinetic energy KE, 
and we can write 

Px E = KE = — 
2m 

where px is its momentum. Comparing this with Equation 3.19, we see that the momen¬ 
tum of the electron must be 

px = ±hk [3.20] 

The momentum px may be in the +x direction or the — x direction (which is the 
reason for ±), so the average momentum is actually zero, pav = 0. 

We have already seen this relationship, when we defined k as In/k (wavenumber) 
for a free traveling wave. So the constant k here is a wavenumber-type quantity even 
though there is no distinct traveling wave. Its value is determined by the boundary 
condition at x = a where xk = 0, or 

Wavefunction 
in infinite PE 
well 

x(r(a) = 2A j sin ka = 0 

The solution to sin ka = 0 is simply ka = nn, where n = 1, 2, 3,... is an integer. 
We exclude n = 0 because it will result in xk = 0 everywhere (no electron at all). 

We notice immediately that k, and therefore the energy of the electron, can only 
have certain values; they are quantized by virtue of n being an integer. Here, n is 
called a quantum number. Fpr each n, there is a special wavefunction 

(nnx 
— 

a 

which is called an eigenfunction.3 All fn for n = 1,2, 3 ... constitute the eigenfunc¬ 
tions of the system. Each eigenfunction identifies a possible state for the electron. For 
each n, there is one special k value, kn = nnja, and hence a special energy value En, 

since 

13.21] 

E n 
Ml 
2m 

Electron 
energy in 

infinite PE 
well 

that is. 

fi2{nn)2 h2n2 

2 ma2 8ma2 
[3.22] 

The energies En defined by Equation 3.22 with n = 1, 2, 3 ... are called eigenenergies 
of the system. 

We still have not completely solved the problem, because A has yet to be deter¬ 
mined. To find A, we use what is called the normalization condition. The total prob¬ 
ability of finding the electron in the whole region 0 < x < a is unity, because we know 
the electron is somewhere in this region. Thus, \xk\2 dx summed between x = 0 and 

I 3 From the German meaning "characteristic function. 
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x = a must be unity, or 

\^r{x)\2 dx 
Normalization 

condition 

Carrying out the simple integration, we find 

The resulting wavefimction for the electron is thus 

,m*) = ;g) si»(^) [3.23] 

We can now summarize the behavior of an electron in a one-dimensional PE well. 
Its wavefunction and energy, shown in Figure 3.15, are given by Equations 3.23 and 
3.22, respectively. Both depend on the quantum number n. The energy of the electron 
increases with n2, so the minimum energy of the electron corresponds to n = 1. This is 
called the ground state, and the energy of the ground state is the lowest energy the 
electron can possess. Note also that the energy of the electron in this potential well 
cannot be zero, even though the PE is zero. Thus, the electron always has KE, even 
when it is in the ground state. 

The node of a wavefunction is defined as the point where \js = 0 inside the well. 
It is apparent from Figure 3.15 that the ground wavefunction \jf\ with the lowest energy 
has no nodes, ^2 has one node, ^3 has two nodes, and so on. Thus, the energy increases 
as the number of nodes increases in a wavefunction. 

It may seem surprising that the energy of the electron is quantized; that is, that it 
can only have finite values, given by Equation 3.22. The electron cannot be made to 
take on any value of energy, as in the classical case. If the electron behaved like a par¬ 
ticle, then an applied force F could impart any value of energy to it, because 
F = dp/dt (Newton’s second law), or p = f Fdt. By applying a force F for a time t, 
we can give the electron a KE of 

E = 

However, Equation 3.22 tells us that, in the microscopic world, the energy can only 
have quantized values. The two conflicting views can be reconciled if we consider the 
energy difference between two consecutive energy levels, as follows: 

A E = En+1 - En = 
h2{ln + 1) 

8 ma2 

As a increases to macroscopic dimensions, a 00, the electron is completely 
free and A E -> 0. Since AE = 0, the energy of a completely free electron (a = 00) is 
continuous. The energy of a confined electron, however, is quantized, and A E depends 
on the dimension (or size) of the potential well confining the electron. 

In general, an electron will be “contained” in a spatial region of three dimensions, 
within which the PE will be lower (hence the confinement). We must then solve the 

Energy 

separation 
in infinite 

PE well 
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Schrodinger equation in three dimensions. The result is three quantum numbers that 
characterize the behavior of the electron. 

Examination of the wavefunctions \J/n in Figure 3.15 shows that these are either 
symmetric or antisymmetric with respect to the center of the well at x = ^a. The sym¬ 
metry of a wavefunction is called its parity. Whenever the potential energy function 
V(x) exhibits symmetry about a certain point C, for example, about x = \a in 
Figure 3.15, then the wavefunctions have either even parity (such as xfr\, fa,... that 
are symmetric) or have odd parity (such as ^2, • • • that are antisymmetric). 

EXAMPLE 3.7 ELECTRON CONFINED WITHIN ATOMIC DIMENSIONS Consider an electron in an infinite po¬ 

tential well of size 0.1 nm (typical size of an atom). What is the ground energy of the electron? 

What is the energy required to put the electron at the third energy level? How can this energy be 

provided? 

SOLUTION 

The electron is confined in an infinite potential well, so its energy is given by 

h2n2 

" 8 ma2 

We use n = 1 for the ground level and a = 0.1 nm. Therefore, 

(6.6 x 1(T34 J s)2(l)2 

8(9.1 x IO-31 kg)(0.1 x 10-9 m)2 

The frequency of the electron associated with this energy is 

= 6.025 x 10"18 J or 37.6 eV 

E 6.025 x 10"18 J 

t°~ h ~ 1.055 x 10-34 Js 
= 5.71 x 1016 rad s_1 or v = 9.092 x 1015 s'1 

The third energy level E3 is 

£3 = E\n2 = (37.6 eV)(3)2 = 338.4 eV 

The energy required to take the electron from 37.6 eV to 338.4 eV is 300.8 eV. This can be pro¬ 

vided by a photon of exactly that energy; no less, and no more. Since the photon energy is 

E = hv = hc/k, or 

he (6.6 x 10“34 J s)(3 x 108 m s"1) 

~ ~E ~ 300.8 eV x 1.6 x 10~19 C 

= 4.12 nm 

which is an X-ray photon. 

EXAMPLE 3.8 ENERGY OF AN APPLE IN A CRATE Consider a macroscopic object of mass 100 grams (say, 
an apple) confined to move between two rigid walls separated by 1 m (say, a typical size of a 

large apple crate). What is the minimum speed of the object? What should the quantum number 

n be if the object is moving with a speed lms'1? What is the separation of the energy levels of 

the object moving with that speed? 
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SOLUTION 

Since the object is within rigid walls, we take the PE outside the walls as infinite and use 

_ ft2»2 
" 8 ma2 

to find the ground-level energy. With n = 1, a = 1 m, m = 0.1 kg, we have 

(6.6 x 10-34 Js)2(l)2 
E, = = 5.45 x 10-67 J = 3.4 x 1CT48 eV 

8(0.1 kg)(l m)2 

Since this is kinetic energy, \mv\ = E\, so the minimum speed is 

ui 
2E\ 

m 

2(5.45 x 10-67 J) 

0.1 kg 
= 3.3 x 10-33 m s 

This speed cannot be measured by any instrument; therefore, for all practical purposes, the 
apple is at rest in the crate (a relief for the fruit grocer). The time required for the object to 
move a distance of 1 mm is 3 x 1029 s or 1021 years, which is more than the present age of the 
universe! 

When the object is moving with a speed 1 ms-1, 

KE = jffli)2 = ^(0.1 kg)(l m s-1)2 = 0.05 J 

This must be equal to En = h2n2/8ma2 for some value of n 

fSma2En\l/2 [8(0.1 kg)(l m)2(0.05 J)]1/2 „ M lrt 

\ h2 J L (6.6 x 10-34 J s)2 J 

which is an enormous number. The separation between two energy levels corresponds to a 
change in n from 3.03 x 1032 to 3.03 x 1032 + 1. This is such a negligibly small change in n 
that for all practical purposes, the energy levels form a continuum. Thus, 

A E = En+1 - E„ 
h2(2rt + 1) 

8 ma2 

_ [(6.6 x 10"34 J s)2(2 x 3.03 x 1032 + 1)] 

[8(0.1 kg)(l m)2] 

= 3.30 x 10-34 J or 2.06 x 10"15 eV 

This energy separation is not detectable by any instrument. So for all practical purposes, the en¬ 
ergy of the object changes continuously. 

We see from this example that in the limit of large quantum numbers, quantum predictions 
agree with the classical results. This is the essence of Bohr’s correspondence principle. 

3.4 HEISENBERG’S UNCERTAINTY PRINCIPLE 

The wavefunction of a free electron corresponds to a traveling wave with a single 
wavelength X, as shown in Example 3.5. The traveling wave extends over all space, 
along all x, with the same amplitude, so the probability distribution function is uniform 
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Werner Heisenberg (1901-I976J received the Nobel prize in 
physics in 1932 for the uncertainty principle. This photo was 
apparently taken in 1936, while he was lecturing on quantum 
mechanics. "An expert is someone who knows some of the 
worst mistakes that can be made in his subject, and how to 
avoid them." W. Heisenberg. 

I SOURCE: AIP Emilio Segre Visual Archives. 

Heisenberg 
uncertainty 
principle for 
position and 
momentum 

throughout the whole of space. The uncertainty Ax in the position of the electron is 
therefore infinite. Yet, the uncertainty Apx in the momentum of the electron is zero, 
because X is well-defined, which means that we know px exactly from the de Broglie 
relationship, px = h/X. 

For an electron trapped in a one-dimensional infinite PE well, the wavefunction 
extends from jc — 0 to x = a, so the uncertainty in the position of the electron is a. We 
know that the electron is within the well, but we cannot pinpoint with certainty exactly 
where it is. The momentum of the electron is either px = hk in the +x direction or —fik 
in the —x direction. The uncertainty Apx in the momentum is therefore 2hk; that is, 
Apx ~ 2tik. For the ground-state wavefunction, which corresponds to w — 1, we have 
ka — Tt. Thus, A px — 2km fa. Taking the product of the uncertainties in x and p, we get 

(Ax)(Apx) = = h 

In other words, the product of the position and momentum uncertainties is sim¬ 
ply h. This relationship is fundamental; and it constitutes a limit to our knowledge of 
the behavior of a system. We cannot exactly and simultaneously know both the position 
and momentum of a particle along a given coordinate. In general, if Ax and A px are 
the respective uncertainties in the simultaneous measurement of the position and 
momentum of a particle along a particular coordinate (such as x), the Heisenberg 
uncertainty principle states that4 

Ax Apx > fi [3.24] 

We are therefore forced to conclude that as previously stated, because of the wave 
nature of quantum mechanics, we are unable to determine exactly and simultaneously 
the position and momentum of a particle along a given coordinate. There will be an 
uncertainty Ax in the position and an uncertainty Apx in the momentum of the particle 

4 The Heisenberg uncertainly principle is normally written in terms of ft rather than h. Further, in some physics texts, 
ft in Equation 3,24 has a factor^- multiplying it. 
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and these uncertainties will be related by Heisenberg’s uncertainty relationship in 
Equation 3.24. 

These uncertainties are not in any way a consequence of the accuracy of a mea¬ 
surement or the precision of an instrument. Rather, they are the theoretical limits to 
what we can determine about a system. They are part of the quantum nature of the uni¬ 
verse. In other words, even if we build the most perfectly engineered instrument to 
measure the position and momentum of a particle at one instant, we will still be faced 
with position and momentum uncertainties Ax and Apx such that Ax Apx > fi. 

There is a similar uncertainty relationship between the uncertainty AE in the 
energy E (or angular frequency co) of the particle and the time duration At during 
which it possesses the energy (or during which its energy is measured). We know that 
the kx part of the wave leads to the uncertainty relation Ax Apx > h or Ax Ak > 1. 
By analogy we should expect a similar relationship for the cot part, or A co At > 1. This 
hypothesis is true, and since E = fuo, we have the uncertainty relation for the particle 
energy and time: 

AEAt>h [3.25] 

Note that the uncertainty relationships in Equations 3.24 and 3.25 have been 
written in terms of ti, rather than h, as implied by the electron in an infinite potential 
energy well (A* Apx > h).ln general there is also a numerical factor of \ multiplying 
fi in Equations 3.24 and 3.25 which comes about when we consider a Gaussian spread 
for all possible position and momentum values. The proof is not presented here, but 
can be found in advanced quantum mechanics books. 

It is important to note that the uncertainty relationship applies only when the 
position and momentum are measured in the same direction (such as the * direction). 
On the other hand, the exact momentum, along, say, the y direction and the exact 
position, along, say, the x direction can be determined exactly, since Ax Apy need not 
satisfy the Heisenberg uncertainty relationship (in other words, Ax Apy can be zero). 

Heisenberg 

uncertainty 

principle for 

energy and 

time 

THE MEASUREMENT TIME AND THE FREQUENCY OF WAVES: AN ANALOGY WITH AE At>ti 
Consider the measurement of the frequency of a sinusoidal wave of frequency 1000 Hz (or 
cycles/s). Suppose we can only measure the number of cycles to an accuracy of 1 cycle, because 
we need to receive a whole cycle to record it as one complete cycle. Then, in a time interval of 
At = 1 s, we will register 1000 ± 1 cycles. The uncertainty A/ in the frequency is 1 cycle/1 s 
or 1 Hz. If At is 2 s, we will measure 2000 ± 1 cycles, and the uncertainty A/ will be 1 cycle/ 
2 s or f cycle/s or | Hz. Thus, A/ decreases with At. 

Suppose that in a time interval At, we measure N ± 1 cycles. Since the uncertainty is 
1 cycle in a time interval At, the uncertainty in/will be 

EXAMPLE 3.9 

A / = 
(1 cycle) 

At At 

i Since co = Inf, we have 

A co At = 2n 

In quantum mechanics, under steady-state conditions, an object has a time-oscillating 
wavefunction with a frequency co which is related to its .energy E by co = E/ti (see Equation 3.15). 
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Substituting this into the previous relationship gives 

AE At = h 

The uncertainty in the energy of a quantum object is therefore related, in a fundamental 
way, to the time duration during which the energy is observed. Notice that we again have ft, as 
for Ax Apx = ft, though the quantum mechanical uncertainty relationship in Equation 3.25 
has ft. 

EXAMPLE 3.10 THE UNCERTAINTY PRINCIPLE ON THE ATOMIC SCALE Consider an electron confined to a 
region of size 0.1 nm, which is the typical dimension of an atom. What will be the uncertainty 
in its momentum and hence its kinetic energy? 

SOLUTION 

We apply the Heisenberg uncertainty relationship, Ax Apx « ft, or 

ft 1.055 x 10"34Js 

0.1 x 10-9 m 
= 1.055 x 10~24 kg m s"1 

The uncertainty in the velocity is therefore 

Apx 1.055 x 10_24kgms_1 
Av = -= --- 

me 9.1 x 10-31 kg 
= 1.16 x 106 ms"1 

We can take this uncertainty to represent the order of magnitude of the actual speed. The 
kinetic energy associated with this momentum is 

KE = 
A p2x (1.055 x 10"24 kg ms"1)2 

2m~e ~ 2(9.1 x 10-31 kg) 

= 6.11 x 10"19 J or 3.82 eV 

EXAMPLE 3.11 THE UNCERTAINTY PRINCIPLE WITH MACROSCOPIC OBJECTS Estimate the minimum velocity 
of an apple of mass 100 g confined to a crate of size 1 m. 

SOLUTION 

Taking the uncertainty in the position of the apple as 1 m, the apple is somewhere in the crate, 

ft 1.05 x 10"34 J s . 
A px -= -= 1.05 x 10 34 kg ms 1 

Ax 1 m 

So the minimum uncertainty in the velocity is 

Apx 1.05 x 10"34kgms-1 ^ „ , 
Avx = — = ---= 1.05 x 10"33 ms"1 

m 0.1kg 
= 1.05 x 10 33 ms 1 

The quantum nature of the universe implies that the apple in the crate is moving with a ve¬ 
locity on the order of 10"33 ms"1. This cannot be measured by any instrument; indeed, it would 
take the apple ~ 1019 years to move an atomic distance of 0.1 nm. 
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3.5 TUNNELING PHENOMENON: QUANTUM LEAK 

To understand the tunneling phenomenon, let us examine the thrilling events experi¬ 
enced by the roller coaster shown in Figure 3.16a. Consider what the roller coaster can 
do when released from rest at a height A. The conservation of energy means that the 
carriage can reach B and at most C, but certainly not beyond C and definitely not D and 
E. Classically, there is no possible way the carriage will reach E at the other side of the 
potential barrier D. An extra energy corresponding to the height difference, D — A, is 
needed. Anyone standing at E will be quite safe. Ignoring frictional losses, the roller 
coaster will go back and forth between A and C. 

Now, consider an analogous event on an atomic scale. An electron moves with an 
energy E in a region x < 0 where the potential energy PE is zero; therefore, E is solely 
kinetic energy. The electron then encounters a potential barrier of “height” V0, which 

(b) 

Figure 3.16 

(a) The roller coaster released from A can at most make it to C, but not to E. Its PE at A is 

less than the PE at D. When the car is at the bottom, its energy is totally KE. CD is the 

energy barrier that prevents the car from making it to E. In quantum theory, on the other 

hand, there is a chance that the car could tunnel (leak) through the potential energy barrier 

between C and E and emerge on the other side of the.hill at E. 

(b) The wavefunction for the electron incident on a potential energy barrier (Vo)- The 

incident and reflected waves interfere to give ir|(x). There is no reflected wave in region III. 

In region II, the wavefunction decays with x because E < V0. 
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is greater than E at x = 0. The extent (width) of the potential barrier is a. On the other 
side of the potential barrier, x > a, the PE is again zero. What will the electron do? 
Classically, just like the roller coaster, the electron should bounce back and thus be 
confined to the region x < 0, because its total energy E is less than V0. In the quantum 
world, however, there is a distinct possibility that the electron will “tunnel” through 
the potential barrier and appear on the other side; it will leak through. 

To show this, we need to solve the Schrodinger equation for the present choice of 
V (x). Remember that the only way the Schrodinger equation will have the solution 
\js{x) = 0 is if the PE is infinite, that is, V = oo. Therefore, within any zero or finite 
PE region, there will always be a solution ^(x) and there always will be some proba¬ 
bility of finding the electron. 

We can divide the electron’s space into three regions, I, II, and III, as indicated in 
Figure 3.16b. We can then solve the Schrodinger equation for each region, to obtain 
three wavefunctions ^n(*)> and i/'iiiC*)- In regions I and III, ir(x) must be trav¬ 
eling waves, as there is no PE (the electron is free and moving with a kinetic en¬ 
ergy E). In zone II, however, E — V0 is negative, so the general solution of the 
Schrodinger equation is the sum of an exponentially decaying function and an expo¬ 
nentially increasing function. In other words, 

^i(x) = A\ exp(jkx) + A2exp(—jkx) [3.26a] 

xfruix) = Bi exp(ax) + #2exp(—a*) [3.26b] 

ihnC*) = Ci exp(yfor) + C2 exp(—jkx) [3.26c] 

are the wavefunctions in which 

k2 
2m E 

h2 
[3.27] 

and 

a 2 2m(V0 - E) 

f? 
[3.28] 

Both k2 and a2, and hence k and a, in Equations 3.26a to c are positive numbers. 
This means that exp (jkx) and exp(—jkx) represent traveling waves in opposite di¬ 
rections, and exp(—ax) and exp (ax) represent an exponential decay and rise, respec¬ 
tively. We see that in region I, jr\(x) consists of the incident wave A\ exp(jkx) in the 
+x direction, and a reflected wave A2 exp( —jkx), in the —x direction. Furthermore, 
because the electron is traveling toward the right in region III, there is no reflected 
wave, so C2 = 0. 

We must now apply the boundary conditions and the normalization condition to 
determine the various constants A1, A2, B\, B2, and Cj. In other words, we must match 
the three waveforms in Equations 3.26a to c at their boundaries (x = 0 and x = a) so 
that they form a continuous single-valued wavefunction. With the boundary conditions 
enforced onto the wavefunctions ir\{x), t/rn(x), and ^iii(*)> all the constants can be 
determined in terms of the amplitude A \ of the incoming wave. The relative probability 
that the electron will tunnel from region I through to III is defined as the transmission 
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coefficient T, and this depends very strongly on both the relative PE barrier height 
(V0 — E) and the width a of the barrier. The final result that comes out from a tedious 
application of the boundary conditions is 

IV'mC*)!2 _ C\ 

| ^(incident) |2 A\ 

1 

1 + D sinh2(offl) 
[3.291 

where 

D = 
4E(V0 - E) 

[3.301 

and a is the rate of decay of ifu(x) as expressed in Equation 3.28. For a wide or high 
barrier, using aa » 1 in Equation 3.29 and sinh(aa) « | exp(aa), we can deduce 

T = T0 exp(—2aa) [3.31] 

where 

T0 = 
16£(V0- E) 

V2 
[3.32] 

By contrast, the relative probability of reflection is determined by the ratio of the 
square of the amplitude of the reflected wave to that of the incident wave. This quan¬ 
tity is the reflection coefficient R, which is given by 

A\ 
R = —I = l — T [3.33] 

A\ 

We can now summarize the entire tunneling affair as follows. When an electron 
encounters a potential energy barrier of height V0 greater than its energy E, there is a 
finite probability that it will leak through that barrier. This probability depends sensi¬ 
tively on the energy and width of the barrier. For a wide potential barrier, the proba¬ 
bility of tunneling is proportional to exp(—2aa), as in Equation 3.31. The wider or 
higher the potential barrier, the smaller the chance of the electron tunneling. 

One of the most remarkable technological uses of the tunneling effect is in the 
scanning tunneling microscope (STM), which elegantly maps out the surfaces of 
solids. A conducting probe is brought so close to the surface of a solid that electrons 
can tunnel from the surface of the solid to the probe, as illustrated in Figure 3.17. When 
the probe is far removed, the wavefunction of an electron decays exponentially outside 
the material, by virtue of the potential energy barrier being finite (the work function is 
~10 eV). When the probe is brought very close to the surface, the wavefunction pen¬ 
etrates into the probe and, as a result, the electron can tunnel from the material into the 
probe. Without an applied voltage, there will be as many electrons tunneling from 
the material to the probe as there are going in the opposite direction from the probe to 
the material, so the net current will be zero. 

On the other hand, if a positive bias is applied to the probe with respect to the ma¬ 
terial, as shown in Figure 3.17, an electron tunneling from the material to the probe 
will see a lower potential barrier than one tunneling from the probe to the material. 
Consequently, there will be a net current from the probe to the material and this current 

Probability of 

tunneling 

Probability of 

tunneling 
through 

Reflection 

coefficient 
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Metal Vacuum 

away from the surface because the PE outside the metal 
'S Vo and the energy of the electron, E < Va. 

Metal 
Vacuum 

Second metal 

WA 

X 

(b) If we bring a second metal close to the first metal, then 
the wavefunction can penetrate into the second metal. The 
electron can tunnel from the first metal to the second. 

Image of surface 
(schematic sketch) 

(c) The principle of the scanning tunneling microscope. The tunneling current 
depends on exp(-2aa) where a is the distance of the probe from the surface 
of the specimen and a is a constant. 

Figure 3.17 

will depend very sensitively on the separation a of the probe from the surface, by 
virtue of Equation 3.31. 

Because the tunneling current is extremely sensitive to the width of the potential 
barrier, the tunneling current is essentially dominated by electrons tunneling to the 
probe atom nearest to the surface. Thus, the probe tip has an atomic dimension. By 
scanning the surface of the material with the probe and recording the tunneling current 
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Figure 3.18 Scanning tunneling 

microscope (STM) image of a graphite 

surface where contours represent electron 

concentrations within the surface, and carbon 

rings are clearly visible. The scale is in 2 A. 

I SOURCE: Courtesy of Veeco Instruments, 
I Metrology Division, Santa Barbara, CA. 

the user can map out the surface topology of the material with a resolution compara¬ 
ble to the atomic dimension. The probe motion along the surface, and also perpendic¬ 
ular to the surface, is controlled by piezoelectric transducers to provide sufficiently 
small and smooth displacements. Figure 3.18 shows an STM image of a graphite sur¬ 
face, on which the hexagonal carbon rings can be clearly seen. Notice that the scale is 
0.2 nm (2 A). The contours in the image actually represent electron concentrations 
within the surface since it is the electrons that tunnel from the graphite surface to the 
probe tip. The astute reader will notice that not all the carbon atoms in a hexagonal 
ring are at the same height; three are higher and three are lower. The reason is that the 
exact electron concentration on the surface is also influenced by the second layer of 
atoms underneath the top layer. The overall effect makes the electron concentration 

STM's inventors Gerd Binning (right) and Heinrich Rohrer (left), 
at IBM Zurich Research Laboratory with one of their early 
devices. They won the 1986 Nobel prize for the STM. 

I SOURCE: Courtesy of IBM Zurich Research Laboratory. 

An STM image of a Ni (110) surface. 

I SOURCE: Courtesy of IBM. 
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change (alternate) from one atomic site to a neighboring site within the hexagonal 
rings. STM was invented by Gerd Binning and Heinrich Rohrer at the IBM Research 
Laboratory in Zurich, for which they were awarded the 1986 Nobel prize.5 

EXAMPLE 3.12 TUNNELING CONDUCTION THROUGH METAL-TO-METAL CONTACTS Consider two copper 
wires separated only by their surface oxide layer (CuO). Classically, since the oxide layer is an 
insulator, no current should be possible through the two copper wires. Suppose that for the con¬ 
duction (“free”) electrons in copper, the surface oxide layer looks like a square potential energy 
barrier of height 10 eV. Consider an oxide layer thickness of 5 nm and evaluate the transmission 
coefficient for conduction electrons in copper, which have a kinetic energy of about 7 eV. What 
will be the transmission coefficient if the oxide barrier is 1 nm? 

SOLUTION 

We can calculate a from 

a= |~2m(^-£)j 

_ ^ 2(9.1 x 

1/2 

10'31 kg)(10eV - 7eV)(1.6 x 10"iy J/eV) 11/2 

(1.05 x 10~34 J s)2 

= 8.9 x 109 m_l 

so that 

aa = (8.9 x 109 m_1)(5 x 10-9 m) = 44.50 

Since this is greater than unity, we use the wide-barrier transmission coefficient in Equa¬ 
tion 3.31. 

Now, 

„ 16E{V0-E) 16(7 eV)(10eV — 7 eV) „ 

0 V2 (10 eV)2 

Thus, 

T = T0 exp(—2aa) 

= 3.36 exp[—2(8.9 x 109m-1)(5 x 10"9m)] = 3.36exp(-89) 

« 7.4 x 10"39 

an incredibly small number. 
With a — 1 nm, 

T = 3.36 exp[-2(8.9 x 109m_1)(l x 10_9m)] 

= 3.36 exp(—17.8) « 6.2 x 10~8 

Notice that reducing the layer thickness by five times increases the transmission probability by 
1031! Small changes in the barrier width lead to enormous changes in the transmission 

5 The IBM Research Laboratory in Zurich, Switzerland, received both the 1986 and the 1987 Nobel prizes. The first 
was for the scanning tunneling microscope by Gerd Binning and Heinrich Rohrer. The second was awarded to Georg 
Bednorz and Alex Muller for the discovery of high-temperature superconductors which we will examine in Chapter 8. 
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probability. We should note that when a voltage is applied across the two wires, the potential en¬ 
ergy height is altered (PE = charge x voltage), which results in a large increase in the trans¬ 
mission probability and hence results in a current. 

SIGNIFICANCE OF A SMALL h Estimate the probability that a roller coaster carriage that 
weighs 100 kg released from point A in Figure 3.16a from a height at 10 m can reach point E 
over a hump that is 15 m high and 10 m wide. What will this probability be in a universe where 
h * 10 kJ s? 

EXAMPLE 3.13 

SOLUTION 

The total energy of the carriage at height A is 

E — PE = mg (height) = (100 kg)(10ms~2)(10 m) = 104 J 

Suppose that as a first approximation, we can approximate the hump as a square hill of 
height 15 m and width 10 m. The PE required to reach the peak would be 

V0 = mg(height) = (100kg)(10ms-2)(15m) = 1.5 x 104J 

Applying this, we have 

2 2m(V0 - E) 2(100 kg)(1.5 x 104J- 104 J) 

(1.05 x 10-34 J s)2 
= 9.07 x 1073 m"2 

"Just like the good old ghost of the middle ages." In a 
world where n is of the order of unity, one can expect 
tunneling surprises. 

SOURCE: George Gamow, Mr. Tompkins in 
Paperback, Cambridge, England, University Press, 
1965, p. 96. Used with permission. 
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and so 

a = 9.52 x 1036 m-1 

With a = 10 m, we have aa » 1, so we can use the wide-barrier tunneling equation, 

where 

T = T0 exp(—2aa) 

Thus, 

T = 1 o — 

16[E(V0 - E)} 

Vo2 
3.56 

T = 3.56exp[—2(9.52 x 1036m_1)(10m)] = 3.56exp(-1.9 x 1038) 

which is a fantastically small number, indicating that it is impossible for the carriage to tunnel 
through the hump. 

Suppose that fi « 10 kJ s. Then 

2 2m(V0 - E) 
a = -- 

2(100 kg)(1.5 x 104J - 104 J) 

(104 J s)2 
= 0.01 m~2 

so that a = 0.1 m 1. Clearly, aa = 1, so we must use 

T = [1 + £)sinh2(aa)r1 

where 

D = V? 
[4 E(Va-E)] 

1.125 

Thus, 

T = [1 + 1.125 sinh2(I)r' = 0.39 

Thus, after three goes, the carriage would tunnel to the other side (giving the person standing at 
E the shock of his life). 

Schrodinger 

equation in 

three 

dimensions 

3.6 POTENTIAL BOX: THREE QUANTUM NUMBERS 

To examine the properties of a particle confined to a region of space, we take a three- 
dimensional space with a volume marked by a, b, c along the x,y,z axes. The PE 
is zero (V = 0) inside the space and is infinite on the outside, as illustrated in 
Figure 3.19. This is a three-dimensional potential energy well. The electron essen¬ 
tially lives in the “box.” What will the behavior of the electron be in this box? In 
this case we need to solve the three-dimensional version of the Schrodinger equa¬ 
tion,6 which is 

d2\}r 3 2\jr 
—— -\-— + 
dx2 3y2 

d2f 
3 z2 

2m 
+ -(E-V)ir= 0 

h 
[3.34] 

6 The term 3x/r/dx simply means differentiating t/r(x, y, z) with respect to x while keeping y and z constant, just like 
dir/dx in one dimension. 
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Figure 3.19 Electron confined in three 

dimensions by a three-dimensional infinite PE 
box. 

Everywhere inside the box, V = 0, but outside, 

V=oo> The electron cannot escape from the 

box. 

with V = 0in0<jc<a,0<y<fc, and 0 < z < c, and V infinite outside. We can 
try to solve this by separating the variables via i/r(x,y,z) = ^X(x) fy(y) iMz)- 
Substituting this back into Equation 3.34, we can obtain three ordinary differential 
equations, each just like the one for the one-dimensional potential well. Having 
found irx(x), -ijfy(y), and fz(z) we know that the total wavefunction is simply the 
product, 

^(jc, y, z) — A sin^x) sin(fej,y) sinf/c^) 13.35] 

where kx,ky,kz> and A are constants to be determined. We can then apply the bound¬ 
ary conditions at x - a, y — b, and z ~ c to determine the constants kx, kY, and kz in 
the same way we found k for the one-dimensional potential well. If yjr(x, y, z) - 0 at 
x ~ a, then kx will be quantized via 

kxa — tiiTT 

where is a quantum number, «i = 1, 2, 3,-Similarly, if ifr(xt y, z) = 0 at y — b 

and z — c, then ky and kz will be quantized, so that, overall, we will have 

ttijr 
kx = — 

a 
13.36] 

where nu n2, and «3 are quantum numbers, each of which can be any integer except 
zero. 

We notice immediately that in three dimensions, we have three quantum numbers 
oi, «2» and rt3 associated with (x), tyy{y), and fz(z). The eigenfunctions of the elec¬ 
tron, denoted by the quantum numbers ti\, «2, and are now given by 

y^) = A sin(~7^) t3*37i 

Notice that these consist of the products of infinite one-dimensional PE well-type 
wavefunctions, one for each dimension, and each has its own quantum number n. Each 
possible eigenfunction can be labeled a state for the electron. Thus, V'hi and ^121 are 
two possible states. 

To find the constant A in Equation 3.37, we need to use the normalization con¬ 
dition that |^«,n2nj(x, y, z)\2 integrated over the volume of the box must be unity, 

Electron 

wavefunction 

in infinite PE 

well 
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since the electron is somewhere in the box. The result for a square box is 
A = (2/a)3/1. 

We can find the energy of the electron by substituting the wavefunction in Equa¬ 
tion 3.35 into the Schrodinger Equation 3.34. The energy as a function of kx,ky, kz is 
then found to be 

E = E(kx, ky, kz) 
2m 

(k2x +k2y + k2) 

which is quantized by virtue of kx,ky, and kz being quantized. We can write this energy 
in terms of n2, n\, and n\ by using Equation 3.36, as follows: 

E !f_(*5 , A , 
8 m\a2 b2 c2) 

For a square box for which a = b = c, the energy is 

E 
h2(n2 + n\ + nj) h2N2 

Sma2 Sma2 
[3.38] 

where N2 = (n2 + n\ + n\), which can only have certain integer values. It is apparent 
that the energy now depends on three quantum numbers. Our conclusion is that in three 
dimensions, we have three quantum numbers, each one arising from boundary condi¬ 
tions along one of the coordinates. They quantize the energy of the electron via Equa¬ 
tion 3.38 and its momentum in a particular direction, such as, px = ±fikx = 

±(hni/2a), though the average momentum is zero. 
The lowest energy for the electron is obviously equal to Em, not zero. The next 

energy level corresponds to £211 > which is the same as Em and £112, so there are three 
states (i.e., ^211, ^112) for this energy. The number of states that have the same 
energy is termed the degeneracy of that energy level. The second energy level £211 is 
thus three-fold degenerate. 

EXAMPLE 3.14 NUMBER OF STATES WITH THE SAME ENERGY How many states (eigenfunctions) are there at 
energy level £443 for a square potential energy box? 

SOLUTION 

This energy level corresponds to n\ = 4, n2 = 4, and n3 = 3, but the energy depends on 

N2 = n\ + n\ + n\ = 42 + 42 + 32 = 41 

via Equation 3.38. As long as N2 = 41 for any choice of (n 1, n2, n3), not just (4,4, 3), the energy 
will be the same. 

The value N2 = 41 can be obtained from (4,4,3), (4,3,4), and (3,4,4) as well as (6,2,1), 
(6, 1, 2), (2, 6, 1), (2, 1, 6), (1, 6, 2), and (1,2, 6). There are thus three states from (4, 4, 3) 
combinations and six from (6, 2, 1) combinations, giving nine possible states, each with a 
distinct wavefunction, irni„2„3. However, all these ^nin2n3 f°r die electron have the same 
energy £443. 
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3.7 HYDROGENIC ATOM 

3.7.1 Electron Wavefunctions 

Consider the behavior of the electron in a hydrogenic (hydrogen-like) atom, which has 
a nuclear charge of +Ze, as depicted in Figure 3.20. For the hydrogen atom, Z = 1, 
whereas for an ionized helium atom He+, Z = 2. For a doubly ionized lithium atom 
Li++, Z = 3, and so on. The electron is attracted by a positive nuclear charge and 
therefore has a Coulombic PE, 

~Ze2 
V (r) =  - [3.39] 

4 7ts0r 

Since force F = —dV/dr. Equation 3.39 is simply a statement of Coulomb’s force 
between the positive charge +Ze of the nucleus and the negative charge —e of the 
electron. The task of finding 0(x, y, z) and the energy E of the electron now involves 
putting V (r) from Equation 3.39 into the Schrodinger equation with r = y/x2 + y2 + z2 

and solving it. 
Fortunately, the problem has a spherical symmetry, and we can solve the 

Schrodinger equation by transforming it into the r, 9, 0 coordinates shown in Fig¬ 
ure 3.20. Even then, obtaining a solution is not easy. We must then ensure that the solu¬ 
tion for f{r,9, 0) satisfies all the boundary conditions, as well as being single-valued 
and continuous with a continuous derivative. For example, when we go lit around 
the 0 coordinate, ijf(r,9, 0) should come back to its original value, or ifr(r,9, 0) = 
f(r, 0,0 + 2n), as is apparent from an examination of Figure 3.20. Along the radial 

Electron PE 

in hydrogenic 

atom 

Figure 3.20 The electron in the hydrogenic atom is 

attracted by a central force that is always directed 

toward the positive nucleus. 

Spherical coordinates centered at the nucleus are used to 

describe the position of the electron. The PE of the 

electron depends only on r. 
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coordinate, we need fir, 9, <f>) -► 0 as r -► oo; otherwise, the total probability will 
diverge when \f(r,0,<p)\2 is integrated over all space. In an analogy with the three- 
dimensional potential well, there should be three quantum numbers to characterize the 
wavefunction, energy, and momentum of the electron. The three quantum numbers are 
called the principal, orbital angular momentum, and magnetic quantum numbers 
and are respectively denoted by n, Z, and me. Unlike the three-dimensional potential 
well, however, not all the quantum numbers run as independent positive integers. 

The solution to the Schrodinger equation fir, 9, 0) depends on three variables, 
r, 9, f. The wavefunction fir, 6, f) can be written as the product of two functions 

f{r,e,f) = R(r) Y{9,f) 

where R(r) is a radial function depending only on r, and Y(9,f) is called the 
spherical harmonic, which expresses the angular dependence of the wavefunction. 
These functions are characterized by the quantum numbers n,i,me. The radial part 
R(r) depends on n and Z, whereas the spherical harmonic depends on Z and mt, so 

f{r,6,f) = fn,e,me(r, 0,f) = Rn,e(r) Ye,mt{9, f) [3.40] 

By solving the Schrodinger equation, these functions have already been evaluated. It 
turns out that we can only assign certain values to the quantum numbers n, Z, and mt 

to obtain acceptable solutions, that is, fn,i,mt(r, 9, f) that are well behaved: single¬ 
valued and with f and the gradient of f continuous. We can summarize the allowed 
values of n, Z, me as follows: 

Principal quantum number * = 1, 2,3,... 

Orbital angular momentum quantum number l = 0,1,2,..., (n — 1) < n 

Magnetic quantum number mt = —l, —(€ — 1),..., 0,..., (t — 1), t or \mt | < i 

The Z values carry a special notation inherited from spectroscopic terms. The first 
four Z values are designated by the first letters of the terms sharp, principal, diffuse, 
and fundamental, whereas the higher Z values follow from/onwards, as g, h, i, etc. 
For example, any state fn,e,mt that has Z — 0 is called an s state, whereas that which 
has Z = 1 is termed a p state. We can also use n as a prefix to Z to identify n. Thus 
fn,e,mt with n = 2 and Z = 0 corresponds to the 2s state. The notation for identifying 
the Z value and labeling a state is summarized in Table 3.1. 

Table 3.1 Labeling of various nt possibilities 

l 

n 0 i 2 3 4 

i Is 

2 2 s 2P 
3 3s 3P 3 d 

4 4s 4P Ad 4/ 
5 55 5p 5 d 5/ 
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Table 3.2 The radial and spherical harmonic parts of the wavefunction in the hydrogen atom (ao. = 0.0529 nm) 

n t R(r) me Y(9,<j>) 

1 0 

2 0 

(z) 2'xp(-i) 

(ir(2-s)“p(-i) 

2 1 (ir (vfe) exp(~i) 
-1 

2^/n 

1 
2^/jF 

1 / 3 
-J — cos 9 
2V n 

1 n 
2 V 2jt 

*3 

sin 

—— sin 
2V 2n 

a sin 0 cos 0 

a sin 0 sin 0 

Correspond to 

= — 1 and +1. 

Table 3.2 summarizes the functional forms of Rn,e(r) and Yz>mi(9, 0). For t = 0 
(the s states), the angular dependence of To,o(0,0) is constant, which means that 
f(r, 9, 0) is spherically symmetrical about the nucleus. For the l = 1 and higher 
states, there is a strong directionality to the wavefunctions with respect to each other. 
The radial part Rn,e(r) is sketched in Figure 3.21a for two choices of n and l. Notice 
that Rn,t{r) is largest at r = 0, when l = 0. However, this does not mean that the elec¬ 
tron will be mainly at r = 0, because the probability of finding the electron at a dis¬ 
tance r actually depends on r2|^?„ £(r)|2, which vanishes as r —► 0. 

Let us examine the probability of finding the electron at a distance r within a thin 
spherical shell of radius r and thickness Sr (assumed to be very small). The directional 
dependence of the probability will be determined by the function Ye,mt(0, <j>). We can 
average this over all directions (all angles 6 and 0) to obtain Yt%mi (9, 0), which turns 
out to be simply 11 An. The volume of the spherical shell is 8 V = An r2Sr. The proba¬ 
bility of finding the electron in this shell is then 

l(n,»,(0.«)(R».»(''))|2 x (4jtr2Sr) 

If SP(r) represents the probability that the electron is in this spherical shell of thick¬ 
ness Sr, then 

8P(r) = \Rn,e(r)\2r28r [3.41] 

The radial probability density Pn,i(r) is defined as the probability per unit radial 
distance, that is, dP/dr which from Equation 3.41 is |/?„,«(>•)|2r2. The latter vanishes 
at the nucleus and peaks at certain locations, as shown in Figure 3.21b. This behavior 
implies that the probability of finding the electron within a thin spherical shell close to 
the nucleus also disappears. For n = 1, and i = 0, for example, the maximum proba¬ 
bility is at r = a0 = 0.0529 nm, which is called the Bohr radius. Therefore, if the 
electron is in the Is state, it spends most of its time at a distance a0. Notice that the 
probability distribution does not depend on mt, but only on n and l. 
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(a) (b) 

Figure 3.21 

(a) Radial wavefunctions of the electron in a hydrogenic atom for various n and l values. 

(b) r2 \ Rn,e\ gives the radial probability density. Vertical axis scales are linear in arbitrary units. 

Table 3.2 summarizes the nature of the functions Rn,e(r) and Ye,me(0, 0) for vari¬ 
ous n,t,me values. Each possible wavefunction i{fnye<me(r, 6, 0) with a particular 
choice of n,i, me constitutes a quantum state for the electron. The function 

6, 0) basically describes the behavior of the electron in the atom in proba¬ 
bilistic terms, as distinct from a well-defined line orbit for the electron, as one might 
expect from classical mechanics. For this reason, ilr„,e,mt(r, 0,0) is often referred to as 
an orbital, in contrast to the classical theory, which assigns an orbit to the electron. 

Figure 3.22a shows the polar plots of Ye,me(0, 0) for s andp orbitals. The radial 
distance from the origin in the polar plot represents the magnitude of Y^mt{9, 0), 
which depends on the angles 0 and 0. The polar plots of the probability distribution 
|Ye me(0, 0)|2 are shown in Figure 3.22b. Although for the s states, Y\o(0, 0) is spher¬ 
ically symmetric, resulting in a spherically symmetrical probability distribution 
around the nucleus, this is not so for l = 1 and higher states. 

For example, each of the p states has a distinctly directional character, as illus¬ 
trated in the polar plots in Figure 3.22. The angular dependence of |02,i,o(/, <9, 0)1, for 
which me = 0, is such that most of the probability is oriented along the z axis. This 
wavefunction is referred to as the 2pz orbital. The two wavefunctions for me = ±1 are 
often represented by ir2px(r, 9, 0) and 02Py(r, 0,0), or more simply, 2px and 2py or¬ 
bitals, which do not possess a specific me individually, but together represent the two 
me = ±1 wavefunctions. The angular dependence of 2px and 2py are essentially 
along the x and y directions. Thus, the three orbitals for mt = 0, ±1 are all oriented 
perpendicular to each other, as depicted in Figure 3.22. 
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Y for a Is orbital Y for a 2px orbital 

Y for a 2py orbital 

z 

| Y|2 for a Is orbital 

z 

| y |2 for a 2py orbital 

Y for a 2pz orbital (m^~ 0) 

z 

| F|2 for a 2p^ orbital 

z 

| Yp for a 2pz orbital (- 0) 

Figure 3.22 
(a) The polar plots of Yn,e[0, 4>) for Is and 2p states. 

(b) The angular dependence of the probability distribution, which is 

proportional to \ 0)|2- 
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It should be noted that the probability distributions in Figures 3.21b and 3.22b 
do not depend on time. As previously mentioned, under steady-state conditions, the 
magnitude of the total wavefunction is 

l*(r,0,0,f)| = iKr, 0,0) exp(-^)| = W(r,e,<j>)\ 

which is independent of time. 

EXAMPLE 3.15 PROBABILITY DENSITY FUNCTION The quantity \Rn,e(r)\2r2 in Equation 3.41 is called the ra¬ 
dial probability density function and is simply written as P„,e(r). Thus, dP(r) = Pn,t{r) dr is 
the probability of finding the electron between r and r + dr. We can use Pn,e(r) to conveniently 
calculate the probability of finding the electron within a certain region of the atom, or to find the 
mean distance of the electron from the nucleus, and so on. For example, the electron in the Is or¬ 
bital has the wavefunction shown for n = 1, l = 0 in Table 3.2, which decays exponentially, 

The total probability of finding the electron inside the Bohr radius a0 can be found by summing 
(integrating) Pnt dr from r = 0 to r = a0, 

Ptotalfr < Clo) = / Pn.iir) dr \RnAr)\2r2dr 

Average 

distance of 

electron from 

nucleus 

= j 4a0 3 exp ^-^r2 dr = 0.32 or 32% 

The integration is not trivial but can nonetheless be done as indicated by the result 0.32 above. 
Thirty-two percent of the time the electron is therefore closer to the nucleus than the Bohr radius. 

The mean distance r of the electron, from the definition of the mean, becomes 

r oo 

r= / r P„Ar) dr 
a0n2 T3 1(1 + 1)* 

Z [_2 2/i2 . 
[3.42] 

where we have simply inserted the result of the integration for various orbitals. (Again we take 
the mathematics as granted.) For the Is orbital, in the hydrogen atom, Z = 1, n = 1, and i = 0, 
so 7 = |o0, further than the Bohr radius. Notice that the mean distance r of the electron in¬ 
creases as n2. 

3.7.2 Quantized Electron Energy 



3.7 HydrogenicAtom 237 

or 

En = 
Z2Et 

ni 

Z2( 13.6 eV) 

n“ 
[3.43b] 

where 

Ei = = 2.18 x 1CT18 J or 13.6 eV [3.43c] 
8fi2/l2 

This corresponds to the energy required to remove the electron in the hydrogen 
atom (Z = 1) from the lowest energy level E\ (at n = 1) to infinity; hence, it rep¬ 
resents the ionization energy. The energy En in Equation 3.43b is negative with 
respect to that for the electron completely isolated from the nucleus (at r = oo, 
therefore V = 0). Thus, when the electron is in the vicinity of the nucleus, +Ze, it 
has a lower energy, which is a favorable situation (hence, formation of the hydro¬ 
genic atom is energetically favorable). In general, the energy required to remove an 
electron from the nth shell to n = oo (where the electron is free) is called the ion¬ 
ization energy for the nth shell, which from Equation 4.43b is simply \En\ or 
(13.6 eV)Z2/n2. 

Since the energy is quantized, the lowest energy of the electron corresponds to 
n = 1, which is —13.6 eV. The next higher energy value it can have is E2 = —3.40 eV 
when n = 2, and so on, as sketched in Figure 3.23. Normally, the electron will take up 
a state corresponding to rt = 1, because this has the lowest energy, called the ground 
energy. Its wavefunction corresponds to irm(r, 0, <f>), which has a probability peak at 
r = a0 and no angular dependence, as indicated in Figures 3.21 and 3.22. 

The electron can only become excited to the next energy level if it is supplied by 
the right amount of energy E2 — E1. A photon of energy h v = E2 — E \ can readily sup¬ 
ply this energy when it strikes the electron. The electron then gets excited to the state 
with n = 2 by absorbing the photon, and its wavefunction changes to ir2l0(r, 0, 0), 
which has the maximum probability at r = 4a0. The electron thus spends most of its 
time in this excited state, at r = 4a0. It can return from the excited state at E2 to the 
ground state at £1 by emitting a photon of energy hv = E2 — E\. 

By virtue of the quantization of energy, we see that the emission of light from 
excited atoms can only have certain wavelengths: those corresponding to transitions 
from higher quantum-number states to lower ones. In fact, in spectroscopic analysis, 
these wavelengths can be used to identify the elements, since each element has its 
unique set of emission and absorption wavelengths arising from a unique set of energy 
levels. Figure 3.24 illustrates the origin of the emission and absorption spectra of 
atoms, which are a direct consequence of the quantization of the energy. 

The electrons in atoms can also be excited by other means, for example, by colli¬ 
sions with other atoms as a result of heating a gas. Figure 3.25 depicts how collisions 
with other atoms can excite an electron to higher energies. If an impinging atom has 
sufficient kinetic energy, it can impart just the right energy to excite the electron to a 
higher energy level. Since the total energy must be conserved, the incoming atom will 
lose some of its kinetic energy in the process. The excited electron can later return to 

Ionization 

energy of 

hydrogen 
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Figure 3.24 The physical origin of spectra. 



3.7 HydrogenicAtom 239 

(a) Before collision (b) Just after collision (c) Photon emission 

Figure 3.25 An atom can become excited by a collision with another atom. 

When it returns to its ground energy state, the atom emits a photon. 

its ground state by emitting a photon. Excitation by atomic collisions is the process by 
which we obtain light from an electrical discharge in gases, a quantum phenomenon 
we experience every day as we read a neon sign. Indeed, this is exactly how the Ne 
atoms in the common laboratory HeNe laser are excited, via atomic collisions between 
Ne and He atoms. 

Since the principal quantum number determines the energy of the electron and 
also the position of maximum probability, as we noticed in Figure 3.21, various n val¬ 
ues define electron shells, within which we can most likely find the electron. These 
shells are customarily labeled K, L, M, N,..., corresponding to n = 1, 2, 3, — For 
each n value, there are a number of i values that determine the spatial distribution of 
the electron. For a given n, each i value constitutes a subshell. For example, we often 
talk about 3s, 2>p, 3d subshells within the M shell. From the radial dependence of the 
electron’s wavefunction irn^mt{r, 0, <f>), shown in Figure 3.21, we see that for higher 
values of n, which correspond to more energetic states, the mean distance of the elec¬ 
tron from the nucleus increases. In fact, we observe from Figure 3.21 that an orbital 
with £ = n — 1 (e.g., Is, 2p) exhibits a single maximum in its radial probability distri¬ 
bution, and this maximum rapidly moves farther away from the nucleus as n increases. 
By examining the electron wavefunctions, we can show that the location of the 
maxima for these £ = n — 1 states are at 

n2a0 
rmax = - for £ = n — 1 [3.44] 

Maximum 

probability 
for £ = n — 1 

where a0 is the radius of the ground state (0.0529 nm). The maximum probability 
radius rmax in Equation 3.44 is the Bohr radius. Note that rmax in Equation 3.44 is for 
l = n — 1 states only. For other £ values, there are multiple maxima, and we must 
think in terms of the average position of the electron from the nucleus. When we 
evaluate the average position from irn^me{r, 0, <p), we see that it depends on both n 
and l\ strongly on n and weakly on £. 
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EXAMPLE 3.16 THE IONIZATION ENERGY OF He+ 
He++? 

What is the energy required to further ionize He+ ions to 

SOLUTION 

He+ is a hydrogenic atom with one electron attracted by a nucleus with a +2e charge. Thus 
Z = 2. The energy of the electron in a hydrogenic atom (in eV) is given by 

Z213.6 
E„ (eV) =-— 

n1 

Since Z = 2, the energy required to ionize He+ further is 

|£,| = | — (22)13.6| = 54.4 eV 

EXAMPLE 3.17 

Ionization 

and effective 
nuclear 

charge 

IONIZATION ENERGY AND EFFECTIVE Z The Li atom has a nucleus with a +3e positive 
charge, which is surrounded by a full Is orbital with two electrons, and a single valence elec¬ 
tron in the outer 2s orbital as shown in Figure 3.26a. Intuitively we expect the valence electron 
to see the nuclear +3e charge shielded by the two Is electrons, that is, a net charge of + le. It 
seems that we should be able to predict the ionization energy of the 2s electron by using the hy¬ 
drogenic atom model and by taking Z = 1 and n = 2 as indicated in Figure 3.26b. However, 
according to quantum mechanics, the 2s electron has a probability distribution that has two 
peaks as shown in Figure 3.21; a major peak outside the Is orbital, and a small peak around the 
Is orbital. Thus, although the 2s electron spends a substantial time outside the Is orbital, it does 
nonetheless penetrate the Is shell and get close to the nucleus. Instead of experiencing a net 
-l-le of nuclear charge, it now experiences an effective nuclear charge that is greater than -He, 
which we can represent as +Zeffectivee, where we have used an effective Z. Thus, the ionization 
energy from Equation 3.43 is 

Ze2ffective(13.6 eV) 
»2 

[3.45] 

The experimental ionization energy of Li is 5.39 eV which corresponds to creating a Li+ ion and 
an isolated electron. Calculate the effective nuclear charge seen by the 2s electron. 

(a) (b) 

Figure 3.26 

(a) The Li atom has a nucleus with charge +3e; two electrons in the K shell, which is closed; and one electron 

in the 2s orbital. 

(b) A simple view of (a) would be one electron in the 2s orbital that sees a single positive charge, Z = 1. 
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SOLUTION 

The most outer electron in the Li atom is in the 2s orbital, which is the electron that is removed 
in the ionization process. For this 2s electron, n = 2, and hence from Equation 3.45 

5.39eV = £k-ilHfX) 
m- 

Solving, we find Zeffective = 126. If we simply use Z = 1 in Equation 3.45, we would find 
£/ „ = 3.4 eV, too small compared with the experimental value because, according to its prob¬ 
ability distribution, the electron spends some time close to the nucleus, and hence increases its 
binding energy (stronger attraction). Variables Z and Zeffective should not be confused. Z is the 
integer number of protons in the nucleus of the simple hydrogenic atom that are attracting the 
electron, as in H, He+, or Li++. Zeffective is a convenient way of describing what the outer elec¬ 
tron experiences in an atom because we would like to continue to use the simple expression for 

Equation 3.45, which was originally derived for a hydrogenic atom. 

3.7.3 Orbital Angular Momentum and Space Quantization 

The electron in the atom has an orbital angular momentum L. The electron is attracted 
to the nucleus by a central force, just like the Earth is attracted by the central gravitational 
force of the sun and thus possesses an orbital angular momentum. It is well known that 
in classical mechanics, under the action of a central force, both the total energy 
(KE + PE) and the orbital angular momentum (L) of an orbiting object are conserved. 
In quantum mechanics, the orbital angular momentum of the electron, like its energy, 
is also quantized, but by the quantum number £. The magnitude of L is given by 

L = h[£(£ + 1)]1/2 [3.46] 

where £ = 0,1, 2,... < n. Thus, for an electron in the ground state, n = 1 and £ = 0, 
the angular momentum is zero, which is surprising since we always think of the 
electron as orbiting the nucleus. In the ground state, the spherical harmonic is a 
constant, independent of the angles 6 and <j>, so the electron has a spherically symmet¬ 
rical probability distribution that depends only on r. 

The quantum numbers n and £ quantize the energy and the magnitude of the 
orbital angular momentum. What is the significance of mp In the presence of an 
external magnetic field Bz, taken arbitrarily in the z direction, the component of the an¬ 
gular momentum along the z axis, Lz, is also quantized and is given by 

Lz = mtfi [3.47] 

Therefore, the quantum number mg quantizes the component of the angular 
momentum along the direction of an external magnetic field Bz, which for reference 
purposes is taken along z, as illustrated in Figure 3.27. Therefore, mg, is appropriately 
called the magnetic quantum number. For any given £, quantum mechanics requires 
thatm* must have values in the range —£, —(£ — 1),..., — 1,0,1,..., (£ — 1), £. We 
see that \mg\ < £. Moreover, mg can be negative, since Lz can be negative or positive, 
depending on the orientation of the angular momentum vector L. Since \me\ < £, L 
can never align with the magnetic field along z\ instead, it makes an angle with Bz, an 

Orbital 

angular 

momentum 

Orbital 

angular 

momentum 

along Bz 
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Figure 3.27 

(a) The electron has an orbital angular momentum, which has a quantized component L along an external magnetic field 

^external- 

(b) The orbital angular momentum vector L rotates about the z axis. Its component Lz is quantized; therefore, the 

L orientation, which is the angle 8, is also quantized. L traces out a cone. 

(c) According to quantum mechanics, only certain orientations [8) for L are allowed, as determined by l and mi. 

Selection 

rules for EM 

radiation 

angle that is determined by t and mi. We say that L is space quantized. Space quan¬ 
tization is illustrated in Figure 3.27 for i = 2. 

Since the energy of the electron does not depend on either i or mi we can have a 
number of possible states for a given energy. For example, when the energy is Ei, then 
n — 2, which means that l = 0 or 1. For l = 1, we have mi = — 1, 0,1, so there are a 
total of three different orbitals for the electron. 

Since the electron has a quantized orbital angular momentum, when an electron 
interacts with a photon, the electron must obey the law of the conservation of angular 
momentum, much as an ice skater does sudden fast spins by pulling in her arms. All 
experiments indicate that the photon has an intrinsic angular momentum with a con¬ 
stant magnitude given by h. Therefore, when a photon of energy hv = Ei — E\ is 
absorbed, the angular momentum of the electron must change. This means that fol¬ 
lowing photon absorption or emission, both the principal quantum number n and the 
orbital angular momentum quantum number l must change. 

The rules that govern which transitions are allowed from one state to another as a 
consequence of photon absorption or emission are called selection rules. As a result of 
photon absorption or emission, we must have 

A£ = ±1 and Am£ = 0, ±1 [3.48] 

As an example, consider the excitation of the electron in the hydrogen atom from 
the ground energy E\ to a higher energy level £2- The photon energy hv must be 
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Figure 3.28 An illustration of the allowed 

photon emission processes. 

Photon emission involves A£ = ±1. 

exactly E2 — E\. The wavefunction of the Is ground state is 01,0,0, whereas there are 
four wavefunctions at E2: one 2s state, 02,o,o; and three 2p states, 02,1,-1, 02,1,0* and 
02,i,i- The excited electron cannot jump into the 2s state, because A£ must be ±1, 
so it enters a 2p state corresponding to one of the orbitals 02,1,-1, 02,1,0, or 02(i,i- 
Various allowed transitions for photon emission in the hydrogen atom are indicated in 
Figure 3.28. 

EXCITATION BY ELECTRON-ATOM COLLISIONS IN A GAS DISCHARGE TUBE A projectile 
electron with a velocity 2.1 x 106 m s~1 collides with a hydrogen atom in a gas discharge tube. 
Find the nth energy level to which the electron in the hydrogen atom gets excited. Calculate the 
possible wavelengths of radiation that will be emitted from the excited H atom as the electron 
returns to its ground state. 

EXAMPLE 3.18 

SOLUTION 

The energy of the electron in the hydrogen atom is given by En (eV) = — 13.6/n2. The electron 
must be excited from its ground state £ 1 = -13.6 e V to a quantized energy level —(13.6/n2) eV. 
The change in the energy is AE = (—13.6fn2) — (—13.6) eV. This must be supplied by the 
incoming projectile electron, which has an energy of 

E = jffiu2 = ^(9.1 x 10"31 kg)(2.1 x 106 m s-1)2 

= 2.01 x Id-18 J or 12.5 eV 
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EXAMPLE 3.19 

Therefore, 

12.5eV = 13.6eV - 
(13.6 eV)‘ 

n2 

Solving this for n, we find 

n 2 13.6 

(13.6- 12.5) 
12.36 

so n = 3.51. But n can only be an integer; thus, the electron gets excited to the level n = 3 
where its energy is E3 = —13.6/32 = —1.51 eV. 

The energy of the incoming electron after the collision is less by 

(E3 - Ei) = 13.6 - 1.51 = 12.09 eV 

Since the initial energy of the incoming electron was 12.5 eV, it leaves the collision with a 
kinetic energy of 12.5 — 12.09 = 0.41 eV. From the £3 level, the electron can undergo a transi¬ 
tion from n = 3 to n = 1, 

A£31 = -1.51 eV - (—13.6eV) = 12.09eV 

The emitted radiation will have a wavelength X given by he/X = A£, so that 

he (6.626 x 10-34 J s)(3 x 108 m s-1) 

31 ” AE31 ~ 12.09 x 1.6 x 10-19 J 

= 1.026 x 10_7m or 102.6 nm (in the ultraviolet region) 

Another possibility is the transition from n = 3 to n = 2, for which 

A£32 = -1.51 eV - (-3.40eV) = 1.89eV 

This will give a wavelength 

^•32 = 

he 

AE32 
= 656 nm 

which is in the red region of the visible spectrum. For the transition from n = 2 to n = 1, 

AE2i = -3.40eV - (—13.6eV) = 10.2eV 

which results in the emission of a photon of wavelength X2\ = he/ A E2\ = 121.5 nm. Note that 
each transition obeys At — ± 1. 

THE FRAUNHOFER LINES IN THE SUN'S SPECTRUM The light from the sun includes extremely 
sharp “dark lines” at certain wavelengths, superimposed on a bright continuum at all other 
wavelengths, as discovered by Josef von Fraunhofer in 1829. One of these dark lines occurs in 
the orange range and another in the blue. Fraunhofer measured their wavelengths to be 6563 A 
and 4861 A, respectively. With the aid of Figure 3.23, show that these are spectral lines from the 
hydrogen atom spectrum. (They are called the Ha and Fraunhofer lines. Such lines provided 
us with the first clues to the chemical composition of the sun.) 

SOLUTION 

The energy of the electron in a hydrogenic atom is 
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where E{ = me4/(Se^h2). Photon emission resulting from a transition from quantum number 
«2 to «[ has an energy 

A E — En 2 Eni 
1 

n t ) 
From hv = ftc/A. = AE, we have 

1 

X ) 
where /?<*, = E{/he = 1.0974 x 107 m_1. The equation for X is called the Balmer-Rydberg 
formula, and /?<*, is called the Rydberg constant. We apply the Balmer-Rydberg formula with 
tix =2 and n2 = 3 to obtain 

Emitted 

wavelengths 

for 

transitions in 

hydrogenic 

atom 

i = (1.0974 x 107m-1)(l2)^^- - ^ = 1.524 x 106m_1 

to get X = 6561 A. We can also apply the Balmer-Rydberg formula with n, = 2 and «2 = 4 to 
get X = 4860 A. 

GIANT ATOMS IN SPACE Radiotelescopic studies by B. Hoglund and P. G. Mezger (Science 
vol. 150, p. 339, 1965) detected a 5009 MHz electromagnetic radiation in space. Show that this 
radiation comes from excited hydrogen atoms as they undergo transitions from n = 110 to 109. 
What is the size of such an excited hydrogen atom? 

EXAMPLE 3.20 

SOLUTION 

Since the energy of the electron is En = — (Z2EI/n2), the energy of the emitted photon in the 
transition from n2 to n\ is 

hv = En2-Eni = Z2E, {n-2-n~2) 

With «2 = HO, «i = 109, and Z = 1, the frequency is 

Z2El(n~2 -n~2) 
v =- 

h 

[(1.6 x 10~19 x 13.6)][(109-2 - 110"2)] _ _______ 

= 5 x 109 s-1 or 5000 MHz 

The size of the atom from Equation 3.44 is on the order of 

2rmax = ln2a0 = 2(1102)(52.918 x 10_12m) = 1.28 x 10_6m or 1.28 (xm 

A giant atom! 

3.7.4 Electron Spin and Intrinsic Angular Momentum S 

One aspect of electron behavior does not come from the simple Schrodinger equation. 
That is the spin of the electron about its own axis, which is analogous to the 24-hour 
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Figure 3*29 Spin angular 

momentum exhibits space quantization. 

Its magnitude along z is quantized, 

so the angle of S to the z axis is also 

quantized. 

Sz (along Bz) 

spin of Earth around its axis.7 Earth has an orbital angular momentum due to its motion 
around the sun, and an intrinsic or spin angular momentum due to its rotation about its 
own axis. Similarly, the electron has a spin or intrinsic angular momentum, denoted 
by S. In classical mechanics, in the absence of external torques, spin angular momen¬ 
tum is conserved. In quantum mechanics, this spin angular momentum is quantized, in 
a manner similar to that of orbital angular momentum. The magnitude of the spin has 
been found to be constant, with a quantized component Sz in the z direction along a 
magnetic field: 

Electron spin S = + l)]l/2 s = i [3.49] 

Spin along 1 
magnetic Sz = msti ms = =b — [3.50] 
field 2 

where, in an analogy with t and m£, we use the quantum numbers s and ms, which are 
called the spin and spin magnetic quantum numbers. Contrary to our past experi¬ 
ence with quantum numbers, 5 and ms are not integers, but are | and ±5, respectively. 
The existence of electron spin was put forward by Goudsmit and Uhlenbeck in 1925 
and derived by Dirac from relativistic quantum theory, which is beyond the scope of 
this book. Figure 3.29 illustrates the spin angular momentum of the electron and the two 
possibilities for Sz. When Sz = +\ti, using classical orbital motion as an analogy, we 

7 Do not take the meaning of "spin" too literally, as in classical mechanics. Remember that the electron is assumed to 
have wave-like properties, which can have no classical spin. 
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Table 3.3 The four quantum numbers for the hydrogenic atom 

n Principal quantum number « = 1,2,3, ... Quantizes the electron energy 

i Orbital angular momentum 

quantum number 

t =0, 1,2, ...(n- 1) Quantizes the magnitude of 

orbital angular momentum L 

mi Magnetic quantum number mi = 0, dbl, db2, .. 

ms = 

Quantizes the orbital angular 

momentum component along a 

magnetic field Bz 

ms Spin magnetic quantum 

number 

Quantizes the spin angular 

momentum component 

along a magnetic field Bz 

can label the spin of the electron as being in the clockwise direction, so Sz = — jti can 
be labeled as a counterclockwise spin. However, no such true clockwise or counter¬ 
clockwise spinning of the electron can in reality8 be identified. When Sz = +\ti, we 
could just as easily label the electron spin as “up,” and call it “down” when Sz = — 
This terminology is used henceforth in this book. 

Since the magnitude of the electron spin is constant, which is a remarkable fact, and 
is determined by 5 = we need not mention it further. It can simply be regarded as a fun¬ 
damental property of the electron, in much the same way as its mass and charge. We do, 
however, need to specify whether ms = +\ or — since each of these selections gives 
the electron a different behavior. We therefore need four quantum numbers to specify 
what the electron is doing. Each state of the electron needs the spin magnetic quantum 
numberm*, in addition ton, t, andm^. For each orbital 0, 0), we therefore have 
two possibilities: ms = ± The quantum numbers n, i, and determine the spatial ex¬ 
tent of the electron by specifying the form of (7,0, 0), whereas ms determines the 
“direction” of the electron’s spin. A full description of the behavior of the electron must 
therefore include all four quantum numbers n, t, mt, and ms. 

An electronic state is a wavefunction that defines both the spatial and 
spin (ms) properties of an electron. Frequently, an electronic state is simply denoted 

which adds the spin quantum number to the orbital wavefunction. 
The quantum numbers are extremely important, because they quantize the various 

properties of the electron: its total energy, orbital angular momentum, and the orbital 
and spin angular momenta along a magnetic field. Their significance is summarized in 
Table 3.3. 

The spin angular momentum S, like the orbital angular momentum, is space 
quantized. Sz = is smaller than S = ftv^3/2, which means that S can never 
line up with z, or a magnetic field, and the angle 6 between S and the z axis can only 
have two values corresponding to me = and which means that cos6 = 
SJS = ±1/V3. Classically, Sz of a spinning object, or the orientation of S to the 
z-axis, can be any value inasmuch as classical spin has no space quantization. 

8 The explanation in terms of spin and its two possible orientational directions ("clockwise" and "counterclockwise") 
serve as mental aids in visualizing a quantum mechanical phenomenon. One question, however, is, "If the electron 
is a wave, what is spinning?" 
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3.7.5 Magnetic Dipole Moment of the Electron 

Consider the electron orbiting the nucleus with an angular frequency co as illustrated in 
Figure 3.30a. The orbiting electron is equivalent to a current loop. The equivalent cur¬ 
rent / due to the orbital motion of the electron is given by the charge flowing per unit 
time, / = charge/period = —e{o)/2n). The negative sign indicates that current / 
flows in the opposite direction to the electron motion. The magnetic field around the 
current loop is similar to that of a permanent magnet as depicted in Figure 3.30a. The 
magnetic moment is defined as ti = IA, the product of the current and the area en¬ 
closed by the current loop. It is a vector normal to the surface A in a direction deter¬ 
mined by the corkscrew rule applied to the circulation of the current /. If r is the radius 
of the orbit (current loop), then the magnetic moment is 

/ eo) \ , ecor2 
/i = /x = (__)(J,r2) = __ 

(a) The orbiting electron is equivalent to a current loop that behaves like a bar magnet. 

mpin Magnetic moment 

(b) The spinning electron can be imagined to be equivalent to a current loop 
as shown. This current loop behaves like a bar magnet, just as in the orbital 
case. 

Figure 3.30 
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Consider now the orbital angular momentum L, which is the linear momentum p 

multiplied by the radius r, or 

L = pr = mevr — mecor2 

Using this, we can substitute for cor2 in p = —eu>r2/2 to obtain 

p = 
e 

2m e 
L 

In vector notation, using the subscript “orbital” to identify the origin of the mag¬ 
netic moment. 

M'orbital [3.51] 

This means that the orbital magnetic moment p,orbital is in the opposite direction to that 
of the orbital angular momentum L and is related to it by a constant (e/2me). 

Similarly, the spin angular momentum of the electron S leads to a spin magnetic 
moment pspin, which is in the opposite direction to S and given by 

M'spin = ~S [3.52] 
ftle 

which is shown in Figure 3.30b. Notice that there is no factor of 2 in the denominator. 
We see that, as a consequence of the orbital motion and also of spin, the electron has 
two distinct magnetic moments. These moments act on each other, just like two mag¬ 
nets interact with each other. The result is a coupling of the orbital and the spin angular 
momenta L and S and their precession about the total angular momentum J = L + S, 
which is discussed in Section 3.7.6. 

Since both L and S are quantized, so are the orbital and spin magnetic moments 
l*’orbital an^ M'spin* the presence of an external magnetic field B, the electron has an 
additional energy term that arises from the interaction of these magnetic moments with 
B. We know from electromagnetism that a magnetic dipole (equivalent to a magnet) 
placed in a magnetic field B will have a potential energy PE. (A free magnet will ro¬ 
tate to align with the magnetic field, as in a compass, and thereby reduce the PE.) The 
potential energy EBl due to /zorbitai and B interacting is given by 

EbL = orbitalB COS 9 

where 9 is the angle between potbm and B. The potential energy EBL is minimum when 
Morbital (the magnet) and B are parallel, 0 = 0. We know that, by definition, the z axis 
is always along an external field B, and Lz is the component of L along z (along B), 
and is quantized, so that Lz = L cos 9 = mfh. We can substitute for PoMm to find 

=-(£ )m'B 
which depends on me, and it is minimum for the largest mt. Since mt = —l, 
0,... ,+£, negative and positive values through zero, the electron’s energy splits into 
a number of levels determined by mg. Similarly, the spin magnetic moment pspjn and 

Orbital 
magnetic 
moment 

Spin 

magnetic 

moment 

Potential 

energy of a 

magnetic 

moment 

Potential 

energy of 

orbital 

angular 

momentum 

in B 
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energy of 

orbital 

angular 

momentum 

in B 

B interact to give the electron a potential energy ESL, 

ESL = -(—)msB 
\me/ 

which depends on ms. Since ms = ±|, ESl has only two values, positive (ms = - |) 
and negative (ms = + |), which add and subtract from the electron’s energy depend¬ 
ing on whether the spin is down or up. Thus, in an external magnetic field, the elec¬ 
tron’s spin splits the energy level into two levels. The separation A Esl of the split 
levels is (eti/me)B, which is 0.12 meV T-1, very small compared with the energy En 
in the absence of the field. It should also be apparent that a single wavelength emission 
X0 corresponding to a particular transition from En> to En will now be split into a num¬ 
ber of closely spaced wavelengths around X0. Although the separation A Esl is small, 
it is still more than sufficient even at moderate fields to be easily detected and used in 
various applications. As it turns out, spin splitting of the energy in a field can be fruit¬ 
fully used to study the electronic structures of not only atoms and molecules, but also 
various defects in semiconductors in what is called electron spin resonance. 

EXAMPLE 3.21 STERN-GERLACH EXPERIMENT AND SPIN The Stem-Gerlach experiment is quite famous 
for demonstrating the spin of the electron and its space quantization. A neutral silver atom 
has one outer valence electron in a 45 orbital and looks much like the hydrogenic atom. (We 
can simply ignore the inner filled subshells in the Ag atom.). The 4s electron has no orbital 
angular momentum. Because of the spin of this one outer 4s electron, the whole Ag atom has 
a spin magnetic moment fjuspin. When Otto Stem and Walther Gerlach (1921-1922) passed a 
beam of Ag atoms through a nonuniform magnetic field, they found that the narrow beam 
split into two distinct beams as depicted in Figure 3.31a. The interpretation of the experi¬ 
ment was that the Ag atom’s magnetic moment along the field direction can have only two 
values, hence the split beam. This observation agrees with the quantum mechanical fact that 
in a field along z, /x.spin>z = —(e/me)msti where ms = +5 or — i; that is, the electron’s spin 
can have only two values parallel to the field, or in other words, the electron spin is space 
quantized. 

In the Stem-Gerlach experiment, the nonuniform magnetic field is generated by using a 
big magnet with shaped poles as in Figure 3.31a. The N-pole is sharp and the S-pole is wide, so 
the magnetic field lines get closer toward the N-pole and hence the magnetic field increases to¬ 
wards the N-pole. (This is much like a sharp point having a large electric field.) Whenever a 
magnetic moment, which we take to be a simple bar magnet, is in a nonuniform field, its poles 
experience different forces, say Flarge and Fsman, and hence the magnet, overall, experiences a net 
force. The direction of the net force depends on the orientation of the magnet with respect to the 
z axis as illustrated in Figure 3.31b for two differently oriented magnets representing magnetic 
moments labeled as 1 and 2. The S-pole of magnet 1 is in the high field region and experiences 
a bigger pull (Flarge) from the big magnet’s N-pole than the small force (Fsman) pulling the 
N-pole of 1 to the big magnet’s S-pole. Hence magnet 1 is pulled toward the N-pole and is de¬ 
flected up. The overall force on a magnetic moment is the difference between Flarge and Fsmau, 
and its direction here is determined by the force on whichever pole is in the high field region. 
Magnet 2 on the other hand has its N-pole in the high field region, and hence is pushed away 
from the big magnet’s N-pole and is deflected down. If the magnet is at right angles to the z axis 
(9 = n/2), it would experience no net force as both of its poles would be in the same field. This 
magnetic moment would pass through undeflected. 



Figure 3.31 
(a) Schematic illustration of the Stern-Gerlach experiment. A stream of Ag atoms passing through a nonuniform magnetic field 

splits into two. 

(b) Explanation of the Stern-Gerlach experiment. 

(c) Actual experimental result recorded on a photographic plate by Stern and Gerlach (O. Stern and W. Gerlach, Zeitschr. 

fur. Physik, 9, 349, 1922.) When the field is turned off, there is only a single line on the photographic plate. Their experiment 

is somewhat different than the simple sketches in (a) and (b) as shown in (d). 

(d) Stern-Gerlach memorial plaque at the University of Frankfurt. The drawing shows the original Stern-Gerlach experiment in 

which the Ag atom beam is passed along the long-length of the external magnet to increase the time spent in the nonuniform 

field, and hence increase the splitting. 

(e) The photo on the lower right is Otto Stern (1888-1969), standing and enjoying a cigar while carrying out an experiment. 

Otto Stern won the Nobel prize in 1943 for development of the molecular beam technique. 

| SOURCES: (d) Courtesy of Horst Schmidt-Bocking from B. Friedrich and D. Herschbach, "Stern and Gerlach: How a Bad Cigar Helped 
| Reorient Atomic Physics," Physics Today, December 2003, pp. 53-59. (e) AIP Emilio Segre Visual Archives, Segre Collection. 
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Total angular 

momentum 

When we pass a stream of classical magnetic moments through a nonuniform field, there will 
be all possible orientations of the magnetic moment, from — n to +n, with the field because there 
is no space quantization. Classically, the Ag atoms passing through a nonuniform field would be 
deflected through a distribution of angles and would not split into two distinct beams. The actual 
result of Stem and Gerlach’s experiment is shown in Figure 3.31c, which is their photographic 
recording of a flat line-beam of Ag atoms passing through a long nonuniform field. In the absence 
of the field, the image is a simple horizontal line, the cross section of the beam. With the field 
turned on, the line splits into two. The edges of the line do not experience splitting because the 
field is very weak in the edge region. In the actual experiment, as shown in Figure 3.31c, an Ag 
atomic beam is passed along the long-length of the external magnet to increase the time spent in 
the nonuniform field, and hence increase the splitting. The physics remains the same. 

3.7.6 Total Angular Momentum J 

The orbital angular momentum L and the spin angular momentum S add to give the 
electron a total angular momentum J = L + S, as illustrated in Figure 3.32. There are 
a number of possibilities for the total angular momentum J, based on the relative 
orientations of L and S. For example, for a given L, we can add S either in parallel or 
antiparallel, as depicted in Figure 3.32a and b, respectively. 

Since in classical physics the total angular momentum of a body (not experiencing 
an external torque) must be conserved, we can expect J (the magnitude of J) to be 
quantized. This turns out to be true. The magnitude of J and its z component along an 
external magnetic field are quantized via 

J = flljij + 1)]1/2 [3.53] 

Jz = mjti [3.54] 

7' = *+5 

J = t~\ 

Figure 3.32 Orbital angular momentum vector L and spin angular momentum vector S 

can add either in parallel as in (a) or antiparallel, as in (b). 

The total angular momentum vector J = L + S, has a magnitude J = \/[/(/ + 1)], where in 

(a) j = l +j and in (b) / = £ — j. 
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B 

Figure 3.33 

(a) The angular momentum vectors L and S precess 

around their resultant total angular momentum vector J 

(b) The total angular momentum vector is space 

quantized. Vector J precesses about the z axis, along 

which its component must be rrijfi. 

where both j and mj are quantum numbers9 like i and mt, but j and mj can have frac¬ 
tional values. A rigorous theory of quantum mechanics shows that when t > s, the 
quantum numbers for the total angular momentum are given by j = l + s and l — s 
and mj = ±j,±(j — 1). For example, for an electron in ap orbital, where t— 1, we 
have j = | and and my = |, and —|. However, when l = 0 (as for all s or¬ 
bitals), we have j = s = ^ and m} = ms = ±^, which are the only possibilities. We 
note from Equations 3.53 and 3.54 that |/z| < J and both are quantized, which means 
that J is space quantized; its orientation (or angle) with respect to the z axis is deter¬ 
mined by j and mj. 

The spinning electron actually experiences a magnetic field Bjnt due to its or¬ 
bital motion around the nucleus. If we were sitting on the electron, then in our ref¬ 
erence frame, the positively charged nucleus would be orbiting around us, which 
would be equivalent to a current loop. At the center of this current loop, there would 
be an “internal” magnetic field B;nt, which would act on the magnetic moment of 
the spinning electron to produce a torque. Since L and S add to give J, and since the 
latter quantity is space quantized (or conserved), then as a result of the internal 
torque on the electron, we must have L and S synchronously precessing about J, as 
illustrated in Figure 3.33a. If there is an external magnetic field B taken to be along 
z, this torque will act on the net magnetic moment due to J to cause this quantity to 
precess about B, as depicted in Figure 3.33b. Remember that the component along 
the z axis must be quantized and equal to m^, so the torque can only cause preces¬ 
sion. To understand the precession of the electron’s angular momentum about the 
magnetic field B, think of a spinning top that precesses about the gravitational field 
of Earth. 

I 9 The quantum number / as used here should not be confused with j for yfA. 
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3.8 THE HELIUM ATOM AND THE PERIODIC TABLE 

3.8.1 He Atom and Pauli Exclusion Principle 

In the He atom, there are two electrons in the presence of a nucleus of charge +2e, as 
depicted in Figure 3.34. (Obviously, in higher-atomic-number elements, there will be Z 
electrons around a nucleus of charge +Ze.) The PE of an electron in the He atom con¬ 
sists of two interactions. The first is due to the Coulombic attraction between itself and 
the positive nucleus; the second is due to the mutual repulsion between the two 
electrons. The PE function V of any one of the electrons, for example, that labeled as 1, 
therefore depends on both its distance from the nucleus ri and the separation of the 
two electrons r12. The PE of electron 1 thus depends on the locations of both the 
electrons, or 

2e2 e2 
V' (/*i, r 12) = — --h -- [3.55] 

4jre0ri 47re0ri2 

When we use this PE in the Schrodinger equation for a single electron, we find the 
wavefunction and energy of one of the electrons in the He atom. We thus obtain the 
one-electron wavefunction and the energy of one electron within a many-electron 
atom. 

One immediate and obvious result is that the energy of an electron now depends 
not only on n but also on i, because the electron-electron potential energy term (the 
second term in Equation 3.55, which contains ri2) depends on the relative orientations 
of the electron orbitals, which change ri2. We therefore denote the electron energy by 
En<t. The dependence on i is weaker than on n, as shown in Figure 3.35. As n and l 
increase, En^ also increases. Notice, however, that the energy of a 45 state is lower 
than that of a 3d state, and the same pattern also occurs at 45 and 5s. 

One of the most important theorems in quantum physics is the Pauli exclusion 
principle, which is based on experimental observations. This principle states that no 
two electrons within a given system (e.g., an atom) may have all four identical quan¬ 
tum numbers, n, i, mt, and m s. Each set of values for n, i, m t, and m represents a pos¬ 
sible electronic state, that is, a wavefunction denoted by i/fn,e,me,ms, that the electron 
may (or may not) acquire. For example, an electron with the quantum numbers given 
by 2,1,1, ^ will have a definite wavefunction i/n,e,me,ms = ^2,1,1,1/21 and it is said to be 

Figure 3.34 A helium-like atom. 

The nucleus has a charge of +Ze, where Z = 2 for He. If one 

electron is removed, we have the He+ ion, which is 

equivalent to the hydrogenic atom with Z= 2. 
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Figure 3.35 Energy of various one-electron states. Figure 3.36 Paired spins in an orbital. 

The energy depends on both n and t. 

in the state 2p, mt = 1 and spin up. Its energy will be E2p. The Pauli exclusion prin¬ 
ciple requires that no other electron be in this same state. 

The orbital motion of an electron is determined by n, i, and mi, whereas ms de¬ 
termines the spin direction (up or down). Suppose two electrons are in the same orbital 
state, with identical n, t, mi. By the Pauli exclusion principle, they would have to spin 
in opposite directions, as shown in Figure 3.36. One would have to spin “up” and the 
other “down.” In this case we say that the electrons are spin paired. Two electrons can 
thus have the same orbitals (occupy the same region of space) if they pair their spins. 
However, the Pauli exclusion principle prevents a third electron from entering this or¬ 
bital, since ms can only have two values. 

Using the Pauli exclusion principle, we can determine the electronic structure of 
many-electron atoms. For simplicity, we will use a box to represent an orbital state 
defined by a set of rt, l, mi values. Each box can take two electrons at most, with 
their spins paired. When we put an electron into a box, we are essentially assigning a 
wavefunction to that electron; that is, we are defining its orbital n,i,mt. We use an 
arrow to show whether the electron is spinning up or down. As depicted in Figure 
3.37, we arrange all the boxes to correspond to the electronic subshells. As an exam¬ 
ple, consider boron, which has five electrons. The first electron enters the Is orbital 
at the lowest energy. The second also enters this orbital by spinning in the opposite 
direction. The third goes into the n = 2 orbital. The lowest energy there is in the s or¬ 
bitals corresponding to l = 0 and m£ = 0. The fourth electron can also enter the 2s 
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Figure 3.37 Electronic configurations for the first five elements. 

Each box represents an orbital \fr(n, i, mi). 

orbital, provided that it spins in the opposite direction. Similarly, the fifth must go 
into another orbital, and the next nearest low-energy orbitals are those having i = 1 
(p states) and mt = — 1, 0, +1. The final electronic structure of the B atom is shown 
in Figure 3.37. 

We see that because the electron energy depends on n and t, there are a number of 
states for a given energy En^. Each of these states corresponds to different sets of mt 

and ms. For example, the energy £2,i (or Elp) corresponding to n = 2, i — 1 has six 
possible states, arising from me = —1,0,1 andms = + ^, — Each mt state can have 

an electron spinning up or down, ms = +\ or ms = — respectively. 

EXAMPLE 3.22 THE NUMBER OF STATES AT AN ENERGY LEVEL 
sponding to the energy level E3d, or n = 3, i = 2. 

Enumerate and identify the states corre- 

SOLUTION 

When n = 3 and l = 2, mt and ms can have these following values: mt — —2, —1,0,1,2, and 
ms = +5, — 1. This means there are 10 combinations. The possible wavefunctions (electron 
states) are 

• ^3,2,2,1/2; ^3,2,1.1/2; ^3,2,0,1/2; 1^3,2,—1,1/2; fi.2,—2.1/2, all of which have spins up 
(ms = +|) 

• ^3,2,2,-1/2; 1^3,2,1,—1/2; ^3,2,0,—1/2; Vf3,2,—1,—1/2; ^3,2,-2,-i/2> all of which have spins 
down (ms = — 5) 

3.8.2 Hund’s Rule 

In the many-electron atom, the electrons take up the lowest-energy orbitals and obey 
the Pauli exclusion principle. However, the Pauli exclusion principle does not deter¬ 
mine how any two electrons distribute themselves among the many states of a given n 

and i. For example, there are six 2p states corresponding to mt = — 1,0, +1, with each 
me having ms = ± \. The two electrons could pair their spins and enter a given mt state, 
or they could align their spins (same ms) and enter different me states. An experimental 
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fact deducted from spectroscopic studies shows that electrons in the same n, l orbitals 
prefer their spins to be parallel (same ms). This is known as Hund’s rule. 

The origin of Hund’s rule can be readily understood. If electrons enter the same mt 
state by pairing their spins (different ms), their quantum numbers n, i, mt will be the 
same and they will both occupy the same region of space (same irn,e,m( orbital). They 
will then experience a large Coulombic repulsion and will have a large Coulombic 
potential energy. On the other hand, if they parallel their spins (same ms), they will 
each have a different mt and will therefore occupy different regions of space (different 
ifn,e,me orbitals), thereby reducing their Coulombic repulsion. 

The oxygen atom has eight electrons and its electronic structure is shown in 
Figure 3.38. The first two electrons enter the Is box (orbital). The next two enter the 2s 
box. But p states can accommodate six electrons, so the remaining four electrons have 
a choice. Hund’s rule forces three of the four electrons to enter the boxes correspond¬ 
ing to me = — 1,0, +1, all with their spins parallel. The last electron can go into any of 
the 2p boxes, but it has no choice for spin. It must pair its spin with the electron already 
in the box. Thus, the oxygen atom has two unpaired electrons in half-occupied orbitals, 
as indicated in Figure 3.38. Since these two unpaired electrons spin in the same direc¬ 
tion, they give the O atom a net angular momentum. An angular momentum due 
to charge rotation {i.e., spin) gives rise to a magnetic moment p,. If there is an external 
magnetic field present, then p. experiences a force given by p • dB/dx. Oxygen 
atoms will therefore be deflected by a nonuniform magnetic field, as experimentally 
observed. 

Following the Pauli exclusion principle and Hund’s rule, it is not difficult to 
build the electronic structure of various elements in the Periodic Table. There are 
only a few instances of unusual behavior in the energy levels of the electronic states. 
The 4s state happens to be energetically lower than the 3d states, so the 4s state fills 
up first. Similarly, the 5s state is at a lower energy than the 4d states. These features 
are summarized in the energy diagram of Figure 3.35. There is a neat shorthand way 
of writing the electronic structure of any atom. To each ni state, we attach a super¬ 
script to represent the number of electrons in those ni states. For example, for oxygen, 
we write ls22s22p4, or simply [He]2s22p4, since Is2 is a full (closed) shell corre¬ 
sponding to He. 

C N O F Ne 

4 4 4 4 4 44 4 4 44 44 4 44 44 44 
S 44 44 44 44 44 
s 44 44 44 44 44 

Figure 3.38 Electronic configurations for C, N, O, F, and Ne atoms. 

Notice that in C, N, and O, Hund's rule forces electrons to align their spins. For the Ne atom, all the K and L orbitals 

are full. 
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EXAMPLE 3.23 HUND'S RULE The Fe atom has the electronic structure [Ax]id6As2. Show that the Fe atom has 
four unpaired electrons and therefore a net angular momentum and a magnetic moment due to 
spin. 

SOLUTION 

In a closed subshell, for example, 2p subshell with six states given by mt — — 1, 0, +1 and 
ms = ± all me and ms values have been taken up by electrons, so each mt orbital is occu¬ 
pied and has paired electrons. Each positive me (or ms) value assigned to an electron is 
canceled by the negative mt (or ms) value assigned to another electron in the subshell. There¬ 
fore, there is no net angular momentum from a closed subshell. Only unfilled subshells con¬ 
tribute to the overall angular momentum. Thus, only the six electrons in the 3d subshell need 
be considered. 

There are five d orbitals, corresponding to mt = -2, —1,0,1,2. Five of the six electrons 
obey Hund’s rule and align their spins, with each taking one of the mt values. 

-10 12 

t t t t 

The sixth must take the same mt as another electron. This is only possible if they pair their 
spins. Consequently, there are four electrons with unpaired spins in the Fe atom, which gives the 
Fe atom a net angular momentum. The Fe atom therefore possesses a magnetic moment as a re¬ 
sult of four electrons having their charges spinning in the same direction. 

Many isolated atoms possess unpaired spins and hence also possess a magnetic moment. 
For example, the isolated Ag atom has one outer 5s electron with an unpaired spin and hence it 
is magnetic; it can be deflected in a magnetic field. The silver crystal, however, is nonmagnetic. 
In the crystal, the 5s electrons become detached to form the electron gas (metallic bonding) 
where they pair their spins, and the silver crystal has no net magnetic moment. The iron crystal 
is magnetic because the constituent Fe atoms retain at least two of the unpaired electron spins 
which then all align in the same direction to give the crystal an overall magnetic moment; iron 
is a magnetic metal.10 

3.9 STIMULATED EMISSION AND LASERS 

3.9.1 Stimulated Emission and Photon Amplification 

An electron can be excited from an energy level E\ to a higher energy level E2 by the 
absorption of a photon of energy hv = E2 — E\, as show in Figure 3.39a. When an 
electron at a higher energy level transits down in energy to an unoccupied energy level, 

I 10 This qualitative explanation is discussed in Chapter 8. 
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Figure 3.39 Absorption, spontaneous emission, and stimulated emission. 

it emits a photon. There are essentially two possibilities for the emission process. The 
electron can spontaneously undergo the downward transition by itself, or it can be 
induced to do so by another photon. 

In spontaneous emission, the electron falls in energy from level £2 to £1 and 
emits a photon of energy h v = £2 — £1, as indicated in Figure 3.39b. The transition is 
only spontaneous if the state with energy E\ is not already occupied by another elec¬ 
tron. In classical physics, when a charge accelerates and decelerates, as in an oscilla¬ 
tory motion, with a frequency v, it emits an electromagnetic radiation also of 
frequency v. The emission process during the transition of the electron from £2 to E\ 

appears as if the electron is oscillating with a frequency v. 

In stimulated emission, an incoming photon of energy hv = £2 — £1 stimulates 
the emission process by inducing the electron at £2 to transit down to E\. The emitted 
photon is in phase with the incoming photon, it is going in the same direction, and 
it has the same frequency, since it must also have the energy £2 — £1, as shown in 
Figure 3.39c. To get a feel for what is happening during stimulated emission, imagine 
the electric field of the incoming photon coupling to the electron and thereby driving 
it with the same frequency as the photon. The forced oscillation of the electron at a fre¬ 
quency v = (£2 - £i)//i causes the electron to emit electromagnetic radiation, for 
which the electric field is totally in phase with that of the stimulating photon. When the 
incoming photon leaves the site, the electron can return to E\, because it has emitted a 
photon of energy hv = £2 - £1. 

Stimulated emission is the basis for photon amplification, since one incoming 
photon results in two outgoing photons, which are in phase. It is possible to achieve 
a practical light amplifying device based on this phenomenon. From Figure 3.39c, 
we see that to obtain stimulated emission, the incoming photpn should not be ab¬ 
sorbed by another electron at £1. When we are considering using a collection of 
atoms to amplify light, we must therefore require that the majority of the atoms be at 
the energy level £2. If this were not the case, the incoming photons would be ab¬ 
sorbed by the atoms at £1. When there are more atoms at £2 than at £ 1, we have 
what is called a population inversion. It should be apparent that with two energy 
levels, we can never achieve a population at £2 greater than that at £1, because, in 
the steady state, the incoming photon flux will cause as many upward excitations as 
downward stimulated emissions. 
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Figure 3.40 The principle of the LASER. 

(a) Atoms in the ground state are pumped up 

to energy level £3 by incoming photons of 
energy hv 13 = £3 - £]. 

(b) Atoms at £3 rapidly decay to the 

metastable state at energy level £2 by 

emitting photons or emitting lattice vibrations: 

hv 32 = £3 — £2- 

(c) Since the states at £2 are metastable, they 

quickly become populated, and there is a 

population inversion between £2 and £1. 

(d) A random photon of energy hv21 = 

£2 - E\ can initiate stimulated emission. 

Photons from this stimulated emission can 

themselves further stimulate emissions, 

leading to an avalanche of stimulated 

emissions and coherent photons being 

emitted. 

Let us consider the three-energy-level system shown in Figure 3.40. Suppose 
an external excitation causes the atoms11 in this system to become excited to energy 
level £3. This is called the pump energy level, and the process of exciting the atoms 
to £3 is called pumping. In the present case, optical pumping is used, although this 
is not the only means of taking the atoms to £3. Suppose further that the atoms in £3 

decay rapidly to energy level £2, which happens to correspond to a state that does not 
rapidly and spontaneously decay to a lower energy state. In other words, the state at £2 

is a long-lived state.12 Quite often, the long-lived states are referred to as metastable 
states. Since the atoms cannot decay rapidly from £2 to E\, they accumulate at this en¬ 
ergy level, causing a population inversion between £2 and £ 1 as pumping takes more 
and more atoms to £3 and hence to £2. 

" An atom is in an excited state when one (or more) of its electrons is excited from the ground energy to a higher 
energy level. The ground state of an atom has all the electrons in their lowest energy states consistent with the Pauli 
exclusion principle and Hund's rule. 

12 We will not examine what causes certain states to be long lived; we will simply accept that these states do not 
decay rapidly and spontaneously to lower energy states. 
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Arthur L. Schawlow in 1961 with a ruby laser built by his 
Stanford group. The solid state laser was a dark ruby 
crystal containing Cr3+ ions. Lasing is obtained by stimulated 
emission from the Cr3+ ions. Arthur Schawlow won the Nobel 
prize in Physics in 1981 for his contribution to the 
development of laser spectroscopy. 

I SOURCE: Stanford University, courtesy of AIP Emilio Segre 
I Visual Archives. 

When one atom at E2 decays spontaneously, it emits a photon, which can go on to 
a neighboring atom and cause that to execute stimulated emission. The photons from 
the latter can then go on to the next atom at E2 and cause that atom to emit by stimu¬ 
lated emission, and so on. The result is an avalanche effect of stimulated emission 
processes with all the photons in phase, so the light output is a large collection of 
coherent photons. This is the principle of the ruby laser in which the energy levels 
Ei, E2, and £3 are those of the Cr+3 ion in the AI2O3 crystal. At the end of the 
avalanche of stimulated emission processes, the atoms at E2 will have returned to E\ 
and can be pumped again to repeat the stimulated emission cycle again. The emission 
from E2 to Ei is called the lasing emission. 

The system we have just described for photon amplification is a LASER, an 
acronym for light amplification by stimulated emission of radiation. In the ruby laser, 
pumping is achieved by using a xenon flashlight. The lasing atoms are chromium ions 
(Cr3+) in a crystal of alumina AI2O3 (sapphire). The ends of the ruby crystal are sil¬ 
vered to reflect the stimulated radiation back and forth so that its intensity builds up, in 
much the same way we build up voltage oscillations in an electric oscillator circuit. 
One of the mirrors is partially silvered to allow some of this radiation to be tapped out. 
What comes out is a highly coherent radiation with a high intensity. The coherency and 
the well-defined wavelength of this radiation are what make it distinctly different from 
a random stream of different-wavelength photons emitted from a tungsten bulb. 

3.9.2 Helium-Neon Laser 

With the helium-neon (HeNe) laser, the actual operation is not simple, since we need 
to know such things as the energy states of the whole atom. We will therefore only con¬ 
sider the lasing emission at 632.8 nm, which gives the well-known red color to the 
laser light. The actual stimulated emission occurs from the Ne atoms; He atoms are 
used to excite the Ne atoms by atomic collisions. 
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Ali Javan and his associates William Bennett Jr. and Donald 
Herriott at Bell Labs were first to successfully demonstrate a 
continuous wave (cw) helium-neon laser operation (1960). 

I SOURCE: Courtesy of Bell Labs, Lucent Technologies. 

Flat mirror (reflectivity = 0.999) Concave mirror 
(reflectivity = 0.985) 

Very thin tube 

Figure 3.41 Schematic illustration of the HeNe laser. 

A modern stabilized HeNe laser. 

I SOURCE: Courtesy of Melles Griot. 

Ne is an inert gas with a ground state (ls22s22p6), which is represented as (2p6) 

when the inner closed Is and 2s subshells are ignored. If one of the electrons from the 
2p orbital is excited to a 5s orbital, the excited configuration (2ps5sl) is a state of the 
Ne atom that has higher energy. Similarly, He is an inert gas with the ground-state 
configuration of (Is2). The state of He when one electron is excited to a 2s orbital can 
be represented as (Is12s1), which has higher energy. 

The HeNe laser consists of a gaseous mixture of He and Ne atoms in a gas dis¬ 
charge tube, as shown schematically in Figure 3.41. The ends of the tube are mirrored 
to reflect the stimulated radiation and to build up the intensity within the cavity. If suf¬ 
ficient dc high voltage is used, electrical discharge is obtained within the tube, causing 
the He atoms to become excited by collisions with the drifting electrons. Thus, 

He + e~ —» He* 4- e~ 

where He* is an excited He atom. 
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Figure 3.42 The principle of operation of the HeNe laser. Important HeNe laser 

energy levels (for 632.8 nm emission). 

The excitation of the He atom by an electron collision puts the second electron in 
He into a 2s state, so the excited He atom, He*, has the configuration (1 ^12^1). This 
atom is metastable (long lasting) with respect to the (Is2) state, as shown schemati¬ 
cally in Figure 3.42. He* cannot spontaneously emit a photon and decay down to the 

(Is2) ground state because At must be ±1. Thus, a large number of He* atoms build 

up during the electrical discharge. 
When an excited He atom collides with a Ne atom, it transfers its energy to the Ne 

atom by resonance energy exchange. This happens because, by good fortune, Ne has 
an empty energy level, corresponding to the (2p55s1) configuration, which matches 
that of (ls^s1) of He*. The collision process excites the Ne atom and de-excites He* 
down to its ground energy, that is, 

He* + Ne -► He 4- Ne* 

With many He*-Ne collisions in the gaseous discharge, we end up with a large 
number of Ne* atoms and a population inversion between the (2p55sl) and (2ps3pl) 

states of the Ne atom, as indicated in Figure 3.42. The spontaneous emission of a photon 

from one Ne* atom falling from 5s to 3p gives rise to an avalanche of stimulated emission 
processes, which leads to a lasing emission with a wavelength of 632.8 nm, in the red. 

There are a few interesting facts about the HeNe laser, some of which are quite subtle. 
First, the (2p55sl) and (2p53pl) electronic configurations of the Ne atom actually have 
a spread of energies. For example for Ne(2p5551), there are four closely spaced energy 
levels. Similarly, for Ne(2p53p1), there are 10 closely separated energies. We can 

therefore achieve population inversion with respect to a number of energy levels. As a 

result, the lasing emissions from the HeNe laser contain a variety of wavelengths. The two 
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lasing emissions in the visible spectrum, at 632.8 nm and 543 nm, can be used to build a 
red or green HeNe laser. Further, we should note that the energy of the Ne(2/?54p1) state 
(not shown) is above that of Ne(2p53p1) but below that of Ne(2p5551). Consequently, 
there will also be stimulated transitions from Ne(2p5551) to Ne(2p54p1), and hence a 
lasing emission at a wavelength of ~3.39 jttm infrared. To suppress lasing emissions at the 
unwanted wavelengths (e.g., the infrared) and to obtain lasing only at the wavelength of 
interest, we can make the reflecting mirrors wavelength selective. This way the optical 
cavity builds up optical oscillations at the selected wavelength. 

From (2p53pl) energy levels, the Ne atoms decay rapidly to the (2ps3sl) energy 
levels by spontaneous emission. Most of the Ne atoms with the (2p53sl) configuration, 
however, cannot simply return to the ground state 2/?6, because the return of the electron 
in 3s requires that its spin be flipped to close the 2p subshell. An electromagnetic 
radiation cannot change the electron spin. Thus, the Ne(2/?53s') energy levels are 
metastable. The only possible means of returning to the ground state (and for the next 
repumping act) is collisions with the walls of the laser tube. Therefore, we cannot 
increase the power obtainable from a HeNe laser simply by increasing the laser tube 
diameter, because that will accumulate more Ne atoms at the metastable (2p53sl) states. 

Atypical HeNe laser, illustrated in Figure 3.41, consists of a narrow glass tube that 
contains the He and Ne gas mixture (typically, the He to Ne ratio is 10:1). The lasing 
emission intensity increases with tube length, since more Ne atoms are then used in 
stimulated emission. The intensity decreases with increasing tube diameter, since Ne 
atoms in the (2p53s1) states can only return to the ground state by collisions with the 
walls of the tube. The ends of the tube are generally sealed with a flat mirror 
(99.9 percent reflecting) at one end and, for easy alignment, a concave mirror (98.5 
percent reflecting) at the other end, to obtain an optical cavity within the tube. The 
outer surface of the concave mirror is ground to behave like a convergent lens, to 
compensate for the divergence in the beam arising from reflections from the concave 
mirror. The output radiation from the tube is typically a beam of diameter 0.5-2 mm 
and a divergence of 1 milliradians at a power of a few milliwatts. In high-power HeNe 
lasers, the mirrors are external to the tube. In addition, Brewster windows are fused at 
the ends of the laser tube, to allow only polarized light to be transmitted and amplified 
within the cavity, so that the output radiation is polarized (that is, has electric field 
oscillations in one plane). 

EXAMPLE 3.24 EFFICIENCY OF THE HeNe LASER A typical low-power 2.5 mW HeNe laser tube operates at a 
dc voltage of 2 kV and carries a current of 5 mA. What is the efficiency of the laser? 

SOLUTION 

From the definition of efficiency, 

Efficiency = 
Output power 

Input power 

(2.5 x 10"3 W) 

(5 x 10~3 A)(2000 V) 
0.00025 or 0.025% 
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3.9.3 Laser Output Spectrum 

The output radiation from a laser is not actually at one single well-defined wavelength 
corresponding to the lasing transition. Instead, the output covers a spectrum of 
wavelengths with a central peak. This is not a simple consequence of the Heisenberg 
uncertainty principle (which does broaden the output). Predominantly, it is a result of the 
broadening of the emitted spectrum by the Doppler effect. We recall from the kinetic 
molecular theory that gas atoms are in random motion, with an average translational 
kinetic energy of \kT. Suppose that these gas atoms emit radiation of frequency vo 
which we label as the source frequency. Then, due to the Doppler effect, when a gas 
atom moves toward an observer, the latter detects a higher frequency v2, given by 

V2.= V0 
Doppler 

effect 

where vx is the relative velocity of the atom with respect to the observer and c is the 
speed of light. When the atom moves away, the observer detects a smaller frequency, 
which corresponds to 

Vi = v0 
Doppler 

effect 

Since the atoms are in random motion, the observer will detect a range of 
frequencies, due to this Doppler effect. As a result, the frequency or wavelength of the 
output radiation from a gas laser will have a “linewidth” of Av = v>2 - vj, called a 
Doppler-broadened linewidth of a laser radiation. Other mechanisms also broaden the 
output spectrum, but we will ignore these at present. 

The reflections from the laser end mirrors give rise to traveling waves in opposite 
directions within the cavity. Since the waves are in phase, they interfere constructively, 
to set up a standing wave—in other words, stationary oscillations. Some of the energy 
in this wave is tapped by the 99 percent reflecting mirror to get an output, in much the 
same way that we tap the energy from an oscillating field in an LC circuit by attaching 
an antenna to it. 

Only standing waves with certain wavelengths can be maintained within the 
optical cavity, just as only certain acoustic wavelengths can be obtained from musical 
instruments. Any standing wave in the cavity must have a half-wavelength X/2 that fits 
into the cavity length L, or 

n = L [3.56] 
Laser cavity 

modes 

where n is an integer called the mode number of the standing wave. Each possible 
standing wave within the laser tube (cavity) satisfying Equation 3.56 is called a 
cavity mode. The laser output thus has a broad spectrum with peaks at certain 
wavelengths corresponding to various cavity modes existing within the Doppler- 
broadened emission curve. Figure 3.43 shows the expected output from a typical gas 
laser. At wavelengths satisfying Equation 3.56, that is, representing certain cavity 
modes, we have intensity spikes in the output. The net envelope of the output 
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Emission intensity Allowed cavity Relative intensity 
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A 

Figure 3.43 
(a) Doppler-broadened emission versus wavelength characteristics of the lasing medium. 

(b) Allowed oscillations and their wavelengths within the optical cavity. 

(c) The output spectrum is determined by satisfying (a) and (b) simultaneously. 

radiation is a Gaussian distribution, which is essentially due to the Doppler- 
broadened linewidth. 

Even though we can try to get as parallel a beam as possible by lining the mirrors up 
perfectly, we will still be faced with diffraction effects at the output. When the output 
laser beam hits the end of the laser tube, it becomes diffracted, so the emerging beam is 
necessarily divergent. Simple diffraction theory can readily predict the divergence angle. 

EXAMPLE 3.25 DOPPLER-BROADENED LINEWIDTH Calculate the Doppler-broadened linewidths Av and A A. 
for the HeNe laser transition X = 632.8 nm, if the gas discharge temperature is about 127 °C. 
The atomic mass of Ne is 20.2 g mol-1. 

SOLUTION 

Doppler- 

broadened 

frequency 

width 

Due to the Doppler effect, the laser radiation from gas lasers is broadened around a central 
frequency va, which corresponds to the source frequency. Higher frequencies detected will be 
due to radiations emitted from atoms moving toward the observer, and lower frequencies 
detected will be the result of emissions from atoms moving away from the observer. Therefore, 
the width of the observed frequencies will be approximately 

a f* , VA (i VA 2v°v* 

From X = c/v, we obtain the following by differentiation: 

dX _ c X _ 'X1 

dv v2 v c 

We need to know vx, which is given by kinetic theory as t>2 = kT/m. For the HeNe laser, 
the Ne atoms lase, so 

-l 

m = 
20.2 x 10 3 kg mol 

6.023 x 1023 moP1 
3.35 x IQ"26 kg 

Thus 

_ 'i (1.38 x 10~23J K_1)(127 + 273 K) -i^ 1/2 

= 406 m s -l 

(3.35 x 10-26 kg) 
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The central frequency is 

c 3 x 108 m s-1 14 , 
= — = --— = 4.74 x 1014 s"1 

Xa 632.8 x 10"9 m 

The frequency linewidth is 

(2vavx) 2(4.74 x 1014 s~1)(406 m s'1) 
Av = -= -----— 

c 3 x 108 ms-1 

To get AX, we use dX/dv = —X/v, so that 

= 1.283 GHz 

AX = Av 
(1.283 x 109 Hz)(632.8 x 1CT9 m) 

4.74 x 1014 s"1 

= 1.71 x 1(T12 m or 0.0017 nm 

ADDITIONAL TOPICS 

3.10 OPTICAL FIBER AMPLIFIERS 
A light signal that is traveling along an optical fiber communications link over a long 
distance suffers marked attenuation. It becomes necessary to regenerate the light signal 
at certain intervals for long-haul communications over several thousand kilometers. 
Instead of regenerating the optical signal by photodetection, conversion to an electrical 
signal, amplification, and then conversion back from electrical to light energy by a 
laser diode, it becomes practical to amplify the signal directly by using an optical 
amplifier. The photons in an optical signal have a wavelength of 1550 nm, and optical 
amplifiers have to amplify signal photons at this wavelength. 

One practical optical amplifier is based on the erbium (Er3+ ion) doped fiber 
amplifier (EDFA).13 The core region of an optical fiber is doped with Er3+ ions. The 
host fiber core material is a glass based on Si03-Ge02 and perhaps some other glass¬ 
forming oxides such as AI2O3. It is easily fused to a long-distance optical fiber by a 
technique called splicing. 

When the Er3+ ion is implanted in the host glass material, it has the energy levels 
indicated in Figure 3.44 where E\ corresponds to the lowest energy possible consistent 
with the Pauli exclusion principle and Hund’s rule. One of the convenient energy levels 
for optically pumping the Er3+ ion is at £3, approximately 1.27 eV above the ground 
energy level. The Er3+ ions are optically pumped, usually from a laser diode, to excite 
them to £3. The wavelength for this pumping is about 980 nm. The Er3+ ions decay 
rapidly from £3 to a long-lived energy level at £2 which has a long lifetime of ~ 10 ms 
(very long on the atomic scale). The decay £3 to E2 involves energy losses by 
radiationless transitions (generation of crystal vibrations) and are very rapid. Thus, more 
and more Er3+ ions accumulate at £2 which is 0.80 eV above the ground energy. The 
accumulation of Er3+ ions at E2 leads to a population inversion between E2 and £1. 
Signal photons at 1550 nm have an energy of 0.80 eV, or £2 — £1, and give rise to 
stimulated transitions of Er3+ ions from £2 to £ 1. Any Er3-1" ions left at £ 1, however, will 

13 EDFA was first reported in 1987 by E. Desurvire, J. R. Simpson, and P. C. Becker and, within a short period, 
AT&T began deploying EDFA repeaters in long-haul fiber communications in 1994. 
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in the glass fiber 

A 

Figure 3.44 Energy diagram for the Er3+ ion in the 

glass fiber medium and light amplification by stimulated 
emission from £2 to E1. 

Dashed arrows indicate radiationless transitions (energy 
emission by lattice vibrations). 
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Figure 3.45 A simplified schematic illustration of an EDFA (optical amplifier). 
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absorb the incoming 1550 nm photons to reach E2. To achieve light amplification we 
must therefore have stimulated emission exceeding absorption. This is only possible if 
there are more Er>+ions at the E2 level than at the £, level, that is, if we have population 
inversion. With sufficient optical pumping, population inversion is readily achieved. 

In practice the erbium-doped fiber is inserted into the fiber communications line 
by splicing as shown in the simplified schematic diagram in Figure 3.45 and it is 
pumped from a laser diode through a coupling fiber arrangement which allows only 
the pumping wavelength to be coupled. 

CD Selected Topics and Solved Problems 
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Compton Scattering 

Stimulated Emission and Laser Principles 

Stimulated Emission and Optical Amplifiers 

Time-Dependent Schrodinger Equation 

Solved Problems ^ 

Modem Physics: Photoelectric Experiment, Ionization 
Energy 

He-Ne Laser Problem 
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DEFINING TERMS 

Angular momentum L about a point O is defined as 
L = p x r, where p is the linear momentum and r is 
the position vector of the body from O. For a circular 

orbit around O, the angular momentum is orbital and 
L — pr = mvr. 

Bragg diffraction law describes the diffraction of an 

X-ray beam by a crystal in which the interplanar sepa¬ 

ration d of a given set of atomic planes causing the X- 
ray diffraction is related to the diffraction angle 20 and 
the wavelength X of the X-rays through 2d sin 6 = nk 
where n is an integer, usually unity. 

Complementarity principle suggests that the wave 

model and the particle model are complementary 

models in that one model alone cannot be used to 
explain all the observations in nature. For example, the 

electron diffraction phenomenon is best explained by 

the wave model, whereas in the Compton experiment, 
the electron is treated as a particle; that is, it is 
deflected by an impinging photon that imparts an 
additional momentum to the electron. 

Compton effect is the scattering of a high-energy 
photon by a “free” electron. The effect is experimen¬ 

tally observed when an X-ray beam is scattered from a 
target that contains many conduction (“free”) elec¬ 
trons, such as a metal or graphite. 

De Broglie relationship relates the wave-like proper¬ 
ties (e.g., wavelength X) of matter to its particle-like 
properties (e.g., momentum p) via A. = h/p. 

Diffraction is the bending of waves as a result of the 

interaction of the waves with an object of size compa¬ 
rable to the wavelength. If the object has a regular pat¬ 

tern, periodicity, an incident beam of waves can be 
bent (diffracted) in certain well-defined directions that 

depend on the periodicity, which is used in the X-ray 
diffraction study of crystals. 

Doppler effect is the change in the measured fre¬ 
quency of a wave due to the motion of the source 
relative to the observer. In the case of electromagnetic 
radiation, if v is the relative velocity of the source 
object toward the observer and v0 is the source fre¬ 

quency, then the measured electromagnetic wave 

frequency is v = v0[l + (u/c)] for (v/c) <£ 1. 

Energy density p£ is the amount of energy per unit 
volume. In a region where the electric field is £, the 
energy stored per unit volume is ^so'E2. 

Flux is a term used to describe the rate of flow 
through a unit area. If A N is the number of particles 

flowing through an area A in time At, then particle 
flux T is defined as T = AN/(AAt). If an amount of 

energy AE flows through an area A in time At, energy 
flux is T£ = AE/(AAt), which defines the intensity 

(I) of an electromagnetic wave. 

Flux in radiometry is the flow of radiation (electro¬ 
magnetic wave) energy per unit time in watts. It is sim¬ 

ply the radiation power that is flowing. In contrast, the 
photon or particle flux refers to the number of photons 
or particles flowing per unit time per unit area. Radi¬ 
ant flux emitted by a source refers to the radiation 
power in watts that is emitted. Flux in radiometry nor¬ 

mally has either radiant or luminous as an adjective, 
e.g., radiant flux, luminous flux. 

Ground state is the state of the electron with the 
lowest energy. 

Heisenberg’s uncertainty principle states that the 
uncertainty Ax in the position of a particle and the 

uncertainty Apx in its momentum in the x direction 
obey (Ax)(Apx) ^ fi. This is a consequence of the 

wave nature of matter and has nothing to do with the 
precision of measurement. If A £ is the uncertainty in 
the energy of a particle during a time At, then 

according to the uncertainty principle, (AE)(At) ^ ti. 

To measure the energy of a particle without any 

uncertainty means that we would need an infinitely 
long time At —► oo. 

Hund’s rule states that electrons in a given subshell nt 
try to occupy separate orbitals (different mt) and keep 

their spins parallel (same ms). In doing so, they achieve 
a lower energy than pairing their spins (different ms) 
and occupying the same orbital (same mt). 

Intensity (I) is the flow of energy per unit area per 
unit time. It is equal to an energy flux. 

LASER (light amplification by stimulated emission 
of radiation) is a device within which photon 

multiplication by stimulated emission produces an 
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output radiation that is nearly monochromatic and 

coherent (vis-a-vis an incoherent stream of photons 
from a tungsten light bulb). Furthermore, the output 
beam has very little divergence. 

Luminous flux or power 4>v is a measure of flow of 
“visual energy” per unit time that takes into account 
the wavelength dependence of the efficiency of the 

human eye, that is, whether the energy that is flowing 
is perceptible to the human eye. It is a measure of 

“brightness.” One lumen of luminous flux is obtained 

from a 1.58 mW light source emitting a single wave¬ 
length of 555 nm (green). 

Magnetic quantum number mt specifies the compo¬ 

nent of the orbital angular momentum Lz in the 

direction of a magnetic field along z so that Lz = ±hme, 

where mt can be a negative or positive integer from 

—£ to +£ including 0, that is, —l, —{l— 1),..., 
0, ...,(£ — 1), t. The orbital \jf of the electron depends 

on me, as well as on n and i. The me, however, generally 
determines the angular variation of f. 

Orbital is a region of space in an atom or molecule 

where an electron with a given energy may be found. 

Two electrons with opposite spins can occupy the same 
orbital. An orbit is a well-defined path for an electron, 

but it cannot be used to describe the whereabouts of the 
electron in an atom or molecule, because the electron 
has a probability distribution. The wavefunction 

]9, <f>) is often referred to as an orbital that 
represents the spatial distribution of the electron, since 
Wnimiir, 9,0)|2 is the probability of finding the 
electron per unit volume at (r, 0,0). 

Orbital (angular momentum) quantum number 

specifies the magnitude of the orbital angular 
momentum of the electron via L = + 1)], 

where l is the orbital quantum number with values 

0,1, 2, 3,..., n — 1. The l values 0,1,2, 3 are labeled 

the s, p, d, / states. 

Orbital wavefunction describes the spatial depen¬ 
dence of the electron, not its spin. It is 0(r, 0,0), 

which depends on n, i, and me, with the spin depen¬ 
dence ms excluded. Generally, 0(r, 0,0) is simply 
called an orbital. 

Pauli exclusion principle requires that no two elec¬ 

trons in a given system may have the same set of 
quantum numbers, n, £, m t, m s. In other words, no two 

electrons can occupy a given state f(n, £, me, ms). 

Equivalently, up to two electrons with opposite spins 
can occupy a given orbital it(n,£,me). 

Photoelectric effect is the emission of electrons from 

a metal upon illumination with a frequency of light 
above a critical value which depends on the material. 
The kinetic energy of the emitted electron is inde¬ 

pendent of the light intensity and dependent on the 
light frequency v, via KE = hv — Q> where h is 

Planck’s constant and $ is a material-related constant 
called the work function. 

Photon is a quantum of energy h v (where h is Planck’s 
constant and v is the frequency) associated with 

electromagnetic radiation. A photon has a zero rest mass 
and a momentum p given by the de Broglie relationship 
p = h/k, where k the wavelength. A photon does have 

a “moving mass” of hv/c2, so it experiences 
gravitational attraction from other masses. For example, 

light from a star gets deflected as it passes by the sun. 

Population inversion is the phenomenon of having 

more atoms occupy an excited energy level E2, higher 
than a lower energy level, £j, which means that the 

normal equilibrium distribution is reversed; that is, 
N(E2) > N(E 1). Population inversion occurs tem¬ 
porarily as a result of the excitation of a medium 

(pumping). If left on its own, the medium will even¬ 
tually return to its equilibrium population distribution, 

with more atoms at Ex than at E2. For gas atoms, 
this means N(E2)/N(Ei) & exp[—(E2 — E\)/kT\. 

Principal quantum number n is an integer quantum 
number with values 1,2, 3,... that characterizes the 

total energy of an electron in an atom. The energy 
increases with n. With the other quantum numbers £ 

and mt,n determines the orbital of the electron in an 
atom, or yjr„imt{.r, 9, 0). The values n = 1, 2, 3, 4,... 
are labeled the K, L, M, N,... shells, within each of 

which there may be subshells based on £ = 

0,1, 2,... (n — 1) and corresponding to the s, p, 

d,... states. 

Pumping means exciting atoms from their ground 
states to higher energy states. 

Radiant is a common adjective used to imply the in¬ 
volvement of radiation, that is, electromagnetic waves, 

in the noun that it qualifies; e.g., radiant energy is the 
energy transmitted by radiation. 
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Radiant power is radiation energy flowing, or emitted 

from a source, per unit time, which is also known as 

optical power even if the wavelength is not within the 
visible spectrum. Radiant flux signifies radiant power 

flow in radiometry, measured in watts. 

Radiation normally signifies a traveling electromag¬ 

netic wave that is carrying energy. Due to the particle¬ 
like behavior of waves, radiation can also mean a 

stream of photons. 

Schrodinger equation is a fundamental equation in 
nature, the solution of which describes the wave-like 
behavior of a particle. The equation cannot be derived 
from a more fundamental law. Its validity is based on 

its ability to predict any known physical phenomena. 
The solution requires as input the potential energy 

function V(x, y, z, t) of the particle and the boundary 
and initial conditions. The PE function V(x,y,z,t) 

describes the interaction of the particle with its 
environment. The time-independent Schrodinger 

equation describes the wave behavior of a particle 

under steady-state conditions, that is, when the PE is 

time-independent V(x, y, z). If E is the total energy 
and V2 = (d2/dx2 + d2/dy2 + 32/9z2), then 

V> + (^j [E - V(x, y, zM = 0 

The solution of the time-independent Schrodinger 

equation gives the wavefunction i//(x,y,z) of the 
electron and its energy E. The interpretation of the 

wavefunction \fr (x, y, z) is that\\//(x, y, z)\2 is the prob¬ 
ability of finding the electron per unit volume at point 

x, y, z. 

Selection rules determine what values of i and me are 

allowed for an electron transition involving the 
emission and absorption of electromagnetic radiation, 

that is, a photon. In summary, At = ±1 and Am, = 

0, ±1. The spin number ms of the electron remains 
unchanged. Within an atom, the transition of the 

electron from one state ) to another 
due to collisions with other atoms 

or electrons, does not necessarily obey the selection 

rules. 

Spin of an electron S is its intrinsic angular mo¬ 

mentum (analogous to the spin of Earth around its own 

axis), which is space quantized to have two possi¬ 

bilities. The magnitude of the electron’s spin is a 
constant, ft V3/2, but its component along a magnetic 

field in the z direction is msft, where ms is the spin 
magnetic quantum number, which is + 5 or -1. 

Spontaneous emission is the phenomenon in which a 

photon is emitted when an electron in a high energy 
state l, me, ms) with energy E2 spontaneously 

falls down to a lower, unoccupied energy state 

ir(n', l', m't, m') with energy Ex. The photon energy is 

ftv = (E2 — Ei). Since the emitted photon has an 
angular momentum, the orbital quantum number l of 
the electron must change, that is At = t' - l = ±1. 

State is a possible wavefunction for the electron that 

defines its spatial (orbital) and spin properties. For 
example, iff(n,l,me,ms) is a state of the electron. 

From the Schrodinger equation, each state corresponds 

to a certain electron energy E. We use the terms state of 
energy E, or energy state. There is generally more than 

one state \j/ with the same energy E. 

Stimulated emission is the phenomenon in which an 
incoming photon of energy hv = E2 — Ex interacts 

with an electron in a high-energy state ijr(n, t, me, ms) 

at E2, and induces that electron to oscillate down to a 
lower, unoccupied energy state, \j/ in', i', m't, m') at Ex. 

The photon emitted by stimulation has the same energy 

and phase as the incoming photon, and it moves in 

the same direction. Consequently, stimulated emission 
results in two coherent photons, with the same energy, 
traveling in the same direction. The stimulated 
emission process must obey the selection rule 
Al = l' — i = ±1, just as spontaneous emission must. 

Hinneling is the penetration of an electron through a 

potential energy barrier by virtue of the electron’s 

wave-like behavior. In classical mechanics, if the 
energy E of the electron is less than the PE barrier VQ, 

the electron cannot cross the barrier. In quantum 

mechanics, there is a distinct probability that the 

electron will “tunnel” through the barrier to appear on 
the other side. The probability of tunneling depends 

very strongly on the height and width of the PE 

barrier. 

Wave is a periodically occurring disturbance, such as 
the displacement of atoms from their equilibrium 

. positions in a solid carrying sound waves, or a periodic 

variation in a measurable quantity, such as the electric 
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field £(jc, r) in a medium or space. In a traveling wave, 
energy is transferred from one location to another 

by the oscillations. For example, ‘£y(x,t) = ‘£0 

sin(kx - cot) is a traveling wave in the x direction, 
where k = 2n/X and co = 2ttv. The electric field in the 

y direction varies periodically along x, with a period A. 

called the wavelength. The field also varies with time, 
with a period 1 /v, where v is the frequency. The wave 
propagates along the x direction with a velocity of 

propagation c. Electromagnetic waves are transverse 
waves in which the electric and magnetic fields 
‘Ey(x, t) and Bz(x, t) are at right angles to each other, 
as well as to the direction of propagation x. A traveling 

wave in the electric field must be accompanied by a 
similar traveling wave in the associated magnetic 
field Bz(jc, t) = Bzo sin(kx — cot). Typical wave-like 
properties are interference and diffraction. 

Wave equation is a general partial differential equation 
in classical physics, of the form 

, 32u 32u 
v2—--- = 0 

dx2 3t2 

the solution of which describes the space and time 
dependence of the displacement u(x,t) from equi¬ 
librium or zero, given the boundary conditions. The 

parameter v in the wave equation is the propagation 
velocity of the wave. In the case of electromagnetic 

waves in a vacuum, the wave equation describes the 

variation of the electric (or magnetic) field lE(x, t) with 
space and time, (c2d2,E/dx2) — (32£/3/2) = 0, where 

c is the speed of light. 

Wavefunction 'l'(jc,y,z, t) is a probability-based 

function used to describe the wave-like properties of a 
particle. It is obtained by solving the Schrodinger 
equation, which in turn requires a knowledge of the PE 

of the particle and the boundary and initial conditions. 
The term |'k(x, y, z, t)\2 is the probability per unit 

volume of finding the electron at (x, y, z) at time t. In 

other words, I'PCx, y, z, t)\2 dx dy dz is the probability 
of finding the electron in the small volume dx dy dz at 

(x, y, z) at time t. Under steady-state conditions, the 
wavefunction can be separated into a space-dependent 
component and a time-dependent component, i.e., 

V(x, y, z, t) = \[f(x, y, z) exp(-jEt/fi), where E is 

the energy of the particle and h = h/2n. The spatial 

component ijf(x, y, z) satisfies the time-independent 
Schrodinger equation. 

Wavenumber (or wavevector) k is the number of 
waves per 2n of length, that is, k = 2n/k. 

Work function is the minimum energy required to 

remove an electron from inside a metal to vacuum. 

X-rays are electromagnetic waves of wavelength typi¬ 
cally in the range 10 pm-1 nm, which is shorter than 

ultraviolet light wavelengths. X-rays can be diffracted 
by crystals due to their wave-like properties. 

QUESTIONS AND PROBLEMS 

3.1 Photons and photon flux 

a. Consider a 1 kW AM radio transmitter at 700 kHz. Calculate the number of photons emitted from 

the antenna per second. 

b. The average intensity of sunlight on Earth’s surface is about 1 kW m“2. The maximum intensity is 

at a wavelength around 800 nm. Assuming that all the photons have an 800 nm wavelength, calcu¬ 

late the number of photons arriving on Earth’s surface per unit time per unit area. What is the mag¬ 

nitude of the electric field in the sunlight? 

c. Suppose that a solar cell device can convert each sunlight photon into an electron, which can then 

give rise to an external current. What is the maximum current that can be supplied per unit area 

(m2) of this solar cell device? 

3.2 Yellow, cyan, magenta, and white Three primary colors, red, green, and blue (RGB), can be added 

together in various proportions to generate any color on various displays and light emitting devices in 

what is known as the additive theory of color. For example, yellow can be generated from adding red 

and green, cyan from blue and green, and magenta from red and blue. 
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a. A device engineer wants to use three light emitting diodes (LEDs) to generate various colors in an 

LED-based color display that is still in the research stage. His three LEDs have wavelengths of 

660 nm for red, 563 nm for green, and 450 nm for blue. He simply wishes to generate the yellow and 

cyan by mixing equal optical powers from these LEDs; optical power, or radiant power, is defined 

as the radiation energy emitted per unit time. What are the numbers of red and blue photons needed 

(to the nearest integer) to generate yellow and cyan, respectively, for every 100 green photons? 

b. An equi-energy white light is generated by mixing red, green, and blue light in equal optical powers. 

Suppose that the wavelengths are 700 nm for red, 546 nm for green, and 436 nm for blue (which is 

one set of possible standard primary colors). Suppose that the optical power in each primary color is 

0.1 W. Calculate the total photon flux (photons per second) needed from each primary color. 

c. There are bright white LEDs on the market that generate the white light by mixing yellow (a com¬ 

bination of red and green) with blue emissions. The inexpensive types use a single blue LED to 

generate a strong blue radiation, some of which is absorbed by a phosphor in front of the LED which 

then emits yellow light. The yellow and the blue passing through the phosphor mix and make up 

the white light. In one type of white LED, the blue and yellow wavelengths are 450 nm and 564 nm, 

respectively. White light can be generated by setting the optical (radiative) power ratio of yellow to 

blue light emerging from the LED to be about 1.74. What is the ratio of the number of blue to yel¬ 

low photons needed? (Sometimes the mix is not perfect and the white LED light tends to have a no¬ 

ticeable slight blue tint.) If the total optical power output from the white LED is 100 mW, calculate 

the blue and yellow total photon fluxes (photons per second). 

3.3 Brightness of laser pointers The brightness of a light source depends not only on the radiation (op¬ 

tical) power emitted by the source but also on its wavelength because the human eye perceives each 

wavelength with a different efficiency. The visual “brightness” of a source as observed by an average 

daylight-adapted eye is proportional to the radiation power emitted, called the radiant flux <Pe, and the 

efficiency of the eye to detect the spectrum of the emitted radiation. While the eye can see a red color 

source, it cannot see an infrared source and the brightness of the infrared source would be zero. The 

luminous flux Q>v is a measure of brightness, in lumens (lm), and is defined by 

<!>„ = <&e x (633 lmW~l) x i?eye [3.57] 

where is the radiant flux or the radiation power emitted (in watts) and r)eye = t]tyc(k) is the relative 

luminous efficiency (or the relative sensitivity) of an average light-adapted eye which depends on the 

wavelength; r]tyt is a Gaussian looking function with a peak of unity at 555 nm. (See Figure 3.46 for 

?7eye vs. k.) One lumen of luminous flux, or brightness, is obtained from a 1.58 mW light source emit¬ 
ting at a single wavelength of 555 nm (green). A typical 60 W incandescent lamp provides roughly 

900 lm. When we buy a light bulb, we are buying lumens. Consider one 5 mW red 650 nm laser pointer, 

and another weaker 2 mW green 532 nm laser: ye(650 nm) = 0.11 and ye(532 nm) = 0.86. Find the 

luminous flux (brightness) of each laser pointer. Which is brighter? Calculate the number of photons 

emitted per unit time, the total photon flux, by each laser. 

3.4 Human eye Photons passing through the pupil are focused by the lens onto the retina of the eye and 

are detected by two types of photosensitive cells, called rods and cones, as visualized in Figure 3.46. 

Rods are highly sensitive photoreceptors with a peak response at a wavelength of about 507 nm 

(green-cyan). They do not register color and are responsible for our vision under dimmed light condi¬ 

tions, termed scotopic vision. Cones are responsible for our color perception and daytime vision, 

called photopic vision. These three types of cone photoreceptors are sensitive to blue, green, and red 

at wavelengths, respectively, of 430 nm, 535 nm, and 575 nm. All three cones have an overall peak re¬ 

sponse at 555 nm (green), which represents the peak response of an average daylight-adapted eye or in 

our photopic vision. 

a. Calculate the photon energy (in eV) for the peak responsivity for each of the photoreceptors in the 

eye (one rod and three cones). 

b. Various experiments (the most well known being by Hecht et al., 7. Opt. Soc. America, 38, 196, 

1942) have tested the threshold sensitivity of the dark-adapted eye and have estimated that visual 

Luminous flux, 

brightness 
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Figure 3.46 
(a) The retina in the eye has photoreceptors that canr sense the incident photons on them and hence provide necessary 

visual perception signals. It has been estimated that for minimum visual perception there must be roughly 90 photons 

falling on the cornea of the eye. 

(b) The wavelength dependence of the relative efficiency r]eye(k) of the eye is different for daylight vision, or photopic 

vision (involves mainly cones), and for vision under dimmed light, or scotopic vision, which represents the dark-adapted 

eye, and involves rods. 

(c) SEM photo of rods and cones in the retina. 

I SOURCE: Dr. Frank Werblin, University of California, Berkeley. 

perception requires a minimum of roughly 90 photons to be incident onto the cornea in front of the 

eye’s pupil and within 1/10 second. Taking 90 incident photons every 100 ms as the threshold sen¬ 

sitivity, calculate the total photon flux (photons per second), total energy in eV (within 100 ms), and 

the optical power that is needed for threshold visual perception. 

c. Not all photons incident on the eye make it to the actual photoreceptors in the retina. It has been 

estimated that only 1 in 10 photons arriving at the eye’s cornea actually make it to rod photore¬ 

ceptors, due to various reflections and absorptions in the eye and other loss mechanisms. Thus, 

only nine photons make it to photoreceptors on the retina.14 It is estimated that the nine test pho¬ 

tons fall randomly onto a circular area of about 0.0025 mm2. What is the estimated threshold in¬ 

tensity for visual perception? If there are 150,000 rods mm-2 in this area of the eye, estimate the 

number of rods in this test spot. If there are a large number of rods, more than 100 in this spot, 

then it is likely that no single rod receives more than one photon since the nine photons arrive ran¬ 

domly. Thus, a rod must be able to sense a single photon, but it takes nine excited rods, somehow 

summed up by the visual system, to generate the visual sensation. Do you agree with the latter 

conclusion? 

d. It is estimated that at least 200,000 photons per second must be incident on the eye to generate a 

color sensation by exciting the cones. Assuming that this occurs at the peak sensitivity at 555 nm, 

14 Sometimes one comes across a statement that the eye can detect a single photon. While a rod photoreceptor can 
indeed sense a single photon (or, put differently, a photon can activate a single rod), the overall human visual 
perception needs roughly nine photons at around 507 nm to consciously register a visual sensation. 
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and that as in part (b) only about 10 percent of the photons make it to the retina, estimate the thresh¬ 

old optical power stimulating the cones in the retina. 

X-ray photons In chest radiology, a patient’s chest is exposed to X-rays, and the X-rays passing 

through the patient are recorded on a photographic film to generate an X-ray image of the chest for med¬ 

ical diagnosis. The average wavelength of X-rays in chest radiology is about 0.2 A (0.02 nm). Numer¬ 

ous measurements indicate that the patient, on average, is exposed to a total radiation energy per unit 

area of roughly 0.1 pJ cm-2 for one chest X-ray image. Find the photon energy used in chest radiology, 

and the average number of photons incident on the patient per unit area (per cm2). 

X-rays, exposure, and roentgens X-rays are widely used in many applications such as medical imag¬ 

ing, security scans, X-ray diffraction studies of crystals, and for examining defects such as cracks in ob¬ 

jects and structures. X-rays are highly energetic photons that can easily penetrate and pass though vari¬ 

ous objects. Different materials attenuate X-rays differently, so when X-rays are passed through an 

object, the emerging X-rays can be recorded on a photographic film, or be captured by a modem flat 

panel X-ray image detector, to generate an X-ray image of the interior of the object; this is called radi¬ 

ography. X-rays also cause ionization in a medium and hence are known as ionization radiation. The 

amount of exposure (denoted by X) to X-rays, ionizing radiation, is measured in terms of the ionizing 

effects of the X-ray photons. One roentgen (1 R) is defined as an X-ray exposure that ionizes 1 cm3 of 

air to generate 0.33 nC of charge in this volume at standard temperature and pressure (STP). When a 

body is exposed to X-rays, it will receive a certain amount of radiation energy per unit area, called 

energy fluence that is, so many joules per cm2, that depends on the exposure X. If X in roentgens 

is the exposure, then the energy fluence is given by 

Ve = 

8.73 x 1(T6 

P-e n ,air / Pair 
Jem2 [3.58] Fluence and 

roentgens 

■' V ; ,* 

X-ray image of an American one-cent coin captured using 
an X-ray a-Se HARP camera. The first image at the top left 
is obtained under extremely low exposure, and the 
subsequent images are obtained with increasing exposure 
of approximately one order of magnitude between each 
image. The slight attenuation of the X-ray photons by Lincoln 
provides the image. The image sequence clearly shows the 
discrete nature of X-rays, and hence their description in 
terms of photons. 

I SOURCE: Courtesy of Dylan Hunt and John Rowlands, 
I Sunnybrook Hospital, University of Toronto. 
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Quantum 

efficiency 

definition 

3.7 

3.8 

3.9 

where ^ is in J cm”2, and Men,air/Pair is the mass energy absorption coefficient of air in g cm”2 at the 

photon energy Evh of interest; the /xen,air/Pair values are listed in radiological tables. For example, for 

1 R of exposure, X = 1, £Ph = 20 keV, and Men,air/Pair = 0.539 cm2 g”1. Equation 3.54 gives = 
1.62 x 10”5 J cm”2 incident on the object. 

a. In mammography (X-ray imaging of the breasts for breast cancer), the average photon energy is 

about 20 keV, and the X-ray mean exposure is 12 mR. At £^ = 20 keV, Men,air/Pair = 
0.539 cm2 g”1. Find the mean energy incident per unit area in pj cm-2, and the mean number of 

X-ray photons incident per unit area (photons cm”2), called photon fluence <£. 

b. In chest radiography, the average photon energy is about 60 keV, and the X-ray mean exposure is 

300 pR. At £ph = 60 keV, Pen,air/Pair = 0.0304 cm2 g”1. Find the mean energy incident per unit 
area in pj cm”2, and the mean number of X-ray photons incident per unit area. 

c. A modem flat panel X-ray image detector is a large area image sensor that has numerous arrays of 

tiny pixels (millions) all tiled together to make one large continuous image sensor. Each pixel is an 

independent X-ray detector and converts the X-rays it receives to an electrical signal. Each tiny de¬ 

tector is responsible for capturing a small pixel of the whole image. (Topically, the image resolu¬ 

tion is determined by the detector pixel size.) Each pixel in a particular experimental chest radiol¬ 

ogy X-ray sensor is 150 pm x 150 pm. If the mean exposure is 300 pR, what is the number of 

photons received by each pixel detector? If each pixel is required to have at least 10 photons for an 

acceptable signal-to-noise ratio, what is the minimum exposure required in pR? 

Photoelectric effect A photoelectric experiment indicates that violet light of wavelength 420 nm is the 

longest wavelength radiation that can cause the photoemission of electrons from a particular multi-alkali 

photocathode surface. 

a. What is the work function of the photocathode surface, in eV? 

b. If a UV radiation of wavelength 300 nm is incident upon the photocathode surface, what will be the 

maximum kinetic energy of the photoemitted electrons, in eV? 

c. Given that the UV light of wavelength 300 nm has an intensity of 20 mW cm”2, if the emitted elec¬ 

trons are collected by applying a positive bias to the opposite electrode, what will be the photo¬ 

electric current density in mA cm”2? 

Photoelectric effect and quantum efficiency Cesium metal is to be used as the photocathode mater¬ 

ial in a photoemissive electron tube because electrons are relatively easily removed from a cesium sur¬ 

face. The work function of a clean cesium surface is 1.9 eV. 

a. What is the longest wavelength of radiation which can result in photoemission? 

b. If blue radiation of wavelength 450 nm is incident onto the Cs photocathode, what will be the 

kinetic energy of the photoemitted electrons in eV? What should be the voltage required on the op¬ 

posite electrode to extinguish the external photocurrent? 

c. Quantum efficiency (QE) of a photocathode is defined by. 

^ . Number of photoemitted electrons 
Quantum efficiency =---———-:- 

Number of incident photons 
[3.59] 

QE is 100 percent if each incident photon ejects one electron. Suppose that blue light of wavelength 450 

nm with an intensity of 30 mW cm-2 is incident on a Cs photocathode that is a circular disk of diame¬ 

ter 6 mm. If the emitted electrons are collected by applying a positive bias voltage to the anode, and the 

photocathode has a QE of 25 percent, what will be the photoelectric current? 

Photoelectric effect A multi-alkali metal alloy is to be used as the photocathode material in a photoe¬ 

missive electron tube. The work function of the metal is 1.6 eV, and the photocathode area is 0.5 cm2. 

Suppose that blue light of wavelength 420 nm with an intensity of 50 mW cm"2 is incident on the pho¬ 

tocathode. 

a. If the photoemitted electrons are collected by applying a positive bias to the anode, what will be the 

photoelectric current density assuming that the quantum efficiency rj is 15 percent? Quantum efficiency 
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as a percentage is the number of photoemitted electrons per 100 absorbed photons and is defined in 

Equation 3.60. What is the kinetic energy of a photoemitted electron at 420 nm? 

b. What should be the voltage and its polarity to extinguish the current? 

c. What should be the intensity of an incident red light beam of wavelength 600 nm that would give 

the same photocurrent if the quantum efficiency is 5 percent at this wavelength? (Normally the 
quantum efficiency depends on the wavelength.) 

*3.10 Planck’s law and photon energy distribution of radiation Planck’s law, stated in Equation 3.9, pro¬ 

vides the spectral distribution of the black body radiation intensity in terms of wavelength through I*, 

intensity per unit wavelength. Suppose that we wish to find the distribution in terms of frequency v or 

photon energy hv. Frequency v = c/X and the wavelength range X to X + dX corresponds to a frequency 

range v to v + dv. (dX and dv have opposite signs since v increases as X decreases.) The intensity I\ dX 

in X to X + dX must be the same as the intensity in v to v + dv, which we can write as Iv dv where Iv 
is the radiation intensity per unit frequency. Thus, 

Iv = lx 
dX 

dv 

The magnitude sign is needed because X = c/v results in a negative dX/dv, and Iv must be positive by 

definition. We can simply substitute X = c/v for X in I* and obtain I*, as a function of v, and then find 
\dX/dv\ to find Iv from the preceding expression. 

a. Show that 

_ 2n(hv)3 

Iv c2h3[exp(—hv/kT) — 1] 
[3.60] 

Equation 3.60 is written to highlight that it is a function of the photon energy hv, which is in joules 
in Equation 3.60 but can be converted to eV by dividing by 1.6 x 10-19 J cV"1. 

b. If we integrate Iv over all photon energies (numerically on a calculator or a computer from 0 to say 

6 eV), we would obtain the total intensity at a temperature T, Find the total intensity It emitted at 

T = 2600 K (a typical incandescent light bulb filament temperature) and at 6000 K (roughly 

representing the sun’s spectrum). Plot y = Iv/ It versus the photon energy in eV. What are the 

photon energies for the peaks in the distributions? Calculate the corresponding wavelength for 

each using X = c/v and then compare these wavelengths with those predicted by Wien’s law, 
Xm^T % 2.89 x 10-3 m K. 

Black body 

photon energy 

distribution 

3.11 Wien’s law The maximum in the intensity distribution of black body radiation depends on the tem¬ 

perature. Substitute x = hc/(XkT) in Planck’s law and plot I* versus x and find A.max which corre¬ 

sponds to the peak of the distribution, and hence derive Wien’s law. Find the peak intensity wavelength 

A.max for a 40 W light bulb given that its filament operates at roughly 2400 °C. 

3.12 Diffraction by X-rays and an electron beam Diffraction studies on a polycrystalline A1 sample using 

X-rays gives the smallest diffraction angle (20) of 29.5° corresponding to diffraction from the (111) 

planes. The lattice parameter a of A1 (FCC), is 0.405 nm. If we wish to obtain the same diffraction pat¬ 

tern (same angle) using an electron beam, what should be the voltage needed to accelerate the electron 

beam? Note that the interplanar separation d for planes (/z, k, l) and the lattice parameter a for cubic 

crystals are related by d — a/(h2 + k2 +12)1^2. 

3.13 Heisenberg’s uncertainty principle Show that if the uncertainty in the position of a particle is on the 

order of its de Broglie wavelength, then the uncertainty in its momentum is about the same as the mo¬ 

mentum value itself. 

3.14 Heisenberg’s uncertainty principle An excited electron in an Na atom emits radiation at a wave¬ 

length 589 nm and returns to the ground state. If the mean time for the transition is about 20 ns, calcu¬ 

late the inherent width in the emission line. What is the length of the photon emitted? 
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3.15 Tunneling 

a. Consider the phenomenon of tunneling through a potential energy barrier of height V0 and width a, 

as shown in Figure 3.16. What is the probability that the electron will be reflected? Given the 

transmission coefficient T, can you find the reflection coefficient R1 What happens to R as a or V0 

or both become very large? 

b. For a wide barrier (aa ^>1), show that T0 can at most be 4 and that T0 = 4 when E = \ V0. 

3.16 Electron impact excitation 

a. A projectile electron of kinetic energy 12.2 eV collides with a hydrogen atom in a gas discharge 

tube. Find the nth energy level to which the electron in the hydrogen atom gets excited. 

b. Calculate the possible wavelengths of radiation (in nm) that will be emitted from the excited H 

atom in part (a) as the electron returns to its ground state. Which one of these wavelengths will be 

in the visible spectrum? 

c. In neon street lighting tubes, gaseous discharge in the Ne tube involves electrons accelerated by the 

electric field impacting Ne atoms and exciting some of them to the 2p5 3p1 states, as shown in Fig¬ 

ure 3.42. What is the wavelength of emission? Can the Ne atom fall from the 2p53pl state to the 

ground state by spontaneous emission? 

3.17 Line spectra of hydrogenic atoms Spectra of hydrogen-like atoms are classified in terms of electron 

transitions to a common lower energy level. 

a. All transitions from energy levels n = 2, 3,... to n = 1 (the K shell) are labeled K lines and con¬ 

stitute the Lyman series. The spectral line corresponding to the smallest energy difference (n = 2 

to n = 1) is labeled the Ka line, next is labeled and so on. The transition from n = oo to n = 1 

has the largest energy difference and defines the greatest photon energy (shortest wavelength) in 

the K series; hence it is called the absorption edge Kae. What is the range of wavelengths for the 

K lines? What is K^l Where are these lines with respect to the visible spectrum? 

b. All transitions from energy levels n = 3,4,... to n = 2 (L shell) are labeled L lines and constitute 

the Balmer series. What is the range of wavelengths for the L lines La and Lae)l Are these 

in the visible range? 

c. All transitions from energy levels n = 4, 5,... to n = 3 (M shell) are labeled M lines and consti¬ 

tute the Paschen series. What is the range of wavelengths for the Af lines? Are these in the visible 

range? 

d. How would you expect the spectral lines to depend on the atomic number Z? 

3.18 Ionization energy and effective Z 

a. Consider the singly ionized Li ion, Li+, which has lost its 2s electron. If the energy required to ion¬ 

ize one of the Is electrons in Li+ is 18.9 eV, calculate the effective nuclear charge seen by a Is elec¬ 

tron, that is, Zeffective in the hydrogenic atom ionization energy expression in Equation 3.45; 

E'l.n = (^effective/^)^(13.6 eV). 

b. The B atom has a total of five electrons, two in the 1 s orbital, two in the 25, and one in the 2p. The 

experimental ionization energy of B is 8.30 eV. Calculate Zeffective- 

c. The experimental ionization energy of Na is 3.49 eV. Calculate the effective nuclear charge seen by 

the 35 valence electron. 

d. The chemical tables typically list the first, second, and third ionization energies £i, £2, £3, re¬ 

spectively, and so on. Consider Al. E\ represents the energy required to remove the first electron 

from neutral Al; £2, the second electron from Al+; £3, the third electron from Al2+ to generate 

Al3+. For Al, experimentally, £1 = 6.0 eV, £2 = 18.8 eV, and £3 = 28.4 eV. For each case find 

the Zeffective seen by the electron that is removed. 

3.19 Atomic and ionic radii The maximum in the radial probability distribution of an electron in a hydrogen¬ 

like atom is given by Equation 3.38, that is, rmax = (n2a0)/Z, for l = n — 1. The average distance r of 

an electron from the nucleus can be calculated by using the definition of an average and the probability 
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distribution function Pn,i(r), that is, 

Average distance 

of electron from 

nucleus 

*3.20 X-rays and the Moseley relation X-rays are photons with wavelengths in the range 0.01-10 nm, with 

typical energies in the range 100 eV to 100 keV. When an electron transition occurs in an atom from the 

L to the K shell, the emitted radiation is generally in the X-ray spectrum. For all atoms with atomic 

number Z > 2, the K shell is full. Suppose that one of the electrons in the K shell has been knocked out 

by an energetic projectile electron impacting the atom (the projectile electron would have been acceler¬ 

ated by a large voltage difference). The resulting vacancy in the K shell can then be filled by an electron 

in the L shell transiting down and emitting a photon. The emission resulting from the L to K shell tran¬ 

sition is labeled the Ka line. The table shows the Ka line data obtained for various materials. 

= r^“r= °-¥ l(i +1) 

2 n2 

in which the right-hand side represents the result of the integration (which has been done by physicists). 

Calculate rmax and r for the 2p valence electron in the B atom. Which value is closer to the radius of the 

B atom, 0.085 nm, given in the Period Table? Consider only the outermost electrons, and calculate 

raverage for Li, Li+, Be2+, and B, and compare with the experimental values of the atomic or ionic sizes: 
0.15 nm for Li, 0.070 nm for Li+, 0.035 nm for Be2+, and 0.085 nm for B. 

Material 

Mg A1 S Ca Cr Fe Cu Rb W 

z 12 13 16 20 24 26 29 37 74 

Ka line (nm) 0.987 0.834 0.537 0.335 0.229 0.194 0.154 0.093 0.021 

a. If v is the frequency of emission, plot v1/2 against the atomic number Z of the element. 

b. H. G. Moseley, while still a graduate student of E. Rutherford in 1913, found the empirical rela¬ 

tionship 

v1/2 = B(Z — C) Moseley relation 

where B and C are constants. What are B and C from the plot? Can you give a simple explanation 

as to why Ka absorption should follow this relationship? 

Henry G. J. Moseley (1887-1915), around 1910, carrying 
out experiments at Balliol-Trinity Laboratory at Oxford. 

I SOURCE: University of Oxford Museum of Science, courtesy 
I AIP Emilio Segre Visual Archives. 
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3*21 The He atom Suppose that for the He atom, zero energy is taken to be the two electrons stationary at 

infinity (and infinitely apart) from the nucleus (He++). Estimate the energy (in eV) of the electrons in 

the He atom by neglecting the electron-electron repulsion, that is, neglecting the potential energy due to 

the mutual Coulombic repulsion between the electrons. How does this compare with the experimental 

value of —79 eV? How strong is the electron-electron repulsion energy? 

3.22 Excitation energy of He In the HeNe laser, an energetic electron is accelerated by the applied field 

impacts and excites the He from its ground state, Is2, to an excited state He*, lsl2sl, which has one of 

the electrons in the 2s orbital. The ground energy of the He atom is — 79 eV with respect to both elec¬ 

trons isolated at infinity, which defines the zero energy. Consider the Is12s1 state. If we neglect the 

electron-electron interactions, we can calculate the energy of the Is and 2s electrons using the energy 

for a hydrogenic atom, En = —(Z2/n2)(13.6 eV). We can then add the electron-electron interaction 

energy by assuming that the Is and 2s electrons are effectively separated by 3a09 which is the difference, 

4a0 — 1 a0, between the Is and 2s Bohr radii. Calculate the overall energy of He* and hence the excita¬ 

tion energy from He to He*. The experimental value is about 20.6 eV. 

3.23 Electron affinity The fluorine atom has the electronic configuration [He]2s2p5. The F atom can actu¬ 

ally capture an electron to become a F” ion, and release energy, which is listed as its electron affinity, 

328 kJ mol”1. We will assume that the two Is electrons in the closed K shell (very close to the nucleus) 

and the two electrons in the 2s orbitals will shield four positive charges and thereby expose 

+9e — 4e = +5e for the 2p orbital. Suppose that we try to calculate the energy of the F“ ion by simply 

assuming that the additional electron is attracted by an effective positive charge, +e(5 — Zzp) or 

-f^Zeffective» where Z2P is the overall shielding effect of the five electrons in the 2p orbital, so that the 

tenth electron we have added sees an effective charge of -heZeffective- Calculate Z2P and Zeffective- The F 
atom does not enjoy losing an electron. The ionization energy of the F atom is 1681 kJ mol”1. What is 

the Zeffective that is experienced by a 2p electron? (Note: 1 kJ mol”1 = 0.01036 eV/atom.) 

*3.24 Electron spin resonance (ESR) It is customary to write the spin magnetic moment of an electron as 

9e c M spin — 
Zme 

where S is the spin angular momentum, and g is a numerical factor, called the g factor, which is 2 for a 

free electron. Consider the interaction of an electron’s spin with an external magnetic field. Show that 

the additional potential energy Ebs is given by 

Ebs = -P<yisB 

where P = efi/2me is called the Bohr magneton. Frequently electron spin resonance is used to exam¬ 

ine various defects and impurities in semiconductors. A defect such as a dangling bond, for example, 

will have a single unpaired electron in an orbital and thus will possess a spin magnetic moment. A strong 

magnetic field is applied to the specimen to split the energy level E\ of the unpaired spin to two levels 

E\ — Ebs and E\ + Ebs , separated by A Ebs - The electron occupies the lower level E\ —Ebs- Elec¬ 
tromagnetic waves (usually in the microwave range) of known frequency v, and hence of known pho¬ 

ton energy ftv, are passed through the specimen. The magnetic field B is varied until the EM waves are 

absorbed by the specimen, which corresponds to the excitation of the electron at each defect from 

E\ — Ebs to E\ + Ebs, that is, hv = A Ebs at a certain field B. This maximum absorption condition is 

called electron spin resonance, as the electron’s spin is made to resonate with the EM wave. If B = 2 T, 

calculate the frequency of the EM waves needed for ESR, taking g = 2. Note: For many molecules, and 

impurities and defects in crystals, g is not exactly 2, because the electron is in a different environment in 

each case. The experimentally measured value of g can be used to characterize molecules, impurities, 

and defects. 

3.25 Spin-orbit coupling An electron in an atom will experience an internal magnetic field 2?int because, 

from the electron’s reference frame, it is the positive nucleus that is orbiting the electron. The electron 

will “see” the nucleus, take as charge +e9 circling around it, which is equivalent to a current / = +ef 
where / is the electron’s frequency of rotation around the nucleus. The current / generates the internal 

Spin magnetic 

moment 

Electron spin in 

a magnetic field 
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magnetic field Bmt at the electron. From electromagnetism texts, B{nt is given by 

^int — 
Ho I 

2 r 

where r is the radius of the electron’s orbit and \xQ is the absolute permeability. Show that 

$int — 
Hoe 

l7tmer3 

Consider the hydrogen atom with Z = 1,2p orbital, n = 2, i = 1, and take r % n2a0. Calculate Bmt. 

The electron’s spin magnetic moment jxspin will couple with this internal field, which means that 

the electron will now possess a magnetic potential energy Esl that is due to the coupling of the spin with 

the orbital motion, called spin-orbit coupling. E^will be either negative or positive, with only two 

values, depending on whether the electron’s spin magnetic moment is along or opposite Bint, Take z 

along Bmt so that Esl = -^intMspin,*, where ^Spin,* is /xspin along z, and then show that the energy E2 

of the 2p orbital splits into two closely separated levels whose separation is 

A Esl — B\ mt 

Calculate A Esl in eV and compare it with E2(n = 2) and the separation AE = E2 — E\. (The exact 

calculation of Esl is much more complicated, but the calculated value here is sufficiently close to be 

useful.) What is the effect of Esl on the observed emission spectrum from the H-atom transition from 2p 

to Is? What is the separation of the two wavelengths? The observation is called fine structure splitting. 

Internal 

magnetic field at 

an electron in 

an atom 

Spin-orbit 

coupling 

potential energy 

3.26 Hund’s rule For each of the following atoms and ions, sketch the electronic structure, using a box for 

an orbital wavefunction, and an arrow (up or down for the spin) for an electron. 

a. Aluminum, [Ne]3s2pl fi Titanium, [Ax]3d24s2 

b. Silicon, [Ne]352p2 g. Vanadium, [Ar]3c/34s2 

c. Phosphorus, [Ne]352p3 h. Manganese, [Ar]3d54s2 

d. Sulfur, [Ne]3$2p4 i. Cobalt, [Av]3d14s2 

e. Chlorine, [Ne]352p5 j. Cu2+, [Ax]3d94s° 

3.27 Hund’s rule The carbon atom has the electronic structure ls2lp2 in its ground state. The ground state 

and various possible excited states of C are shown in Figure 3.47. The following energies are known for 

the states a to e in Figure 3.47, not in any particular order: 0, 7.3 eV, 4.1 eV, 7.9 eV, and 1.2 eV. Using 

reasonable arguments match these energies to the states a to e. Use Hund’s rule to establish the ground 

state with 0 eV. If you have to flip a spin to go from the ground to another configuration, that would cost 

energy. If you have to move an electron from a lower s to p or from p to a higher st that would cost a 

lot of energy. Two electrons in the same orbital (obviously with paired electrons) would have substantial 

Coulombic repulsion energy. 

me -1 0 1 Figure 3.47 
Some possible states of the 

3s t 
carbon atom, not in any 

particular order. 

2P f t H t t T t f 
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C 

tfl 
d 

li 
e 

3.28 The HeNe laser A particular HeNe laser operating at 632.8 nm has a tube that is 40 cm long. The op¬ 

erating gas temperature is about 130 °C. 

a. Calculate the Doppler-broadened linewidth AA. in the output spectrum. 
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b. What are the n values that satisfy the resonant cavity condition? How many modes are therefore al¬ 

lowed? 

c. Calculate the frequency separation and the wavelength separation of the laser modes. How do these 

change as the tube warms up during operation? Taking the linear expansion coefficient to be 10“6 

K“1, estimate the change in the mode frequency separation. 

3,29 Er3* -doped fiber amplifier When the Er3* ion in the Er3*-doped fiber amplifer (EDFA) is pumped 

with 980 nm of radiation, the Er3* ions absorb energy from the pump signal and become excited to £3 

(Figure 3.44). Later the Er3* ions at £2 are stimulated to add energy (coherent photons) to the signal 

at 1550 nm. What is the wasted energy (in eV) from the pump to the signal at each photon amplifica¬ 

tion step? (This energy is lost as heat in the glass medium.) An Er-doped fiber amplifier is 10 m long, 

and the cross section of the core is 5 pm. The Er concentration in the core is 1018 cm-3. The nominal 

power gain of the amplifier is 100 (or 20 dB). The pump wavelength is 980 nm, and the signal wavelength 

is 1550 nm. If the output power from the amplifier is 100 mW and assuming the signal and pump are 

confined to the core, what is the minimum intensity of the pump signal? How much power is wasted in 

this EDFA? (The pump must provide enough photons to pump the Er3* ions needed to generate the ad¬ 

ditional output photons over that of input photons. The concentration of Er3* ions in the fiber is given 

for information only.) 

Wolfgan Pauli (1900-1958) won the Nobel prize in 1945 for his 
contributions to quantum mechanics. His exclusion principle was 
announced in 1925. "I don't mind your thinking slowly; I mind your 
publishing faster than you think." (Translation from German. Attributed 
to Pauli by H. Coblaus. From A. L. Mackay, A Dictionary of Scientific 
Quotations, Bristol:* IOP Publishing, 1991, p. 191.) 

I SOURCE: AIP Emilio Segre Visual Archives, Goudsmit Collection. 

Arthur Holly Compton (1892-1962) won the Nobel prize in 
physics in 1927 for his discovery of the Compton effect with 
C. T. R. Wilson in 1923. 

SOURCE: King Features Syndicate, Inc., New York and 
Argonne National Laboratory, courtesy AIP Emilio Segre 
Visual Archives. 
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Theodore Harold Maiman was born in 1927 in Los Angeles, son of an electrical 
engineer. He studied engineering physics at Colorado University, while repairing 
electrical appliances to pay for college, and then obtained a Ph.D. from Stanford. 
Theodore Maiman constructed this first laser in 1960 while working at Hughes 
Research Laboratories. There is a vertical chromium ion-doped ruby rod in the 
center of a helical xenon flash tube. The ruby rod has mirrored ends. The xenon 
flash provides optical pumping of the chromium ions in the ruby rod. The output is a 
pulse of red laser light. 

I SOURCE: Courtesy of HRL Laboratories, LLC, Malibu, California. 

The patent for the invention of the laser by Charles H. Townes and 
Arthur L. Schawlow in 1960 (Courtesy of Bell Laboratories). The laser 
patent was later bitterly disputed for almost three decades in "the 
patent wars" by Gordon Gould, an American physicist, and his 
designated agents. Gordon Gould eventually received the U.S. patent 
for optical pumping of the laser in 1977 since the original laser 
patent did not detail such a pumping procedure. In 1987 he also 
received a patent for the gas discharge laser, thereby winning his 
30 year patent war. His original notebook even contained the word 
laser. 



Motorola's prototype flat panel display based on the Fowler-Nordheim field emission principle. The 
display is 14 cm in diagonal and 3.5 mm thick with a viewing angle 160°. Each pixel (325 jum thick) 
uses field emission of electrons from microscopic sharp point sources (icebergs). Emitted electrons 
impinge on colored phosphors on a screen and cause light emission by cathodoluminescence. There 
are millions of these microscopic field emitters to constitute the image. 

I SOURCE: Courtesy of Dr. Babu Chalamala, Flat Panel Display Division, Motorola. 

Left: A scanning electron microscope image of an array of electron field emitters (icebergs). Center: 
One iceberg. Right: A cross section of a field emitter. Each iceberg is a source of electron emission 
arising from Fowler-Nordheim field emission; for further information see B. Chalamala, et al., IEEE 
Spectrum, April 1998, pp. 42-51. 

I SOURCE: Courtesy of Dr. Babu Chalamala, Flat Panel Display Division, Motorola. 



Modem Theory of Solids 

One of the great successes of modem physics has been the application of quantum 
mechanics or the Schrodinger equation to the behavior of molecules and solids. For 
example, quantum mechanics explains the nature of the bond between atoms, and its 
consequences. How can carbon bond with four other carbon atoms? What determines 
the direction and strength of a bond? An intuitively obvious outcome from quantum 
mechanics is that the energy of the electron is still quantized in the molecule. In addi¬ 
tion, the application of quantum mechanics to many atoms, as in a solid, leads to en¬ 
ergy bands within which the electron energy levels are almost continuous. The electron 
energy falls within possible values in a band of energies. It is nearly impossible to 
comprehend the principles of operation of modem solid-state electronic devices with¬ 
out a good grasp of the band theory of solids. Since we are dealing with a large num¬ 
ber of electrons in the solid, we must consider a statistical way of describing their 
behavior, just as we use the Maxwell distribution of velocities to explain the behavior 
of gas atoms. An equally important question, therefore, is “What is the probability that 
an electron is in a state with energy E within an energy band?” 

4.1 HYDROGEN MOLECULE: MOLECULAR ORBITAL 
THEORY OF BONDING 

Consider what happens when two hydrogen atoms approach each other to form the 
hydrogen molecule. This is the H-H (or H2) system. Let us examine the energy levels 
of the H-H system as a function of the interatomic distance R. When the atoms are in¬ 
finitely separated, each atom has its own set of energy levels, labeled Is, 2s, 2p, etc. 
The electron energy in each atom is —13.6 eV with respect to the “free” state (electron 
infinitely separated from the parent nucleus). The energy of the two isolated hydrogen 
atoms is twice —13.6 eV. 

As the atoms approach closer, the electrons interact both with each other and with 
the other nuclei. To obtain the wavefunctions and the new energy of the electrons, we 
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need to find the new potential energy function PE for the electrons in this new envi¬ 
ronment and then solve the Schrodinger equation with this new PE function. The new 
energy is actually lower than twice —13.6 eV, which means that the H2 formation is 
energetically favorable. 

The bond formation between two H atoms can be easily explained by describing 
the behavior of the electron within the molecule. We use a molecular orbital x/r, which 
depends on the interaction of individual atomic wavefunctions and is regarded as an 
electron wavefunction within the molecule. 

In the H2 molecule, we cannot have two sets of identical atomic xfru orbitals, for 
two reasons. First, this would violate the Pauli exclusion principle, which requires that, 
in a given system of electrons (those within the H2 molecule), we cannot have two sets 
of identical quantum numbers. When the atoms were separated, we did not have this 
problem, because we had two isolated systems. 

Second, as the two atoms approach each other, as shown in Figure 4.1, the atomic 
ifru wavefunctions overlap. This overlap produces two new wavefunctions with differ¬ 
ent energies and hence different quantum numbers. When the two atomic wavefunctions 
interfere, they can overlap either in phase (both positive or both negative) or out of phase 

Figure 4.1 Formation of molecular orbitals, bonding, and antibonding [xfra and 
t/ra») when two H atoms approach each other. 

The two electrons pair their spins and occupy the bonding orbital Vv • 
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(one positive and the other negative), as a result of which two molecular orbitals are 
formed. These are conventionally labeled fa and \fta* as illustrated in Figure 4.1. Thus, 
two of the molecular orbitals in the H-H system are . 

fa = fu(rA) + f\s{rB) 14.1] 

fa- = fu(rA) ~ fn(rB) [4.2] 

where the two hydrogen atoms are labeled A and B, and rA and rB are the respective 
distances of the electrons from their parent nucleus. In generating two separate molec¬ 
ular orbitals fa and fa* from a linear combination of two identical atomic orbitals f\s, 

we have used the linear combination of atomic orbitals (LCAO) method. 
The first molecular orbital fa is symmetric and has considerable magnitude be¬ 

tween the nuclei, whereas the second fa*, is antisymmetric and has a node between the 
nuclei. The resulting electron probability distributions \fa\2 and \fa*\2 are shown in 
Figure 4.2. 

In an analogy to hydrogenic wavefunctions, since fa• has a node, we would 
expect it to have a higher energy than the fa orbital and therefore a different energy 
quantum number, which means that the Pauli exclusion principle is no longer violated. 
We can also expect that because IV'crl2 has an appreciable electron concentration be¬ 
tween the two nuclei, the electrostatic PE, and hence the total energy for the wave- 
function fa, will be lower than that for fa*, as well as those for the individual atomic 
wavefunctions. 

Of course, the true wavefunctions of the electrons in the H2 system must be deter¬ 
mined by solving the Schrodinger equation, but an intelligent guess is that these must 
look like fa and fa*. We can therefore use fa and fa* in the Schrodinger equation, 
with the correct form of the PE term V, to evaluate the energies Ea and Ea* of fa and 
fa*, respectively, as a function of R. The PE function V in the H-H system has 
positive PE contributions arising from electron-electron repulsions and proton-proton 

<b) Lines representing contours of constant probability (darker lines represent 
greater relative probability). 

Figure 4.2 
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(a) Energy of Xj/^ and Xj/^ vs. 

the interatomic separation R. 

(b) Schematic diagram showing 
the changes in the electron energy 
as two isolated H atoms, far left 
and far right, come together to 
form a hydrogen molecule. H atom H2 H atom 

AE = Bonding 

energy 

• • • • 
Figure 4.3 Electron energy in the system comprising two hydrogen atoms. 

repulsions, but negative PE contributions arising from the attractions of the two elec¬ 
trons to the two protons. 

The two energies, Ea and £„., are widely different, with Ea below E\s and Ea> 
above £)s, as shown schematically in Figure 4.3a. As R decreases and the two H atoms 
get closer, the energy of the xJ/„ orbital state passes through a minimum at R = a. Each 
orbital state can hold two electrons with spins paired, and within the two hydrogen 
atoms, we have two electrons. If these enter the \l/„ orbital and pair their spins, then 
this new configuration is energetically more favorable than two isolated H atoms. It 
corresponds to the hydrogen molecule H2. The energy difference between that of the 
two isolated H atoms and the Ea minimum energy at R = a is the bonding energy, as 
illustrated in Figure 4.3a. When the two electrons in the H2 molecule occupy the x}r„ 
orbital, their probability distribution (and hence, the negative charge distribution) is 
such that the negative PE, arising from the attractions of these two electrons to the two 
protons, is stronger in magnitude than the positive PE, arising from electron-electron 
repulsions and proton-proton repulsions and the kinetic energy of the two electrons. 
Therefore, the H2 molecule is energetically stable. 

The wavefunction xl/a corresponding to the lowest electron energy is called the 
bonding orbital, and \J/a. is the antibonding orbital. When two atoms are brought to¬ 
gether, the two identical atomic wavefunctions combine in two ways to generate two 
different molecular orbitals, each with a different energy. Effectively, then, an atomic 
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(a) There is one resonant frequency, 
coq, in an isolated RLC circuit. 

(b) There are two resonant frequencies 
in two coupled RLC circuits: one below 
and the other above a)0. 

Figure 4.4 

energy level, such as Els, splits into two, Ea and Ea>. The splitting is due to the inter¬ 
action (or overlap) between the atomic orbitals. Figure 4.3b schematically illustrates 
the changes in the electron energy levels as two isolated H atoms are brought together 
to form the H2 molecule. 

The splitting of a one-atom energy level when a molecule is formed is analogous 
to the splitting of the resonant frequency in an RLC circuit when two such circuits are 
brought together and coupled. Consider the RLC circuit shown in Figure 4.4a. The cir¬ 
cuit is excited by an ac voltage source. The current peaks at the resonant frequency o)0, 
as indicated in Figure 4.4a. When two such identical RLC circuits are coupled together 
and driven by an ac voltage source, the current develops two peaks, at frequencies 
(o 1 and 0)2, below and above ojq, as illustrated in Figure 4.4b. The two peaks at a)\ and 
0)2 are due to the mutual inductance that couples the two circuits, allowing them to 
interact. From this analogy, we can intuitively accept the energy splitting observed in 
Figure 4.3a. 

Consider what happens when two He atoms come together. Recall that the Is 
orbital has paired electrons and is full. The Is atomic energy level will again split into 
two levels, Ea and Ea*, associated with the molecular orbitals \//a and as illus¬ 
trated in Figure 4.5. However, in the He-He system, there are four electrons, so two 
occupy the xl/a orbital state and two go to the \lra. orbital state. Consequently, the 
system energy is not lowered by bringing the two He atoms closer. Furthermore, quan¬ 
tum mechanical calculations show that the antibonding energy level Ea. shifts higher 
than the bonding level Ea shifts lower. By the same token, although we could put an 
additional electron at Ea. in H2 to make Hj, we could not make by placing two 
electrons at Ea.. 

From the He-He example, we can conclude that, as a general rule, the overlap of 
full atomic orbital states does not lead to bonding. In fact, full orbitals repel each other, 
because any overlap results in an increase in the system energy. To form a bond 
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He-atom He-He He-atom 

system 

Figure 4.5 Two He atoms have four 
electrons When He atoms come together, 
two of the electrons enter the E„ level and 
two the E„‘ level, so the overall energy is 
greater than two isolated He atoms. 

between two atoms, we essentially need an overlap of half-occupied orbitals, as in the 
H2 molecule. 

HYDROGEN HALIDE MOLECULE (HF) We already know that H has a half-occupied Is orbital, 
which can take part in bonding. Since the F atom has the electronic structure ls22.v2p5, two of 
the p orbitals are full and one p orbital, px, is half full. This means that only the px orbital can 
participate in bonding. Figure 4.6 shows the electron orbitals in both H and F When the H atom 
and the F atom approach each other to form an HF molecule, the \J/\S orbital of H overlaps the 
px orbital of F. There arc two possibilities for the overlap. First. ^ 1, and px can overlap in phase 
(both positive or both negative), to give a rf/,, orbital that does not have a node between H and F, 
as shown in Figure 4.6. Second, they can overlap out of phase (one positive and the other neg¬ 
ative), so that the overlap orbital has a node (similar to xl/„- in Figure 4.1). We know from 
hydrogen atomic wavefunctions in Chapter 3 that orbitals with more nodes have higher ener¬ 
gies. The molecular orbital \J/„ therefore corresponds to a bonding orbital with a lower energy 
than the i/r„. orbital. The two electrons, one from \l/u and the other from px, enter the \f/a orbital 
with spins paired, thereby forming a bond between H and F. 

Figure 4.6 H has one half-empty \J/]S orbital. 

F has one half-empty px orbital but full py and pz orbitals. The overlap between \}r\s and px produces a 
bonding orbital and an antibonding orbital. The two electrons fill the bonding orbital and thereby form a 
covalent bond between H and F. 



4.2 Band Theory of Solids 

4.2 BAND THEORY OF SOLIDS 

4.2.1 Energy Band Formation 

When we bring three hydrogen atoms (labeled A, B, and C) together, we generate 
three separate molecular orbital states, x//(l, xf/h, and \frc, from three xfr1, atomic states. 
Again, this occurs in three different ways, as illustrated in Figure 4.7a. As in the 
case of the H2 molecule, each molecular orbital must be either symmetric or anti¬ 
symmetric with respect to center atom B.' The orbitals that satisfy even and odd 
requirements are 

ta = Vm.v(A) + xJris(B) + ^iv(C) I4.3al 

fh = *n(A) - fx,(C) [4.3b] 

y\rc = xJ/\x(A) — \jf\s(B) 4- xjf\,*(C) [4.3c] 

where xjf\s(A), \t/\s(B), and xJ/ls{C) are the l.v atomic wavefunctions centered around 
the atoms A, B, and C, respectively, as shown in Figure 4.7a. For example, the wave- 
function \/f\s(A) represents \ff\x(rA), which is centered around A and has the form 
exp(-rA/a0), where rA is the distance from the nucleus of A, and a„ is the Bohr radius. 
Notice that xf/\s(B) is missing in Equation 4.3b, so x/fh is antisymmetric. 

The energies Ea, Eh, and Ec of x//a, if//,, and xj/c can be calculated from the 
Schrodingcr equation by using the PE function of this system (the PE also includes 
proton-proton repulsions). It is clear that since \J/a, xj/h, and xJjc are different, their 
energies Ea, Eh, and E, are also different. Consequently, the l.v energy level splits into 
three separate levels, corresponding to the energies of xf/a, and x{/r, as depicted by 
Figure 4.7b. By analogy with the electron wavefunctions in the hydrogen atom, we can 
argue that if the molecular wavefunction has more nodes, its energy is higher. Thus, x//0 
has the lowest energy Ea, xj/h has the next higher energy £/,, and \}/( has the highest 
energy Ec, as shown in Figure 4.7b. There are three electrons in the three-hydrogen 
system. The first two pair their spins and enter orbital xj/a at energy Ea, and the third 
enters orbital xj/i, at energy Eh. Comparing Figures 4.7 and 4.3, we notice that although 
H2 and H3 both have two electrons in the lowest energy level, H? also has an extra elec¬ 
tron at the higher energy level (£/,), which tends to increase the net energy of the atom. 
Thus, the H3 molecule is much less stable than the H2 molecule.2 

Now consider the formation of a solid. Take N Li (lithium) atoms from infinity 

and bring them together to form the Li metal. Lithium has the electronic configuration 

1s22.vi, which is somewhat like the hydrogen atom, since the K shell is closed and the 

third electron is alone in the 2.v orbital. 

Based on our previous discussions, we assume that the atomic energy levels will 
split into N separate energy levels. Since the 1 s subshell is full and is close to the nucleus, 
it will not be affected much by the interatomic interactions; consequently, the energy of 

The reason is that the molecule A-B-C, when A, 8, ond C are identical atoms, is symmetric with respect to 8. Thus 
each wavefunction must have odd or even parity (Chapter 3). 

?SeeG. Pimentel and R Spratley, Understanding Chemistry; San Francisco: Holden-Day, Inc., 1972# pp. 682-687 
for an excellent discussion 
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Antisymmetric 

Symmetric 

(a) Three molecular orbitals from three y/}5 (b) The energies of the three molecular orbitals, labeled a, 
atomic orbitals overlapping in three b, and c, in a system with three H atoms, 

different ways. 

Figure 4.7 

a 00 
Solid Isolated atoms 

Figure 4.8 The formation of a 2s energy band from the 2s orbitals when N Li atoms 
come together to form the Li solid. 

There are N 2s electrons, but 2N states in the band. The 2s band is therefore only half full. 
The atomic 1 s orbital is close to the Li nucleus and remains undisturbed in the solid. Thus, 
each Li atom has a closed K shell (full 1 s orbital). 
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this state will experience only negligible splitting, if any. Since the l.v electrons will stay 
close to their parent nuclei, we will not consider them during formation of the solid. 

In the system of N isolated Li atoms, we have N electrons in N \J/zs orbitals at the 
energy £2.,, as illustrated in Figure 4.8 (at infinite interatomic separation). Let us 
assume that N is large (typically, ~102^). As N atoms are brought together to form the 
solid, the energy level at £2., splits into N finely separated energy levels. The maximum 
width of the energy splitting depends on the closest interatomic distance a in the solid, 
as apparent in Figure 4.3a. The atoms separated by a distance greater than R = a give 
rise to a lesser amount of energy splitting. The interatomic interactions between 
orbitals thus spread the N energy levels between the bottom and top levels, Eg and ET, 
respectively, which are determined by the closest interatomic distance a. Put differently, 
Eh and £7 are determined by the distance between nearest neighbors. It is obvious that 
with N very large, the energy separation between two consecutive energy levels is very 
small; indeed, it is almost infinitesimal and not as exaggerated as in Figure 4.8. 

Remember that each energy level £, in the Li metal of Figure 4.8 is the energy ol 
an electron wavefunction ^soiidO) in the solid, where ^soik)0) is one particular combi¬ 
nation of the N atomic wavefunctions fa*. There are N different ways to combine N 
atomic wavefunctions i/'iv, since each can be added in phase or out of phase, as is ap¬ 
parent in Equations 4.3a to c (see also Figure 4.7a and b). For example, when all N ^2v 
are summed in phase, the resulting wavefunction ^«>iid(l) is like \J/t, in Equation 4.3a, 
and it has the lowest energy. On the other hand, when N ^2* are summed with 
alternating phases, -l-(- • • •, the resulting wavefunction ^soiid(7V) is like \j/c, and it 
has the highest energy. Other combinations of \J/2v give rise to different energy values 
between Eg and £7. 

The single 2s energy level £2., therefore splits into N (~102^) finely separated 
energy levels, forming an energy band, as illustrated in Figure 4.8. Consequently, 
there are N separate energy levels, each of which can take two electrons with opposite 
spins. The N electrons fill all the levels up to and including the level at N/2. There¬ 
fore, the band is half full. We do not mean literally that the band is full to the half¬ 
energy point. The levels are not spread equally over the band from Eg to £7, which 
means that the band cannot be full to the half-energy point. Half filled simply means 
half the states in the band are filled from the bottom up. 

We have generated a half-filled band from a half-filled isolated 2s energy level. 
The energy band resulting from the splitting of the atomic 2s energy level is loosely 
termed the 2s band. By the same token, the atomic 1 s levels are full, so any 1 s band that 
forms from these l.v states will also be full. We can get an idea of the separation of en¬ 
ergy levels in the 2s band by noting that the maximum separation, £7 — Eg, between 
the top and bottom of the band is on the order of 10 eV, but there are some 102^ atoms, 
giving rise to 102^ energy levels between Eg and £7. Thus, the energy levels are finely 
separated, forming, for all practical purposes, a continuum of energy levels. 

The 2p energy level, as well as the higher levels at 3.v and so on, also split into 
finely separated energy levels, as shown in Figure 4.9. In fact, some of these energy 
levels overlap the 2s band; hence, they provide further energy levels and “extend” the 
2s band into higher energy levels, as indicated in Figure 4.10, which shows how en¬ 
ergy bands in metals are often represented. The vertical axis is the electron energy. The 
top of the 2s band, which is half full, overlaps the bottom of the 2p band, which itself 



294 CHAPTER 4 • Modern Theory of Solids 

Figure 4.9 As Li atoms are brought together 
from infinity, the atomic orbitals overlap and 
give rise to bands. 

Outer orbitals overlap first The 3s orbitals give 
rise to the 3s band, 2p orbitals to the 2p band 
and so on. The various bands overlap to 
produce a single band in which the energy is 
nearly continuous. 

■3P 
13s 

l 
\2P 
12s 

J Is 

is overlapped near the top by the 3.v band We therefore have a band of energies that 
stretches from the bottom of the 2s band all the way to the vacuum level, as depicted 
in Figure 4.11. The reader may wonder what happened to the 3d, 4s, etc., bands. In the 
solid, the energies of these bands (including the top portion of the 3s band) are above 
the vacuum level, and the electron is free and far from the solid before it can acquire 
those energies. 

At a temperature of absolute zero, or nearly so, the thermal energy is insufficient to 
excite the electrons to higher energy levels, so all the electrons pair their spins and fill 
each energy level from Eb up to an energy level EFO that we call the Fermi level at 0 K, 
as shown in Figure 4.11. The energy value for the Fermi level depends on where we take 
the reference energy. For example, if we take the vacuum level as the zero reference, then 
for the Li metal, EFO is at —2.5 eV. The Fermi level is normally measured with respect to 
the bottom of the band, in which case, it is simply termed the Fermi energy and denoted 
Efo. For the Li metal, EFO is 4.7 cV, which is with respect to the bottom of the band The 
Fermi level has considerable significance, as we will discover later in this chapter. 
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0-► 7.2 eV 

2.5 eV -h* 4.7 eV 

Figure 4.11 Typical electron energy band 
diagram for a metal. 

All the valence electrons are in an energy 
band, which they only partially fill. The top of 

-j 2 ey_^ () the band is the vacuum level, where the 
electron is free from the solid (PE — 0). 

At absolute zero, all the energy levels up to the Fermi level are full. The energy 
required to excite an electron from the Fermi level to the vacuum level, that is, to 
liberate the electron from the metal, is called the work function <J> of the metal. As the 
temperature increases, some of the electrons get excited to higher energy levels. To de¬ 
termine the probability of Finding an electron at an energy level E, we must consider 
what is called “particle statistics,” a topic that is key to understanding the behavior of 
electronic devices. Clearly, the probability of finding an electron at 0 K at some energy 
E < Ef.0 is unity, and at E > EFO, the probability is zero. Table 4.1 summarizes the 
Fermi energy and work function of a few selected metals. 

The electrons in the energy band of a metal are loosely bound valence electrons 
which become free in the crystal and thereby form a kind of electron gas. It is this elec¬ 
tron gas that holds the metal ions together in the crystal structure and constitutes the 
metallic bond. This intuitive interpretation is shown in Figure 4.9. When solid Li is 
formed from N atoms, the N electrons fill all the lower energy levels up to N/2. The 
energy of the system of N Li atoms, according to Figure 4.9, is therefore much less 
than that of N isolated Li atoms by virtue of the N electrons taking up lower energy 
levels. It must be emphasized that the electrons within a band do not belong to any 
specific atom but to the whole solid. We cannot identify a given electron in the band 
with a certain Li atom. All the 2s electrons essentially form an electron gas and have 
energies that fall within the energy band. These electrons are constantly moving 
around in the metal which in terms of quantum mechanics means that their wave- 
functions must be of the traveling wave type and not the type that localizes the electron 
around a given atom (e.g., Wr.m, in the hydrogen atom). We can represent each elec¬ 
tron with a wavevector k so that its momentum p is hk. 

Electron outside 
the metal 

T level ^ 

▼ <T> 

Electron energy 

A 
Vacuum 
level 

Electron inside 
the metal 

Efo 

E - - - 

Empty levels 

Levels occupied 
by electrons 

liable 4.1 Fermi energy and work function of selected metals 

Metal 

Ag Al Au Cs Cu Li Mg Na 

4.5 4.28 5.0 2.14 4.65 2.3 3.7 2.75 

Efo (eV) 5.5 11.7 5.5 1.58 7.0 4.7 7.1 3.2 
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4.2.2 Properties of Electrons in a Band 

Since the electrons inside the metal crystal are considered to be “free,” their energy is 
KE. These electrons occupy all the energy levels up to EFO as shown in the band dia¬ 
gram of Figure 4.12a. The energy E of an electron in a metal increases with its mo¬ 
mentum p as p2/2me. Figure 4.12b shows the energy versus momentum behavior of 
the electrons in a hypothetical one-dimensional crystal. The energy increases with mo¬ 
mentum whether the electron is moving toward the left or right. Electrons take on all 
available momentum values until their energy reaches Efo. For every electron that is 
moving right (such as a), there is another (such as b) with the same energy but moving 
left with the same magnitude of momentum. Thus, the average momentum is zero and 
there is no net current. 

Consider what happens when an electric field ‘Lx is applied in the —x direction. 
The electron a at the Fermi level and moving along in the +jr direction experiences a 
force e'Ex along the same direction. It therefore accelerates and gains momentum and 
hence has the energy as shown in Figure 4.12c. (The actual energy gained from the 
field is very small compared with EFO, so Figure 4.12c is highly exaggerated.) The 
electron a at EFO can move to higher energy levels because these adjacent higher lev¬ 
els are empty. The momentum state vacated by a is filled by the electron immediately 
below which now gains energy and moves up, and so on. An electron that is moving in 
the —x direction, however, is decelerated (its momentum decreases) and hence loses 
energy as indicated by b moving to b' in Figure 4.12c. The electrons that are moving 
in the -f-jr direction gain energy, and those that are moving in the — x direction, lose en¬ 
ergy. The whole electron momentum distribution therefore shifts in the +jc direction as 
in Figure 4.12c. Eventually the electron a, now at a', is scattered by a lattice vibration. 

'FO 

0 

Figure 4.12 

(a) Energy band diagram of a metal 

(b) In the absence of a field, there are as many electrons moving right as there are moving left. The motions of two electrons 
at each energy cancel each other as for a and b. 
(c) In the presence of a field in the -x direction, the electron a accelerates and gains energy to a! where it is scattered to an 
empty state near Efo but moving in the —x direction. The average of all momenta values is along the +x direction and results 
in a net electric current. 
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Typically lattice vibrations have small energies but substantial momentum. The scat¬ 
tered electron must find an unoccupied momentum state with roughly the same energy, 
and it must change its momentum substantially. The electron at a' is therefore scattered 
to an empty state around EFO but with a momentum in the opposite direction. Its mo¬ 
mentum is flipped as shown in Figure 4.12c. The average momentum of the electrons 
is no longer zero but finite in the +jc direction. Consequently there is a current flow 
in the — x direction, along the field, as determined by this average momentum pav. 

Notice that a moves up to a' and b falls down to b’. Under steady-state conduction, lat¬ 
tice scattering simply replenishes the electrons at // from a'. Notice that for energies 
below b', for every electron moving right there is another moving left with the same 
momentum magnitude that cancels it. Thus, electrons below the b' energy level do not 
contribute to conduction and are excluded from further consideration. Notice that elec¬ 
trons above the b’ level are only moving right and their momenta are not canceled. 
Thus, the conductivity is determined by the electrons in the energy range A E from // 
to o' about the Fermi level as shown in Figure 4.12c. Further, as the energy change 
from a to a' is orders of magnitude smaller than Em. we can summarize that conduc¬ 
tion occurs by the drift of electrons at the Fermi level.^ (If we were to calculate A E for 
a typical metal for typical currents, it would be ~ 10 6 eV whereas EFO is 1—10 eV. The 
shift in the distribution in Figure 4.12c is very small indeed; a' and b', for all practical 
purposes, are at the Fermi level.) 

Conduction can be explained very simply and intuitively in terms of a band dia¬ 
gram as shown in Figure 4.13. Notice that the application of the electric field bends the 
energy band, because the electrostatic PE of the electron is — eV(x) where VXjc) is the 
voltage at position x. However, V(jc) changes linearly from 0 to V, by virtue of 
dV dx — —*EX. Since E = —eV(x) adds to the energy of (he electron, the energy band 
must bend to account for the additional electrostatic energy. Since only the electrons 
near EFO contribute to electrical conduction, we can represent this by drifting the elec¬ 
trons at EFo down the potential hill. Although these electrons possess a very high mean 
velocity (~106 ms as determined by the Fermi energy, they drift very slowly 
(10_2-10 1 ms-1) with a velocity that is drift mobility x field. 

When a metal is illuminated, provided the wavelength of the radiation is correct, 
it will cause emission of electrons from the metal as in the photoelectric effect. Since 
<1> is the “minimum energy” required to excite an electron into the vacuum level (out 
from the metal), the longest wavelength radiation required is he/X = <b. 

Addition of heal to a metal can excite some of the electrons in the band to higher 
energy levels. Thus heat can also be absorbed by the conduction electrons of a metal. 
We also know that the addition of heat increases the amplitude of atomic vibrations. 
We can therefore guess that the heat capacity of a metal has two terms which are due 
to energy absorption by the lattice vibrations and energy absorption by conduction 
electrons. It turns out that at room temperature the energy absorption by lattice vibra¬ 
tions dominates the heat capacity whereas at the lowest temperatures the electronic 
contribution is important. 

3 In some books (including the first edition of this textbook) it is stated that the electrons at Efo can gain energy from 
the field and contribute to conduction but not those deep in the band (below b'). This is o simplified statement of the 
fact that at a level below Efo there is one electron moving along in the +x direction and gaining energy and 
another one at the some energy but moving along in the -x direction and losing energy so that an average electron 
at this level does not gain energy. 
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Figure 4.13 Conduction in a metal is 
due to the drift of electrons around the Fermi 
level. 

When a voltage is applied, the energy band 
is bent to be lower at the positive terminal so 
that the electron's potential energy 
decreases as it moves toward the positive 
terminal. 

Figure 4.14 The interior of Jupiter is 
believed to contain liquid hydrogen, 
which is metallic. 

SOURCE: Drawing adapted from T. Hey and 
P. Walters, The Quantum Universe 

Cambridge, MA: Cambridge University Press 
1988, p. 96, figure 7.1. 

Molecular hydrogen and 
helium 

Liquid metallic hydrogen (with 
helium) 

Possible rocky core 

Cloud tops (the atmospheric layer is 
comparatively thin compared with Jupiter's 
size) 

METALLIC LIQUID HYDROGEN IN JUPITER AND ITS MAGNETIC FIELD The surface of Jupiter, 
as visualized schematically in Figure 4.14, mainly consists of a mixture of molecular hydrogen 
and He gases. Deep in the planet, however, the pressure is so tremendous that the hydrogen mo¬ 
lecular bond breaks, leaving a dense ocean of hydrogen atoms. Hydrogen has only one electron 
in the Is energy level. When atoms are densely packed, the Is energy level forms an energy 
band, which is then only half filled. This is just like the Li metal, which means we can treat liq¬ 
uid hydrogen as a liquid metal, with electrical properties reminiscent of liquid mercury. Liquid 
hydrogen can sustain electric currents, which in turn can give rise to the magnetic fields on 
Jupiter. The origin of the electric currents are not known with certainty. We do know, however, 
that the core of the planet is hot and emanates heat, which causes convection currents. Temper¬ 
ature differences can readily give rise to electric currents, by virtue of thermoelectric effects, as 
discussed in Section 4.8.2. 
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WHAT MAKES A METAL? The Be atom has an electronic structure of ls22s2. Although the Be 
atom has a full 2.v energy level, solid Be is a metal. Why? 

EXAMPLE 4.3 

SOLUTION 

We will neglect the K shell (l .v state), which is full and very close to the nucleus, and consider 
only the higher energy states. In the solid, the 2s energy level splits into N levels, forming a 2s 
band. With 2 N electrons, each level is occupied by spin-paired electrons. The 2s band is there¬ 
fore full. However, the empty 2p band, from the empty 2p energy levels, overlaps the 2s band, 
thereby providing empty energy levels to these 2N electrons. Thus, the conduction electrons are 
in an energy band that is only partially filled; they can gain energy from the field to contribute 
to electrical conduction Solid Be is therefore a metal. 

FERMI SPEED OF CONDUCTION ELECTRONS IN A METAL In copper, the Fermi energy 
of conduction electrons is 7.0 eV. What is the speed of the conduction electrons around this 
energy? 

EXAMPLE 4.4 

SOLUTION 

Since the conduction electrons are not bound to any one atom, their PE must be zero within the 
solid (but large outside), so all their energy is kinetic. For conduction electrons around the Fermi 
energy Epo with a speed Dp, we have 

-ffiVp = Eh(, 
so that 

<2E, 
v, = 

to 

mc 

(2(1.6 x 10 19 J/eV)(7.0eV) 

(9.1 x 10 11 kg) 
= 1.6 x 10*’ m s -i 

Although the Fermi energy depends on the properties of the energy hand, to a good ap¬ 
proximation it is only weakly temperature dependent, so Vp will be relatively temperature in¬ 
sensitive, as we will show later in Section 4.7. 

4.3 SEMICONDUCTORS 

The Si atom has 14 electrons, which distribute themselves in the various atomic energy 
levels as shown in Figure 4.15. The inner shells (n = 1 and n = 2) are full and there¬ 
fore “closed.” Since these shells are near the nucleus, when Si atoms come together to 
form the solid, they are not much affected and they stay around the parent Si atoms. 
They can therefore be excluded from further discussion. The 3s and 3p subshells are 
farther away from the nucleus. When two Si atoms approach, these electrons strongly 
interact with each other. Therefore, in studying the formation of bands in the Si solid, 
we will only consider the 3s and 3p levels. 

The first task is to examine why Si actually bonds with four neighbors, since the 
3s orbital is full and there are only two electrons in the 3/> orbitals. The full 3s orbital 
should not overlap a neighbor and become involved in bonding. Since only two 3p or¬ 
bitals are half full, bonds should be formed with two neighboring Si atoms. In reality. 
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Figure 4.15 The electronic structure of Si 
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(a) Isolated Si (b) Si just before bonding 

Figure 4.16 

(a) Si is in Group IV in the Periodic Table. An isolated Si atom has two electrons in the 3s 
and two electrons in the 3p orbitals. 

(b) When Si is about to bond, the one 3s orbital and the three 3p orbitals become 
perturbed and mixed to form four hybridized orbitals, Vfyb; called sp3 orbitals, which are 
directed toward the corners of a tetrahedron. The ^yb orbital has a large major lobe and a 
small back lobe. Each V'hyb orbital takes one of the four valence electrons. 

the 3.v and 3p energy levels are quite close, and when five Si atoms approach each 
other, the interaction results in the four orbitals \/r(3s), \J/(3px), \ff(3py), and i//(3pz) 
mixing together to form four new hybrid orbitals, which are directed in tetrahedral 
directions; that is, each one is aimed as far away from the others as possible, as illus¬ 
trated in Figure 4.16. We call this process sp3 hybridization, since one a orbital and 
three p orbitals are mixed. (The superscript 3 on p has nothing to do with the number 
of electrons; it refers to the number of p orbitals used in the hybridization.) 

The four sp* hybrid orbitals, ^hyb> each have one electron, so they are half occu¬ 
pied. This means that four Si atoms can have their orbitals V'hyb overlap to form bonds 
with one Si atom, which is what actually happens; thus, one Si atom bonds with four 
other Si atoms in tetrahedral directions. 
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In the same way, one Si atom bonds with four H atoms to form the important gas 
SiHt, known as silane, which is widely used in the semiconductor technology to fabri¬ 
cate Si devices. In SiH4, four hybridized orbitals of the Si atom overlap with the Is 
orbitals of four H atoms. In exactly the same way, one carbon atom bonds with four 
hydrogen atoms to form methane, CH4. 

There are two ways in which the hybrid orbital Vfyb can overlap with that of the 
neighboring Si atom to form two molecular orbitals. They can add in phase (both pos¬ 
itive or both negative) or out of phase (one positive and the other negative) to produce 
a bonding or an antibonding molecular orbital rJsB and tj/A, respectively, with energies 
Eb and Ea. Each Si-Si bond thus corresponds to two paired electrons in a bonding 
molecular orbital ij/B. In the solid, there are iV(~5 x 1022cm-3) Si atoms, and there 
are nearly as many such \j/B bonds. The interactions between the x(rB orbitals (i.e., the 
Si-Si bonds) lead to the splitting of the EB energy level to N levels, thereby forming 
an energy band labeled the valence band (VB) by virtue of the valence electrons it 
contains. Since the energy level EB is full, so is the valence band. Figure 4.17 illus¬ 
trates the formation of the VB from EB. 

In the solid, the interactions between the N number of fA orbitals result in the 
splitting of the energy level EA to N levels and the formation of an energy band that is 
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completely empty and separated from the full valence band by a definite energy gap Eg. 
In this energy region, there are no states; therefore, the electron cannot have energy 
with a value within Eg. The energy band formed from N\f/A orbitals is a conduction 
band (CB), as also indicated in Figure 4.17. 

The electronic states in the VB (and also in the CB) extend throughout the whole 
solid, because they result from N\j/B orbitals interfering and overlapping each other. 
As before N\f/B, orbitals can overlap in N different ways to produce N distinct wave- 
functions i/^vb that extend throughout the solid. We cannot relate a particular electron to 
a particular bond or site because the wavefunctions V'Vb corresponding to the VB ener¬ 
gies are not concentrated at a single location. The electrical properties of solids are 
based on the fact that in solids, such as semiconductors and insulators, there are certain 
bands of allowed energies for the electrons, and these bands are separated by energy 
gaps, that is, bandgaps. The valence and conduction bands for the ideal Si crystal 
shown in Figure 4.17 are separated by an energy gap, or a bandgap, Eg, in which 
there are no allowed electron energy levels. 

At temperatures above absolute zero, the atoms in a solid vibrate due to their 
thermal energy. Some of the atoms can acquire a sufficiently high energy from thermal 
fluctuations to strain and rupture their bonds. Physically, there is a possibility that the 
atomic vibration will impart sufficient energy to the electron for it to surmount the 
bonding energy and leave the bond. The electron must then enter a higher energy state. 
In the case of Si, this means entering a state in the CB, as shown in Figure 4.18. If there 
is an applied electric field *EX in the +x direction, then the excited electron will be 
acted on by a force —eE* and it will try to move in the —x direction. For it to do so, 
there must be empty higher energy levels, so that as the electron accelerates and gains 
energy, it moves up in the band. When an electron collides with a lattice vibration, it 
loses the energy acquired from the field and drops down within the CB. Again, it 
should be emphasized that states in an energy band are extended; that is, the electron 
is not localized to any one atom. 

Note also that the thermal generation of an electron from the VB to the CB leaves 
behind a VB state with a missing electron. This unoccupied electron state has an 
apparent positive charge, because this crystal region was neutral prior to the removal 
of the electron. The VB state with the missing electron is called a hole and is denoted 
h+. The hole can “move” in the direction of the field by exchanging places with a 

Figure 4.18 Energy band diagram of a 
semiconductor. 

CB is the conduction band and VB is the 
valence band. At 0 K, the VB is full with all the 
valence electrons. 8 
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neighboring valence electron hence it contributes to conduction, as will be discussed 
in Chapter 5. 

CUTOFF WAVELENGTH OF A Si PHOTODETECTOR What wavelengths of light can be absorbed 
by a Si photodetector given Eg = 1.1 eV? Can such a photodetector be used in fiber-optic com¬ 
munications at light wavelengths of 1.31 fim and 1.55 /zm? 

EXAMPLE 4.5 

SOLUTION 

The energy bandgap Eg of Si is 1.1 eV. A photon must have at least this much energy to excite 
an electron from the VB to the CB, where the electron can drift. Excitation corresponds to the 
breaking of a Si-Si bond. A photon of less energy does not get absorbed, because its energy will 
put the electron in the bandgap where there are no states. Thus, hc/X > Eg gives 

he (6.6 x 10-34 J s)(3 x 108 m s-1) 

< ~Eg ~ (1.1 eV)(1.6 x 10~19 J/eV) 

= 1.13 x 10-6 m or l.ljum 

Since optical communications networks use wavelengths of 1.3 and 1.55 /im, these light waves 
will not be absorbed by Si and thus cannot be detected by a Si photodetector. 

4.4 ELECTRON EFFECTIVE MASS 
When an electric field *EX is applied to a metal, an electron near the Fermi level can gain 
energy from the field and move to higher energy levels, as shown in Figure 4.12. The 
external force Fext = e‘Lx is in the x direction, and it drives the electron along x. The 
acceleration of the electron is still given by a = Fext/me, where me is the mass of the 
electron in vacuum. 

The law Fext = mea cannot strictly be valid for the electron inside a solid, because 
the electron interacts with the host ions and experiences internal forces Fim as it moves 
around, as depicted in Figure 4.19. The electron therefore has a PE that varies with dis¬ 
tance. Recall that we interpret mass as inertial resistance against acceleration per unit 

(a) An external force Fexf applied to an 

electron in a vacuum results in an acceler¬ 

ation avac = Fex,/me. 

(b) An external force Fext applied to an elec¬ 

tron in a crystal results in an acceleration 

°cry$t = Pexf /me • 

Figure 4.19 
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applied force. When an external force ^ext is applied to an electron in the vacuum level, 
as in Figure 4.19a, the electron will accelerate by an amount 

a vac = — [4.4] 
me 

as determined by its mass me in vacuum. 
When the same force Fext is applied to the electron inside a crystal, the accelera¬ 

tion of the electron will be different, because it will also experience internal forces, as 
shown in Figure 4.19b. Its acceleration in the crystal will be 

^cryst — 
Fext Fjnt 

me 
[4.5] 

where Fiat is the sum of all the internal forces acting on the electron, which is quite dif¬ 
ferent than Equation 4.4. To the outside agent applying the force Fext? the electron will 
appear to be exhibiting a different inertial mass, since its acceleration will be different. 
It would be most useful for the external agent if the effect of the internal forces in Fint 
could be accounted for in a simple way, and if the acceleration could be calculated from 
the external force Fext alone, through something like Equation 4.4. This is indeed 
possible. 

In a crystalline solid, the atoms are arranged periodically, and the variation of Fint, 
and hence the PE, or V(x), of the electron with distance along x, is also periodic. In 
principle, then, the effect on the electron motion can be predicted and accounted for. 
When we solve the Schrodinger equation with the periodic PE, or V (x), we essentially 
obtain the effect of these internal forces on the electron motion. It has been found that 
when the electron is in a band that is not full, we can still use Equation 4.4, but instead 
of the mass in vacuum me, we must use the effective mass m* of the electron in that 
particular crystal. The effective mass is a quantum mechanical quantity that behaves in 
the same way as the inertial mass in classical mechanics. The acceleration of the elec¬ 
tron in the crystal is then simply 

flcryst = ~T [4.6] 
m* 

The effects of all internal forces are incorporated into m*. It should be emphasized 
that m*e, is obtained theoretically from the solution of the Schrodinger equation for the 
electron in a particular crystal, a task that is by no means trivial. However, the effec¬ 
tive mass can be readily measured. For some of the familiar metals, m* is very close 
to me. For example, in copper, m* = me for all practical purposes, whereas in lithium 
m* = \Jl%me, as shown in Table 4.2. On the other hand, m* for many metals and 

Table 4.2 Effective mass m* of electrons in some metals 

Metal 

m* 

Ag Au Bi Cu K Li Na Ni Pt Zn 

e 

me 
0.99 1.10 0.047 1.01 1.12 1.28 1.2 28 13 0.85 
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semiconductors is appreciably different than the electron mass in vacuum and can even 
be negative, (m* depends on the properties of the band that contains the electron. This 
is further discussed in Section 5.11.) 

4.5 DENSITY OF STATES IN AN ENERGY BAND 

Although we know there are many energy levels (perhaps ~1023) in a given band, we 
have not yet considered how many states (or electron wavefunctions) there are per unit 
energy per unit volume in that band. Consider the following intuitive argument. The 
crystal will have N atoms and there will be N electron wavefunctions ^i, • • •, Vov 
that represent the electron within the whole crystal. These wavefunctions are con¬ 
structed from N different combinations of atomic wavefunctions, Vm, • • • as 
schematically illustrated in Figure 4.20a,4 starting with 

f\ = irA + fB + i?c + — 
all the way to alternating signs 

V'N = ~ V'B + tc ~ fo H- 

Figure 4.20 

(a) In the solid there are N atoms and N extended electron wavefunctions from ^ i all the way to 
There are many wavefunctions, states, that have energies that fall in the central regions of the 

energy band. 

(b) The distribution of states in the energy band; darker regions have a higher number of states. 

(c) Schematic representation of the density of states g(E) versus energy E. 

4 This intuitive argument, as schematically depicted in Figure 4.20a, is obviously highly simplified because the solid is 
three-dimensional (3-D) and we should combine the atomic wavefunctions not on aTinear chain but on a 3-D lattice. 
In the 3-D case there are large numbers of wavefunctions with energies that fall in the central regions of the band. 
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and there are Af (~1023) combinations. The lowest-energy wavefunction will be V'i con¬ 
structed by adding all atomic wavefunctions (all in phase), and the highest-energy 
wavefunction will be yfrN from alternating the signs of the atomic wavefunctions, which 
will have the highest number of nodes. Between these two extremes, especially around 
N/2, there will be many combinations that will have comparable energies and fall near 
the middle of the band. (By analogy, if we arrange N = 10 coins by heads and tails, 
there will be many combinations of coins in which there are 5 heads and 5 tails, and 
only one combination in which there are 10 heads or 10 tails.) We therefore expect the 
number of energy levels, each corresponding to an electron wavefunction in the crystal, 
in the central regions of the band to be very large as depicted in Figure 4.20b and c. 

Figure 4.20c illustrates schematically how the energy and volume density of elec¬ 
tronic states change across an energy band. We define the density of states g(E) such 
that g(E) dE is the number of states (i.e., wavefunctions) in the energy interval E to 
(E + dE) per unit volume of the sample. Thus, the number of states per unit volume 
up to some energy E' is 

Sv(E') [4.71 

which is called the total number of states per unit volume with energies less than E'. 
This is denoted SV(E'). 

To determine the density of states function g(E), we must first determine the num¬ 
ber of states with energies less than E' in a given band. This is tantamount to calculat¬ 
ing SV(E') in Equation 4.7. Instead, we will improvise and use the energy levels for an 
electron in a three-dimensional potential well. Recall that the energy of an electron in 
a cubic PE well of size L is given by 

E = 
h2 

8 meL2 
(n2 + n2 + nf) [4.8] 

where n x, n2, and n 3 are integers 1, 2, 3,... . The spatial dimension L of the well now 
refers to the size of the entire solid, as the electron is confined to be somewhere inside 
that solid. Thus, L is very large compared to atomic dimensions, which means that the 
separation between the energy levels is very small. We will use Equation 4.8 to de¬ 
scribe the energies of free electrons inside the solid (as in a metal). 

Each combination of ni,n2, and rc3 is one electron orbital state. For example, 
nun2,n3 = ^1,1,2 is one possible orbital state. Suppose that in Equation 4.8 E is given 

as E'. We need to determine how many combinations of n1; n2, n3 (i.e., how many i/r) 
have energies less than E', as given by Equation 4.8. Assume that (n2 + n\ + n\) = n'2. 
The object is to enumerate all possible choices of integers for nx, n2, and n3 that sat¬ 
isfy n2 + n\ + n2 < n'2. 

The two-dimensional case is easy to solve. Consider n\ + n\<ri2 and the two- 
dimensional n-space where the axes are nx and n2, as shown in Figure 4.21. The two- 
dimensional space is divided by lines drawn at = 1, 2, 3,... and n2 = 1, 2, 3,... 

into infinitely many boxes (squares), each of which has a unit area and represents a 
possible state ^ni,„2. For example, the state m = 1, n2 = 3 is shaded, as is that for 
nx = 2, n2 = 2. 
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n2 

Figure 4,21 Each state, or electron wavefunction in 
the crystal, can be represented by a box at ni, n2. 

Figure 4.22 In three dimensions, the volume defined 
by a sphere of radius ri and the positive axes ni, n2, 
and H3, contains all the possible combinations of positive 
ni, ri2, and 03 values that satisfy n2 + rfy + n§ < n/2. 

Clearly, the area contained by n i, «2 and the circle defined by n'2 = n\ + n\ (just like 
r2 = x2 + y2) is the number of states that satisfy n\ + n\ < n'2. This area is |(7rn/2). 

In the three-dimensional case, n\ + n\ + n2 < n'2 is required, as indicated in Fig¬ 
ure 4.22. This is the volume contained by the positive n\, ri2, and n3 axes and the sur¬ 
face of a sphere of radius n'. Each state has a unit volume, and within the sphere, 
n] + n\ -f n\ < n'2 is satisfied. Therefore, the number of orbital states SorbCn') within 
this volume is given by 

Each orbital state can take two electrons with opposite spins, which means that the 
number of states, including spin, is given by 

S{ri) = 2S0rb(rt/) = ^7rn/3 

We need this expression in terms of energy. Substituting ri2 = %meL2E'/ h2 from 
Equation 4.8 in S(n'), we get 

7tL3(SmeE')3/2 
S(E') = 

3 h3 

Since L3 is the physical volume of the solid, the number of states per unit volume 
SV(E') with energies E < E' is 

SV(E') = 
tt(8 meE'fl2 

3h3 
[4.9] 
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Density of 

states 

Furthermore, from Equation 4.7, dSv/dE = g(E). By differentiating Equation 4.9 
with respect to energy, we get 

(\ 3/2 

jEl/2 [4.10] 

Equation 4.10 shows that the density of states g{E) increases with energy as El/2 
from the bottom of the band. As we approach the top of the band, according to our 
understanding in Figure 4.20d, g(E) should decrease with energy as (ftop — E)l/2, 
where Etop is the top of the band, so that as E -»• Etop, g(E) ->• 0. The electron mass 
me in Equation 4.10 should be the effective mass m* as in Equation 4.6. Further, Equa¬ 
tion 4.10 strictly applies only to free electrons in a crystal. However, we will frequently 
use it to approximate the true g(E) versus E behavior near the band edges for both 
metals and semiconductors. 

Having found the distribution of the electron energy states, Equation 4.10, we now 
wish to determine the number of states that actually contain electrons; that is, the prob¬ 
ability of finding an electron at an energy level E. This is given by the Fermi-Dirac 
statistics. 

As an example, one convenient way of calculating the population of a city is to 
find the density of houses in that city (i.e., the number of houses per unit area), multi¬ 
ply that by the probability of finding a human in a house, and finally, integrate the 
result over the area of the city. The problem is working out the chances of actually 
finding someone at home, using a mathematical formula. For those who like analogies, 
if g(A) is the density of houses and /(A) is the probability that a house is occupied, 
then the population of the city is 

n= f f(A)g(A) dA 
J City 

where the integration is done over the entire area of the city. This equation can be used 
to find the number of electrons per unit volume within a band. If E is the electron en¬ 
ergy and f(E) is the probability that a state with energy E is occupied, then 

n= f f (E)g(E) dE 
J Band 

where the integration is done over all the energies of the band. 

EXAMPLE 4.6 X-RAY EMISSION AND THE DENSITY OF STATES IN A METAL Consider what happens when a 
metal such as A1 is bombarded with high-energy electrons. The inner atomic energy levels are 
not disturbed in the solid, so these inner levels remain as distinct single levels, each one local¬ 
ized to the parent atom. When an energetic electron hits an electron in one of the inner atomic 
energy levels, it knocks out this electron from the metal leaving behind a vacancy in the inner 
core as depicted in Figure 4.23a. An electron in the energy band of the solid can then fall down 
to occupy this empty state and emit a photon in the process. The energy difference between the 
energies in the band and the inner atomic level is in the X-ray range, so the emitted photon is an 
X-ray photon. Since electrons occupy the band from the bottom EB to the Fermi level EF, the 
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(a) 

High-energy 
electron 

bombardment 

Inner shell — 

X-ray photon 

^ Ejected electron 

El shell 

(b) 

(c) 

(d) 

i > Energy (eV) 
80 

Solid 

Vapor 
LJ r 

24 

Energy (eV) 

-n-1——i-1—“—i—l-i*r 
22 20 18 16 

Wavelength (nm) 

Figure 4.23 

(a) High-energy electron bombardment knocks out an electron from the closed inner L shell leaving 
an empty state. An electron from the energy band of the metal drops into the L shell to fill the 
vacancy and emits a soft X-ray photon in the process. 

(b) The spectrum (intensity versus photon energy) of soft X-ray emission from a metal involves a 
range of energies corresponding to transitions from the bottom of the band and from the Fermi 
level to the L shell. The intensity increases with energy until around EF where it drops sharply. 

(c) and (d) contrast the emission spectra from a solid and vapor (isolated gas atoms). 

emitted X-ray photons have a range of energies corresponding to transitions from EB and EP to 
the inner atomic level as shown in Figure 4.23b. These energies are in the soft X-ray spectrum. 
We assumed that the levels above EF are almost empty, though, undoubtedly, there is no sharp 
transition from full to empty levels at EP. Further, since the density of states increases from EB 
toward EF, there are more and more electrons that can fall down to the atomic level as we move 
from Eb toward EF. Therefore the intensity of the emitted X-ray radiation increases with en¬ 
ergy until the energy reaches the Fermi level beyond which there are only a small number of 
electrons available for the transit. Figure 4.23c and d contrasts the emission spectra from an alu¬ 
minum crystal (solid) and its vapor. The line spectra from a vapor become an emission band in 
the spectrum of the solid. 

The X-ray intensity emitted from A1 in Figure 4.23 starts to rise at around 60 eV and then 
sharply falls around 72 eV. Thus the energy range is 12 eV, which represents approximately the 
Fermi energy with respect to the bottom of the band, that is, EF « 72 — 60 = 12 eV with re¬ 
spect to Eb. 
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EXAMPLE 4.7 DENSITY OF STATES IN A BAND Given that the width of an energy band is typically 
calculate the following, in per cm3 and per eV units: 

10 eV, 

a. The density of states at the center of the band. 

b. The number of states per unit volume within a small energy range kT about the center. 

c. The density of states at kT above the bottom of the band. 

d. The number of states per unit volume within a small energy range of kT to 2kT from the 
bottom of the band. 

SOLUTION 

The density of states, or the number of states per unit energy range per unit volume g(E), is 
given by (\ 3/2 

El/2 

which gives the number of states per cubic meter per Joule of energy. Substituting E = 5 eV, we 
have 

= (8tt2i/2) 
9.1 x 10“31 I372 

.(6.626 x IQ"34)2. 
(5 x 1.6 x 10“19),/2 = 9.50 x 1046 m“3 J-1 

Converting to cm 3 and eV 1, we get 

Scemer = (9-50 x 1046 m“3 J-1)(10“6m3 cm“3)(1.6 x 10-19JeV_1) 

= 1.52 x 1022 cm-3 eV-1 

If BE is a small energy range (such as kT), then, by definition, g{E)BE is the number 
of states per unit volume in BE. To find the number of states per unit volume within kT at the 
center of the band, we multiply gfcentcr by kT or (1.52 x 1022 cm-3 eV-1)(0.026 eV) to get 
3.9 x 1020 cm-3. This is not a small number! 

At kT above the bottom of the band, at 300 K (kT = 0.026 eV), we have 

T 9.1 x 10“31 13/2 10 ,,, 
0oo26 = (8tt21/2) I-— (0.026 x 1.6 x 10“19)1/2 
yo.026 1(6.626 x 10"34)2J 

= 6.84 x 1045 m“3 J-1 

Converting to cm-3 and eV-1 we get 

00.026 = (6.84 x 1045 m“3 J“')(10“6 m3 cm“3)(1.6 x 10“19 JeV"1) 

= 1.10 x 1021 cm“3eV“' 

Within kT, the volume density of states is 

(1.10 x 1021 cm“3 eV-1)(0.026 eV) = 2.8 x 1019cm“3 

This is very close to the bottom of the band and is still very large. 
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TOTAL NUMBER OF STATES IN A BAND 

a. Based on the overlap of atomic orbitals to form the electron wavefunction in the crystal, 
how many states should there be in a band? 

b. Consider the density of states function 

(\ 3/2 

El/2 

By integrating g(E), estimate the total number of states in a band per unit volume, and com¬ 
pare this with the atomic concentration for silver. For silver, we have EF0 = 5.5 eV and 
<!> = 4.5 eV. (Note that “state” means a distinct wavefunction, including spin.) 

SOLUTION 

a. We know that when N atoms come together to form a solid, N atomic orbitals can overlap 
N different ways to produce N orbitals or IN states in the crystal, since each orbital has two 
states, spin up and spin down. These states form the band. 

b. For silver, EFO = 5.5 eV and 4> = 4.5 eV, so the width of the energy band is 10 eV. To 
estimate the total volume density of states, we assume that the density of states g(E) 
reaches its maximum at the center of the band E = £center = 5 eV. Integrating g{E) from 
the bottom of the band, E = 0, to the center, E = £center, yields the number of states per 
unit volume up to the center of the band. This is half the total number of states in the whole 
band, that is, ^Sband, where Sband is the number of states per unit volume in the band and is 
determined by 

1 P ^center 16*2*/2 / \ 3/2 3/2 

or 

16tt21/2 r 9.1 x 10-31 kg ]3/2 

3 (6.626 x 10-34 J s)2_ 
(5 eV x 1.6 x 10"19 J/eV)3/2 

= 5.08 x 1028 m~3 = 5.08 x 1022 cm“3 

Thus 

■Stand = 10.16 x 1022 states cm 3 

We must now calculate the number of atoms per unit volume in silver. Given the 
density d = 10.5 g cm-3 and the atomic mass Mat = 107.9 g mol-1 of silver, the atomic 
concentration is 

dN a o', -i 
nAg = -= 5.85 x 1022 atoms cm 3 

^at 

As expected, the density of states is almost twice the atomic concentration, even 
though we used a crude approximation to estimate the density of states. 

EXAMPLE 4.8 
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4.6 STATISTICS: COLLECTIONS OF PARTICLES 

4.6.1 Boltzmann Classical Statistics 

Given a collection of particles in random motion and colliding with each other,5 we 
need to determine the concentration of particles in the energy range £ to (£ + dE). 

Consider the process shown in Figure 4.24, in which two electrons with energies E\ 

and Ei interact and then move off in different directions, with energies £3 and £4. Let 
the probability of an electron having an energy E be £(£), where P(E) is the fraction 
of electrons with an energy E. Assume there are no restrictions to the electron energies, 
that is, we can ignore the Pauli exclusion principle. The probability of this event is then 
P{E\)P{E2). The probability of the reverse process, in which electrons with energies 
£3 and £4 interact, is P{E3)P(E4). Since we have thermal equilibrium, that is, the 
system is in equilibrium, the forward process must be just as likely as the reverse 
process, so 

Boltzmann 

probability 

function 

Boltzmann 

statistics 

P(El)P(E2) = P(£3)£(£4) [4.11] 

Furthermore, the energy in this collision must be conserved, so we also need 

£1 + E2 = £3 + £4 [4.12] 

We therefore need to find the £(£) that satisfies both Equations 4.11 and 4.12. 
Based on our experience with the distribution of energies among gas molecules, we 
can guess that the solution for Equations 4.11 and 4.12 would be 

£(£) = Aexp(—[4.13] 

where k is the Boltzmann constant, T is the temperature, and A is a constant. We 
can show that Equation 4.13 is a solution to Equations 4.11 and 4.12 by a simple 
substitution. Equation 4.13 is the Boltzmann probability function and is shown in 
Figure 4.25. The probability of finding a particle at an energy £ therefore decreases 
exponentially with energy. We assume, of course, that any number of particles may 
have a given energy £. In other words, there is no restriction such as permitting 
only one particle per state at an energy £, as in the Pauli exclusion principle. The 
term kT appears in Equation 4.13 because the average energy as calculated 
by using £(£) then agrees with experiments. (There is no kT in Equations 4.11 
and 4.12.) 

Suppose that we have N\ particles at energy level E\ and N2 particles at a higher 
energy E2. Then, by Equation 4.13, we have 

5 From Chapter 1, we can associate this with the kinetic theory of gases. The energies of the gas molecules, which 
are moving around randomly, are distributed according to the Maxwell-Boltzmann statistics. 
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Figure 4.24 Two electrons with initial 

wavefunctions </n and ^2 at E\ and £2 interact 
and end up at different energies £3 and £4. 

Their corresponding wavefunctions are ^3 
and i/m. 

Figure 4.25 The Boltzmann 
energy distribution describes the 
statistics of particles, such as electrons, 
when there are many more available 
states than the number of particles. 

If £2 — E\ » kT, then N2 can be orders of magnitude smaller than N\. As the 
temperature increases, N2/N] also increases. Therefore, increasing the temperature 
populates the higher energy levels. 

Classical particles obey the Boltzmann statistics. Whenever there are many 
more states (by orders of magnitude) than the number of particles, the likelihood of 
two particles having the same set of quantum numbers is negligible and we do not 
have to worry about the Pauli exclusion principle. In these cases, we can use the 
Boltzmann statistics. An important example is the statistics of electrons in the con¬ 
duction band of a semiconductor where, in general, there are many more states than 
electrons. 

4.6.2 Fermi-Dirac Statistics 

Now consider the interaction for which no two electrons can be in the same quantum 
state, which is essentially obedience to the Pauli exclusion principle, as shown in Fig¬ 
ure 4.24. ^Ve assume that we can have only one electron in a particular quantum state 
f (including spin) associated with the energy value £. We therefore need those states 
that have energies £3 and £4 to be not occupied. Let /(£) be the probability that an 
electron is in such a state, with energy £ in this new interaction environment. The prob¬ 
ability of the forward event in Figure 4.24 is 

f(El)f(E2)[l - /(£3)][1 - /(£4)1 

The square brackets represent the probability that the states with energies £3 and £4 

are empty. In thermal equilibrium, the reverse process, the electrons with £3 and £4 

interacting to transfer to £ 1 and £2, has just as equal a likelihood as the forward process. 
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Paul Adrien Maurice Dirac (1902-1984) received the 1933 
Nobel prize for physics with Erwin Schrodinger. His first 
degree was in electrical engineering from Bristol University. 
He obtained his PhD in 1926 from Cambridge University 
under Ralph Fowler. 

I SOURCE: Courtesy of AIP Emilio Segre Visual Archives. 

Fermi-Dirac 

statistics 

Thus, f (E) must satisfy the equation 

f(El)f(E2)[l - f(E3)][ 1 - f(E4)] = f{E3)f{E4)[\ - f{Exm - f{E2)] [4.15] 

In addition, for energy conservation, we must have 

E\ + E2 = E3 + E4 [4.16] 

By an “intelligent guess,” the solution to Equations 4.15 and 4.16 is 

f(E) = 
1 

1 + A exp 

[4.17] 

where A is a constant. You can check that this is a solution by substituting Equation 4.17 
into 4.15 and using Equation 4.16. The reason for the term kT in Equation 4.17 is not 
obvious from Equations 4.15 and 4.16. It appears in Equation 4.17 so that the mean 
properties of this system calculated by using f(E) agree with experiments. Letting 
A = exp(—EF/kT), we can write Equation 4.17 as 

\ /(£) = 
1 

1 + exp 
(E-EF 

V kT ) 
[4.18] 

where EF is a constant called the Fermi energy. The probability of finding an electron 
in a state with energy E is given by Equation 4.18, which is called the Fermi-Dirac 
function. 

The behavior of the Fermi-Dirac function is show'irtn Figure 4.26. Note the effect 
of temperature. As T increases, f(E) extends to higher energies. At energies of a few 
kT (0.026 eV) above EF, f(E) behaves almost like the Boltzmann function 

r (e-eF) i 
/(£) = eXPL-kT J (E - Ef) » kT [4.19] 
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E 

Figure 4.26 
The Fermi-Dirac function f(E) describes the statistics of electrons in 
a solid. The electrons interact with each other and the environment, 
obeying the Pauli exclusion principle. 

Above absolute zero, at E = £>, /(£» = We define the Fermi energy as that 
energy for which the probability of occupancy f(EF) equals The approximation to 
f(E) in Equation 4.19 at high energies is often referred to as the Boltzmann tail to the 
Fermi-Dirac function. 

4.7 QUANTUM THEORY OF METALS 

4.7.1 Free Electron Model6 

We know that the number of states g(E) for an electron, per unit energy per unit vol¬ 
ume, increases with energy as g(E) <x El/2. We have also calculated that the probabil¬ 
ity of an electron being in a state with an energy E is the Fermi-Dirac function /(£). 
Consider the energy band diagram for a metal and the density of states g(E) for that 
band, as shown in Figure 4.27a and b, respectively. 

At absolute zero, all the energy levels up to EF are full. At 0 K, /(£) has the step 
form at EF (Figure 4.26). This clarifies why EF in /(£) is termed the Fermi energy. 
At 0 K, /(£) = 1 for E < EF, and /(£) = 0 for E > £>, so at 0 K, £> separates the 
empty and full energy levels. This explains why we restricted ourselves to 0 K or 
thereabouts when we introduced EF in the band theory of metals. 

At some finite temperature, f(E) is not zero beyond EF, as indicated in Fig¬ 
ure 4.27c. This means that some of the electrons are excited to, and thereby occupy, 
energy levels above EF. If we multiply g(E), by /(£), we obtain the number of elec¬ 
trons per unit energy per unit volume, denoted nE. The distribution of electrons in the 
energy levels is described by nE = g(E) f(E). J 

Since /(£) = 1 for E <£ EF, the states near the bottom of the band are all occu¬ 
pied; thus, nE oc Ex/1 initially. As E passes through EF,f{E) starts decreasing 

I 6The free electron model of metals is also known as the Sommerfeld model. 
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E E E E 

Figure 4.27 
(a) Above 0 K, due to thermal excitation, some of the electrons are at energies above Ep. 

(b) The density of states, g[E) versus £ in the band. 

(c) The probability of occupancy of a state at an energy £ is f[E). 

(d) The product g(E)f[E) is the number of electrons per unit energy per unit volume, or the electron 
concentration per unit energy. The area under the curve on the energy axis is the concentration of 
electrons in the band. 

sharply. As a result, n E takes a turn and begins to decrease sharply as well, as depicted 
in Figure 4.27d. 

In the small energy range E to (E + dE), there are nE dE electrons per unit 
volume. When we sum all nE dE from the bottom to the top of the band (E = 0 to 
E = £> + <!>), we get the total number of valence electrons per unit volume, n, in the 
metal, as follows: 

H = I Jo 

Top of band 

nEdE -l 
Top of band 

g(E)f(E)dE [4.201 

Since f(E) falls very sharply when E > £>, we can carry the integration to 
E = oo, rather than to (£> + <1>), because / —► 0 when E » Ep. Putting in the func¬ 
tional forms of g(E) and f(E) (e.g., from Equations 4.10 and 4.18), we obtain 

S7t2l/2ml/2 f°° 

~ h2 Jo 

Ei/2dE 
[4.211 

If we could integrate this, we would obtain an expression relating n and £>. At 
0 K, however, Ee = Eeo and the integrand exists only for E < EF0. If we integrate at 
0 K, Equation 4.21 yields 

Fermi energy 

atT= OK [4.22] 
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It may be thought that EF is temperature independent, since it was sketched that 
way in Figure 4.26. However, in our derivation of the Fermi-Dirac statistics, there was 
no restriction that demanded this. Indeed, since the number of electrons in a band is 
fixed, EF at a temperature T is implicitly determined by Equation 4.21, which can be 
solved to express EF in terms of n and T. It turns out that at 0 K, EF is given by Equa¬ 
tion 4.22, and it changes very little with temperature. In fact, by utilizing various math¬ 
ematical approximations, it is not too difficult to integrate Equation 4.21 to obtain the 
Fermi energy at a temperature T, as follows: 

Ef(T) = EFo 
12 \Efo) 

[4.231 
Fermi energy 

atT( K) 

which shows that EF(T) is only weakly temperature dependent, since EF0 kT. 
The Fermi energy has an important significance in terms of the average energy £av 

of the conduction electrons in a metal. In the energy range E to (E 4- dE), there are 
nEdE electrons with energy E. The average energy of an electron will therefore be 

J EnF dE 

f nF dE 
[4.24] 

If we substitute g{E) f(E) for nE and integrate, the result at 0 K is 

3 
^av(O) — [4.25] 

Above absolute zero, the average energy is approximately 

.2 / i-Tf \ 2 

Eav(T) = 1 + 
5n* ( kT 

( V 
12 \EpoJ 

[4.26] 

Since EFO kT, the second term in the square brackets is much smaller than 
unity, and Eay(T) shows only a very weak temperature dependence. Furthermore, in 
our model of the metal, the electrons are free to move around within the metal, where 
their potential energy PE is zero, whereas outside the metal, it is EF + 4> (Figure 4.11). 
Therefore, their energy is purely kinetic. Thus, Equation 4.26 gives the average KE of 
the electrons in a metal 

Average 

energy per 

electron at 0 K 

Average 

energy per 

electron at 

T{ K) 

\ -meVg = £av % -Epo 
5 

where ve is the root mean square (rms) speed of the electrons, which is simply called 
the effective speed. The effective speed ve depends on the Fermi energy EFO and is 
relatively insensitive to temperature. Compare this with the behavior of molecules in 
an ideal gas. In that case, the average KE = \kT, so \mv2 = \kT. Clearly, the aver¬ 
age speed of molecules in a gas increases with temperature. 

The relationship krnv2 ^ \efo is an important conclusion that comes from the 
application of quantum mechanical concepts, ideas that lead to g(E) and f{E) and so 
on. It cannot be proved without invoking quantum mechanics. The fact that the aver¬ 
age electronic speed is nearly constant is the only way to explain the observation that 
the resistivity of a metal is proportional to T (and not J3/2), as we saw in Chapter 2. 
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4.7.2 Conduction in Metals 

We know from our energy band discussions that in metals only those electrons in a 
small range A E around the Fermi energy E F contribute to electrical conduction as 
shown in Figure 4.12c. The concentration of these electrons is approximately 
g(EF) AE inasmuch as AE is very small. The electron a moves to a', as shown in 
Figure 4.12b and c, and then it is scattered to an empty state above b'. In steady 
conduction, all the electrons in the energy range A E that are moving to the right are 
not canceled by any moving to the left and hence contribute to the current. An elec¬ 
tron at the bottom of the A E range gains energy AE to move a1 in a time interval At 
that corresponds to the scattering time r. It gains a momentum Apx. Since Apx/At = 
external force = we have Apx = xe‘Lx. The electron a has an energy 
E = p2x/(2m*e) which we can differentiate to obtain AE when the momentum 
changes by Apx> 

Conductivity 

of Fermi- 

level 

electrons 

px (m*vp) 
AE = —Apx = -~ ~{re'Ex) = evpx^ 

m* m* 

The current Jx is due to all the electrons in the range A E which are moving toward 
the right in Figure 4.12c, 

Jx = enpVp = e\_g(^Ep) A£]u/r = &[Q(Ep^cvpxE^vp — e vFxQ(Ep)<Ex 

The conductivity is therefore 

a = e2v2Fxg(Ep) 

However, the numerical factor is wrong because Figure 4.12c considers only a hy¬ 
pothetical one-dimensional crystal. In a three-dimensional crystal, the conductivity is 
one-third of the conductivity value just determined: 

a = 
1 
:e2v2Fxg(EF) [4.27] 

This conductivity expression is in sharp contrast with the classical expression in 
which all the electrons contribute to conduction. According to Equation 4.27, what is 
important is the density of states at the Fermi energy g(EF). For example, Cu and Mg 
are metals with valencies I and II. Classically, Cu and Mg atoms each contribute one 
and two conduction electrons, respectively, into the crystal. Thus, we would expect Mg 
to have higher conductivity. However, the Fermi level in Mg is where the top tail of the 
35 band overlaps the bottom tail of the 3p band where the density of states is small. In 
Cu, on the other hand, EF is nearly in the middle of the 45 band where the density of 
states is high. Thus, Mg has a lower conductivity than Cu. 

The scattering time r in Equation 4.27 assumes that the scattered electrons at EF 
remain in the same energy band. In certain metals, there are two different energy 
bands that overlap at EF. For example, in Ni (see Figure 4.61), 3d and 45 bands over¬ 
lap at Ef. An electron can be scattered from the 45 to the 3d band, and vice versa. 
Electrons in the 3d band have very low drift mobilities and effectively do not 
contribute to conduction, so only g(EF) of the 45 band operates in Equation 4.27. 



4.7 Quantum Theory of Metals 319 

Since 4s to 3d band scattering is an additional scattering mechanism, by virtue of 
Matthiessen’s rule, the scattering time r for the 4s band electrons is shortened. Thus, 
Ni has poorer conductivity than Cu. 

In deriving Equation 4.27 we did not assume a particular density of states 
model. If we now apply the free electron model for g(EF) as in Equation 4.10, and 
also relate EF to the total number of conduction electrons per unit volume n as in 
Equation 4.22, we would find that the conductivity is the same as the Drude model, 
that is, 

me 

MEAN SPEED OF CONDUCTION ELECTRONS IN A METAL Calculate the Fermi energy EFO at 
0 K for copper and estimate the average speed of the conduction electrons in Cu. The density of 
Cu is 8.96 g cm-3 and the relative atomic mass (atomic weight) is 63.5. 

SOLUTION 

Assuming each Cu atom donates one tree electron, we can find the concentration of electrons, 
from the density d, atomic mass A/.lt, and Avogadro’s number NA, as follows: 

dNA 8.96 x 6.02 x 1023 

n ~ A^r “ 63~5 

= 8.5 x 1022 cm-3 or 8.5 x 1028 m“3 

The Fermi energy at 0 K is given by Equation 4.22: 

Substituting n = 8.5 x 1028 m"3 aid the values for h and me, we obtain 

EFo = 1.1 x 10'18 J or 7 eV 

To estimate the mean speed of the electrons, we calculate the rms speed ve from 
jmev2 = \Ef0. The mean speed will be close to the rms speed. Thus, ve = (6EFO/5me)l/2. 
Substituting for EFO and me, we find = 1.2 x 106 ms'1. 

CONDUCTION IN SILVER Consider silver whose density of states g(E) was calculated in 
Example 4.8, assuming a free electron model for g(E) as in Equation 4.10. For silver, 
Ef = 5.5 eV, so from Equation 4.10, the density of states at £> is g(EF) = 1.60 x 1028 m'3 
eV'1. The velocity of Fermi electrons, vF = (2EF/me)'/2 = 1.39 x 106 m s'1. The conduc¬ 
tivity or of Ag at room temperature is 62.5 x 106 ft-1 m_1. Substituting for a, g(EF), and vF 
in Equation 4.27, 

a = 62.5 x 106 = -e2v2Fxg(EF) = -(1.6 x 10'19)2(1.39 x 106)2t 

we find r == 3.79 x 10“14 s. The mean free path l = vF x = 53 nm. The drift mobility of EF 
electrons is p — ex/me = 67 cm2 V'1 s'1. 

Drude model 

and free 

electrons 

EXAMPLE 4.9 

EXAMPLE 4.10 
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From Example 4.8, since Ag has a valency of I, the concentration of conduction electrons 
is n = nAg = 5.85 x 1028 m~3. Substituting for n and a in Equation 4.28 gives 

a = 62.5 x 106 
e2nr 

me 
(1.6 x 10~19)2(5.85 x 1028)r 

. (9.1 x 10~31) 

we find r = 3.79 x 10 14 s as expected because we have used the free electron model. 

48 FERMI ENERGY SIGNIFICANCE 

4.8.1 Metal-Metal Contacts: Contact Potential 

Suppose that two metals, platinum (Pt) with a work function 5.36 eV and molybdenum 
(Mo) with a work function 4.20 eV, are brought together, as shown in Figure 4.28a. We 
know that in metals, all the energy levels up to the Fermi level are full. Since the Fermi 
level is higher in Mo (due to a smaller <£>), the electrons in Mo are more energetic. 
They therefore immediately go over to the Pt surface (by tunneling), where there are 
empty states at lower energies, which they can occupy. This electron transfer from Mo 
to the Pt surface reduces the total energy of the electrons in the Pt-Mo system, but at 
the same time, the Pt surface becomes negatively charged with respect to the Mo sur¬ 
face. Consequently, a contact voltage (or a potential difference) develops at the junc¬ 
tion between Pt and Mo, with the Mo side being positive. 

The electron transfer from Mo to Pt continues until the contact potential is large 
enough to prevent further electron transfer: the system reaches equilibrium. It should 
be apparent that the transfer of energetic electrons from Mo to Pt continues until the 
two Fermi levels are lined up, that is, until the Fermi level is uniform and the same in 
both metals, so that no part of the system has more (or less) energetic electrons, as 

Pt Mo 
vacuum vacuum 

> 
<D 

o 
<N 

II 

o 
s 
's-' 

(a) Electrons are more energetic in Mo, so 
they tunnel to the surface of Pt. 

$(Pt) -<$(Mo) = 1.16 eV = eAV 

% 
S 

(b) Equilibrium is reached when the Fermi 
levels are lined up. 

Figure 4.28 When two metals are brought together, there is a contact potential A V. 

* 
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1.1V 

Figure 4.29 There is no current when a closed circuit is formed 
by two different metals, even though there is a contact potential at 
each contact. 

The contact potentials oppose each other. 

illustrated in Figure 4.28b. Otherwise, the energetic electrons in one part of the system 
will flow toward a region with lower energy states. Under these conditions, the Pt-Mo 
system is in equilibrium. The contact voltage A V is determined by the difference in 
the work functions, that is, 

e AV = <t>(Pt) - 4>(Mo) = 5.36 eV - 4.20 eV = 1.16 eV 

We should note that away from the junction on the Mo side, we must still provide 
an energy of O — 4.20 eV to free an electron, whereas away from the junction on the 
Pt side, we must provide O = 5.36 eV to free an electron. This means that the vacuum 
energy level going from Mo to Pt has a step A<1> at the junction. Since we must do 
work equivalent to A4> to get a free electron (e.g., on the metal surface) from the Mo 
surface to the Pt surface, this represents a voltage of A4>/e or 1.16 V. 

From the second law of thermodynamics,7 this contact voltage cannot do work; 
that is, it cannot drive current in an external circuit. To see this, we can close the 
Pt metal-Mo metal circuit to form a ring, as depicted in Figure 4.29. As soon as we 
close the circuit, we create another junction with a contact voltage that is equal and op¬ 
posite to that of the first junction. Consequently, going around the circuit, the net volt¬ 
age is zero and the current is therefore zero. 

There is a deep significance to the Fermi energy EF, which should at least be men¬ 
tioned. For a given metal the Fermi energy represents the free energy per electron 
called the electrochemical potential fx. In other words, the Fermi energy is a measure 
of the potential of an electron to do electrical work (ex V) or nonmechanical work, 
through chemical or physical processes.8 In general, when two metals are brought into 
contact, the Fermi level (with respect to a vacuum) in each will be different. This 
difference means a difference in the chemical potential Afx, which in turn means that 
the system will do external work, which is obviously not possible. Instead, electrons 
are immediately transferred from one metal to the other, until the free energy per elec¬ 
tron fx for the whole system is minimized and is uniform across the two metals, so that 

7 By the way, the second law of thermodynamics simply says that you cannot extract heat from a system in thermal 
equilibrium and do work [i.e.t charge x voltage). 

8 A change in any type of PE can; in principle, be used to do work, that is, A(PE) = work done. Chemical PE is the 
potential to do nonmechanical work (e.g., electrical work) by virtue of physical or chemical processes. The chemical 
PE per electron is Ef and AEp= electrical work per electron. 
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A/x = 0. We can guess that if the Fermi level in one metal could be maintained at a 
higher level than the other, by using an external energy source (e.g., light or heat), for 
example, then the difference could be used to do electrical work. 

Thermo¬ 

electric 

power or 

Seebeck 

coefficient 

4.8.2 The Seebeck Effect and the Thermocouple 

Consider a conductor such as an aluminum rod that is heated at one end and cooled at 
the other end as depicted in Figure 4.30. The electrons in the hot region are more en¬ 
ergetic and therefore have greater velocities than those in the cold region.9 

Consequently there is a net diffusion of electrons from the hot end toward the cold 
end which leaves behind exposed positive metal ions in the hot region and accumu¬ 
lates electrons in the cold region. This situation prevails until the electric field devel¬ 
oped between the positive ions in the hot region and the excess electrons in the cold re¬ 
gion prevents further electron motion from the hot to the cold end. A voltage therefore 
develops between the hot and cold ends, with the hot end at positive potential. The 
potential difference A V across a piece of metal due to a temperature difference AT is 
called the Seebeck effect.10 To gauge the magnitude of this effect we introduce a 
special coefficient which is defined as the potential difference developed per unit tem¬ 
perature difference, or 

S = —- [4.291 
dT 

By convention, the sign of S represents the potential of the cold side with respect 
to the hot side. If electrons diffuse from the hot end to the cold end as in Figure 4.30, 
then the cold side is negative with respect to the hot side and the Seebeck coefficient is 
negative (as for aluminum). 

In some metals, such as copper, this intuitive explanation fails to explain why elec¬ 
trons actually diffuse from the cold to the hot region, giving rise to positive Seebeck 
coefficients; the polarity of the voltage in Figure 4.30 is actually reversed for copper. 
The reason is that the net diffusion process depends on how the mean free path l and 
the mean free time (due to scattering from lattice vibrations) change with the electron 
energy, which can be quite complicated. Typical Seebeck coefficients for various se¬ 
lected metals are listed in Table 4.3. 

Consider two neighboring regions H (hot) and C (cold) with widths corresponding 
to the mean free paths l and i' in H and C as depicted in Figure 4.3 la. Half the electrons 
in H would be moving in the +x direction and the other half in the — x direction. Half of 
the electrons in H therefore cross into C, and half in C cross into H. Suppose that, very 
roughly, the electron concentration n in H and C is about the same. The number of elec¬ 
trons crossing from H to C is , and the number crossing from C to H is \nl'. Then, 

Net diffusion from H to C a \n(t — l') [4.30] 

9 The conduction electrons around the Fermi energy have a mean speed that has only a small temperature 
dependence. This small change in the mean speed with temperature is, nonetheless, intuitively significant in 
appreciating the thermoelectric effect. The actual effect, however, depends on the mean free path as discussed later. 

10 Thomas Seebeck observed the thermoelectric effect in 1821 using two different metals as in the thermocouple, 
which is the only way to observe the phenomenon. It was William Thomson (Lord Kelvin) who explained the 
observed effect. 
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E E 
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Figure 4.30 The Seebeck effect. 

A temperature gradient along a conductor gives rise to a potential difference. 

Suppose that the scattering of electrons is such that t increases strongly with the 
electron energy. Then electrons in H, which are more energetic, have a longer mean 
free path, that is, t > i' as shown in Figure 4.31a. This means that the net migration is 
from H to C and S is negative, as in aluminum. In those metals such as copper in which 
i decreases strongly with the energy, electrons in the cold region have a longer mean 
free path, l' > i as shown in Figure 4.31b. The net electron migration is then from C 
to H and S is positive. Even this qualitative explanation is not quite correct because n is 
not the same in H and C (diffusion changes n) and, further, we neglected the change in 
the mean scattering time with the electron energy. 

The coefficient S is widely referred to as the thermoelectric power even though 
this term is misleading, as it refers to a voltage difference rather than power. A more ap¬ 
propriate recent term is the Seebeck coefficient. S is a material property that depends 
on temperature, S = S(T), and is tabulated for many materials as a function of 

Table 4.3 Seebeck coefficients of selected metals (from various sources) 

Metal 

S at 0 °C 

(mVK-«) 

S at 27 °C 

(MVK-1) EHeV) X 

A1 -1.6 -1.8 11.6 2.78 

Au +1.79 + 1.94 5.5 -1.48 

Cu + 1.70 +1.84 7.0 -1.79 

K -12.5 2.0 3.8 

Li +14 4.7 -9.7 

Mg -1.3 7.1 1.38 

Na -5 3.1 2.2 

Pd -9.00 -9.99 

Pt -4.45 -5.28 
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(a) 5 negative (b) S positive 

Figure 4.31 Consider two neighboring regions H (hot) and C (cold) with widths corresponding to 
the mean free paths l and t' in H and C. 

Half the electrons in H would be moving in the +x direction and the other half in the —x direction. 
Half of the electrons in H therefore cross into C, and half in C cross into H. 

Mott and 

Jones 

thermo¬ 

electric 

power 

temperature. Given the Seebeck coefficient 5(7") for a material, Equation 4.29 yields 
the voltage difference between two points where temperatures are T0 and T as follows: 

AV // 
1 o 

SdT [4.31] 

A proper explanation of the Seebeck effect has to consider how electrons around 
the Fermi energy Ep, which contribute to electrical conduction, are scattered by lattice 
vibrations, impurities, and crystal defects. This scattering process controls the mean 
free path and hence the Seebeck coefficient (Figure 4.31). The scattered electrons need 
empty states, which in turn requires that we consider how the density of states changes 
with the energy as well. Moreover, in certain metals such as Ni, there are overlapping 
partially filled bands and the Fermi electron can be scattered from one electronic band 
to another, for example from the 4s band to the 3d band, which must also be consid¬ 
ered (see Question 4.25). The Seebeck coefficient for many metals is given by the 
Mott and Jones equation, 

5 
7t2k2T 

3eEpo 
[4.32] 

where x is a numerical constant that takes into account how various charge transport 
parameters (such as i) depend on the electron energy. A few examples for x are given 
in Table 4.3. The reason for the kT/EFo factor in Equation 4.32 is that only those 
electrons about a kT around the Fermi level EF0 are involved in the transport and scat¬ 
tering processes. Equation 4.32 does not apply directly to transition metals (Ni, Pd, Pt) 
that have overlapping bands. These metals have a negative Seebeck coefficient that is 
proportional to temperature as in Equation 4.32, but the exact expression depends on 
the band structure. 
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Cold 

A1 

Cold 

Figure 4.32 
(a) If Al wires are used to measure the Seebeck voltage across the Al rod, then the net emf 
is zero. 

(b) The Al and Ni have different Seebeck coefficients. There is therefore a net emf in the 
Al—Ni circuit between the hot and cold ends that can be measured. 

Suppose that we try to measure the voltage difference A V across the aluminum 
rod by using aluminum connecting wires to a voltmeter as indicated in Figure 4.32a. 
The same temperature difference now also exists across the aluminum connecting 
wires; therefore an identical voltage also develops across the connecting wires, oppos¬ 
ing that across the aluminum rod. Consequently no net voltage will be registered by the 
voltmeter. It is, however, possible to read a net voltage difference, if the connecting 
wires are of different material, that is, have a different Seebeck coefficient from that of 
aluminum. Then the thermoelectric voltage across this material is different than that 
across the aluminum rod, as in Figure 4.32b. 

The Seebeck effect is fruitfully utilized in the thermocouple (TC), shown in Fig¬ 
ure 4.32b, which uses two different metals with one junction maintained at a reference 
temperature T0 and the other used to sense the temperature T. The voltage across each 
metal element depends on its Seebeck coefficient. The potential difference between the 
two wires will depend on SA — SB. By virtue of Equation 4.31, the electromotive force 
(emf) between the two wires, VAB = A — A VB, is then given by 

( SAB dT [4.33] 

T0 

where SAB = SA — SB is defined as the thermoelectric power for the thermocouple pair 
A-B. For the chromel-alumel (K-type) TC, for example, SAB % 40 juV K-1 at 300 K. 

The output voltage from a TC pair obviously depends on the two metals used. In¬ 
stead of tabulating the emf from all possible pairs of materials in the world, which 
would be a challenging task, engineers have tabulated the emfs available when a given 
material is used with a reference metal which is chosen to be platinum. The reference 
junction is kept at 0 °C (273.16 K) which corresponds to a mixture of ice and water. 
Some typical materials and their emfs are listed in Table 4.4. 

Using the expression for the Seebeck coefficient, Equation 4.32, in Equation 4.33, 
and then integrating, leads to the familiar thermocouple equation, 

VAB = a AT + b(AT)2 [4.34] 

VAB -I (SA - SB) dT 

Thermo¬ 

couple emf 

between 

metals A 

and B 

Thermo¬ 

couple 

equation 
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Table 4.4 Thermoelectric emf for metals at 100 and 200 °C with 
respect to Pt and the reference junction at 0 °C 

Material 

emf (mV) 

At 100 °C At 200 °C 

Copper, Cu 0.76 1.83 
Aluminum, A1 0.42 1.06 
Nickel, Ni -1.48 -3.10 
Palladium, Pd -0.57 -1.23 
Platinum, Pt 0 0 
Silver, Ag 0.74 1.77 
Alumel -1.29 -2.17 
Chromel 2.81 5.96 
Constantan -3.51 -7.45 
Iron, Fe 1.89 3.54 
90% Pt-10% Rh 0.643 1.44 
(platinum-rhodium) 

where a and b are the thermocouple coefficients and AT = T — T0 is the temperature 
with respect to the reference temperature T0 (273.16 K). The inference from Equa¬ 
tion 4.34 is that the emf output from the thermocouple wires does not depend linearly 
on the temperature difference AT. Figure 4.33 shows the emf output versus tempera¬ 
ture for various thermocouples. It should be immediately obvious that the voltages 
are small, typically a few tens of a microvolt per degree temperature difference. At 

Figure 4.33 Output emf versus 
temperature (°C) for various 
thermocouples between-0 to 1000 °C. 

emf (mV) 
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0 °C, by definition, the TC emf is zero. The K-type thermocouple, the chromel-alumel 
pair, is a widely employed general-purpose thermocouple sensor up to about 1200 °C. 

THE THERMOCOUPLE EMF Consider a thermocouple pair from A1 and Cu which have Fermi 
energies and x as in Table 4.3. Estimate the emf available from this thermocouple if one junc¬ 
tion is held at 0 °C and the other at 100 °C. 

EXAMPLE 4.11 

SOLUTION 

We essentially have the arrangement shown in Figure 4.32b but with Cu replacing Ni and Cu 
having the cold end positive (S is positive). For each metal there will be a voltage across it, 
given by integrating the Seebeck coefficient from Ta (at the low temperature end) to T. From the 
Mott and Jones equation. 

av = f SdT= f - 
J T J T 

xn2k2T xn2k2 , 2 2, 
dT = =—(T2 - T2) 

3 eE FO 6 eE FO 

The available emf (VAB) is the difference in A V for the two metals (A and B), so 

Vab = AVa - A VB 
*2k2[ xA _ jcb_1 / 2 _ r2\ 

0e .Efao Efbo. ° 

where in this example T = 373 K and T0 = 273 K. 
For A1 (A), EFao = 11.6 eV, xA = 2.78, and for copper (B), EFbo = 7.0 eV, xB = —1.79. 

Thus, 

Vab = -189 pV - (+201 pV) = -390 pV 

Thermocouple emf calculations that closely represent experimental observations require 
thermocouple voltages for various metals listed against some reference metal. The reference is 
usually Pt with the reference junction at 0 °C. From Table 4.4 we can read Al-Pt and Cu-Pt 

emfs as Vai-p» = 0.42 mV and Vcu-pt = 0.76 mV at 100 °C with the experimental error being 
around ±0.01 mV, so that for the Al-Cu pair, 

Vai-cu = VAl-Pt - Vcu-Pt = °-42 raV - °-76 mV = -°-34 mV 

There is a reasonable agreement with the calculation using the Mott and Jones equation. 

THE THERMOCOUPLE EQUATION We know that we can only measure differences between 
thermoelectric powers of materials. When two different metals A and B are connected to make 
a thermocouple, as in Figure 4.32b, then the net emf is the voltage difference between the two 
elements. From Example 4.11, 

EXAMPLE 4.12 

AVAb = AVa - AVB = SB)dT dT 

= ^2[ 1/r2 _ T2\ 

6e I Efao EFBo V o) 

= C(T2 - T2) 

where C is a constant that is independent of T but dependent on the material properties (x, EFO 
for the metals). 

x 
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We can now expand VAb about Ta by using Taylor’s expansion 

F(T) « F(T0) + AT (dF/dT)0 + \(AT)2(d2 F/dT2)0 

where the function F = Vab and AT = T — T0 and the derivatives are evaluated at Ta. The 
result is the thermocouple equation: 

Vab(T) = a(AT) + b(AT)2 

where the coefficients a and b are 2C T0 and C, respectively. 
It is clear that the magnitude of the emf produced depends on C or SA — SB, which we can 

label as SAB. The greater the thermoelectric power difference Sab for the TC, the larger the emf 
produced. For the copper constantan TC, Sab is about 43 fiW K-1. 

4.9 THERMIONIC EMISSION AND VACUUM 
TUBE DEVICES 

4.9.1 Thermionic Emission: Richardson-Dushman Equation 

Even though most of us view vacuum tubes as electrical antiques, their basic principle of 
operation (electrons emitted from a heated cathode) still finds application in cathode ray 
and X-ray tubes and various RF microwave vacuum tubes, such as triodes, tetrodes, 
klystrons, magnetrons, and traveling wave tubes and amplifiers. Therefore, it is useful to 
examine how electrons are emitted when a metal is heated. 

When a metal is heated, the electrons become more energetic as the Fermi-Dirac 
function extends to higher temperatures. Some of the electrons have sufficiently large 
energies to leave the metal and become free. This situation is self-limiting because as 
the electrons accumulate outside the metal, they prevent more electrons from leaving 
the metal. (Put differently, emitted electrons leave a net positive charge behind, which 
pulls the electrons in.) Consequently, we need to replenish the “lost” electrons and col¬ 
lect the emitted ones, which is done most conveniently using the vacuum tube arrange¬ 
ment in a closed circuit, as shown in Figure 4.34a. The cathode, heated by a filament, 
emits electrons. A battery connected between the cathode and the anode replenishes 

(a) Thermionic electron 

emission in a vacuum tube. 

(b) Current-voltage characteristics of 

a vacuum diode. 

Figure 4.34 
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the cathode electrons and provides a positive bias to the anode to collect the thermally 
emitted electrons from the cathode. The vacuum inside the tube ensures that the elec¬ 
trons do not collide with the air molecules and become dispersed, with some even 
being returned to the cathode by collisions. Therefore, the vacuum is essential. The 
current due to the flow of emitted electrons from the cathode to the anode depends on 
the anode voltage as indicated in Figure 4.34b. The current increases with the anode 
voltage until, at sufficiently high voltages, all the emitted electrons are collected by the 
anode and the current saturates. The saturation current of the vacuum diode depends 
on the rate of thermionic emission of electrons which we will derive below. The vac¬ 
uum tube in Figure 4.34a acts as a rectifier because there is no current flow when the 
anode voltage becomes negative; the anode then repels the electrons. 

We know that only those electrons with energies greater than EF + <t> (Fermi 
energy + work function) which are moving toward the surface can leave the metal. 
Their number depends on the temperature, by virtue of the Fermi-Dirac statistics. Fig¬ 
ure 4.35 shows how the concentration of conduction electrons with energies above 
£> + <!> increases with temperature. We know that conduction electrons behave as if 
they are free within the metal. We can therefore take the PE to be zero within the metal, 
but EF + 4> outside the metal. The energy E of the electron within the metal is then 
purely kinetic, or 

E = i mev\ + \mev2y + \mev2z [4.35] 

Suppose that the surface of the metal is perpendicular to the direction of emission, 
say along x. For an electron to be emitted from the surface, its KE = \mv\ along x 
must be greater than the potential energy barrier EF + O, that is, 

—m vY > xl jet 
2 

:> Ef + $ [4.36] 

E E 

per unit energy 

Figure 4*35 Fermi-Dirac function 
f(E) and the energy density of 
electrons n[E] (electrons per unit 
energy and per unit volume) at three 
different temperatures. 

The electron concentration extends 
more and more to higher energies as 
the temperature increases. Electrons 
with energies in excess of Fp + O 
can leave the metal (thermionic 
emission). 
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Left to right: Owen Williams Richardson, Robert 
Andrews Millikan, and Arthur Holly Compton at an 
international conference on nuclear physics, Rome, 
1931. Richardson won the physics Nobel prize in 1928 
for thermionic emission. 

SOURCE: Amaldi Archives, Dipartimento di Fisica, 
Universita La Sapienza, Rome; courtesy of AIR Emilio 
Segre Visual Archives. 
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Let dn(vx) be the number of electrons moving along x with velocities in the range 
vx to (vx + dvx), with vx satisfying emission in Equation 4.36. These electrons will 
be emitted when they reach the surface. Their number dn(vx) can be determined from 
the density of states and the Fermi-Dirac statistics, since energy and velocity are 
related through Equation 4.35. Close to £> + 4>, the Fermi-Dirac function will ap¬ 
proximate the Boltzmann distribution, f(E) = exp[— (E — EF)/kT]. The number 
dn(vx) is therefore at least proportional to this exponential energy factor. 

The emission of dn(vx) electrons will give a thermionic current density 
dJx = evx dn(vx). This must be integrated (summed) for all velocities satisfying 
Equation 4.36 to obtain the total current density Jx, or simply J. Since dn(vx) includes 
an exponential energy function, the integration also leads to an exponential. The final 
result is 

J = BaT2ex p [4.37] 

where B0 = 4nemek2/h3. Equation 4.37 is called the Richardson-Dushman equation, 
and Ba is the Richardson-Dushman constant, whose value is 1.20 x 106 A m~2 K-2. We 
see from Equation 4.37 that the emitted current from a heated cathode varies exponen¬ 
tially with temperature and is sensitive to the work function 4> of the cathode material. 
Both factors are apparent in Equation 4.37. 

The wave nature of electrons means that when an electron approaches the surface, 
there is a probability that it may be reflected back into the metal, instead of being emitted 
over the potential barrier. As the potential energy barrier becomes very large, 4> oo, 
the electrons are totally reflected and there is no emission. Taking into account that waves 
can be reflected, the thermionic emission equation is appropriately modified to 
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where Be = (1 — R)B0 is the emission constant and R is the reflection coefficient. 
The value of R will depend on the material and the surface conditions. For most met¬ 
als, Be is about half of Ba, whereas for some oxide coatings on Ni cathodes used in 
thermionic tubes, Be can be as low as 1 x 102 A m-2 K-2. 

Equation 4.37 was derived by neglecting the effect of the applied field on the emis¬ 
sion process. Since the anode is positively biased with respect to the cathode, the field 
will not only collect the emitted electrons (by drifting them to the anode), but will also 
enhance the process of thermal emission by lowering the potential energy barrier 4>. 

There are many thermionic emission-based vacuum tubes that find applications in 
which it is not possible or practical to use semiconductor devices, especially at high- 
power and high-frequency operation at the same time, such as in radio and TV broad¬ 
casting, radars, microwave communications; for example, a tetrode vacuum tube in 
radio broadcasting equipment has to handle hundreds of kilowatts of power. X-ray tubes 
operate on the thermionic emission principle in which electrons are thermally emitted, 
and then accelerated and impacted on a metal target to generate X-ray photons. 

VACUUM TUBES It is clear from the Richardson-Dushman equation that to obtain an efficient 
thermionic cathode, we need high temperatures and low work functions. Metals such as tungsten 
(W) and tantalum (Ta) have high melting temperatures but high work functions. For example, for 
W, the melting temperature Tm is 3680 °C and its work function is about 4.5 eV. Some metals 
have low work functions, but also low melting temperatures, a typical example being Cs with 
$ = 1.8 eV and Tm = 28.5 °C. If we use a thin film coating of a low O material, such as ThO or 
BaO, on a high-melting-temperature base metal such as W, we can maintain the high melting 
properties and obtain a lower O. For example, Th on W has a <1> = 2.6 eV and Tm = 1845 °C. 
Most vacuum tubes use indirectly heated cathodes that consist of the oxides of B, Sr, and Ca on 
a base metal of Ni. The operating temperatures for these cathodes are typically 800 °C. 

A certain transmitter-type vacuum tube has a cylindrical Th-coated W (thoriated tung¬ 
sten) cathode, which is 4 cm long and 2 mm in diameter. Estimate the saturation current if the 
tube is operated at a temperature of 1600 °C, given that the emission constant is Be = 3.0 x 104 
Am-2 K-2 for Th on W. 

EXAMPLE 4.13 

SOLUTION 

We apply the Richardson-Dushman equation with <t> = 2.6 eV, T = (1600 4- 273) K = 1873 K, 
and Be = 3.0 x 104 A m-2 K-2, to find the maximum current density that can be obtained from 
the cathode at 1873 K, as follows: 

J = (3.0 x 104 A m"2 K-2)(1873 K)2 exp 
(2.6 x 1.6 x 10~19) ' 

(1.38 x IQ"23 x 1873). 

= 1.08 x 104 Am-2 

The emission surface area is 

A = 7r (diameter) (length) = n(2 x 10-3)(4 x 10-2) = 2.5 x 10~4 m2 

so the saturation current, which is the maximum current obtainable (i.e., the thermionic cur¬ 
rent), is 

/ = JA = (1.08 x 104 A m-2)(2.5 x 10“4 m2) = 2.7 A 
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Figure 4.36 
(a) PE of the electron near the surface of a conductor. 

(b) Electron PE due to an applied field, that is, 
between cathode and anode. 

(c) The overall PE is the sum. 

Image PE Applied PE 

A 
Net PE 

*■ x 

(c) 

4.9.2 Schottky Effect and Field Emission 

When a positive voltage is applied to the anode with respect to the cathode, the elec¬ 
tric field at the cathode helps the thermionic emission process by lowering the PE bar¬ 
rier d>. This is called the Schottky effect. Consider the PE of the electron just outside 
the surface of the metal. The electron is pulled in by the effective positive charge left 
in the metal. To represent this attractive PE we use the theorem of image charges in 
electrostatics,11 which says that an electron at a distance * from the surface of a con¬ 
ductor possesses a potential energy that is 

e2 
PE'image (-*0 = TT [4.39] 

l07T8oX 

where s0 is the absolute permittivity. 
This equation is valid for x much greater than the atomic separation a; otherwise, 

we must consider the interaction of the electron with the individual ions. Further, 
Equation 4.39 has a reference level of zero PE at infinity (x = oo), but we defined 
PE = 0 to be inside the metal. We must therefore modify Equation 4.39 to conform to 
our definition of zero PE as a reference. Figure 4.36a shows how this “image PE” 
varies with x in this system. In the region * < xa, we artificially bring PEimage(x) to 
zero at x = 0, so our definition PE = 0 within the metal is maintained. Far away from 
the surface, the PE is expected to be (£> + d>) (and not zero, as in Equation 4.39), so 
we modify Equation 4.39 to read 

e2 
F-EjmageC*) = (EF 4>) — [4.40] 

l07TS0X 

The present model, which takes PEimdigtix) from 0 to (£> + <h) along Equation 4.40, 
is in agreement with the thermionic emission analysis, since the electron must still 
overcome a PE barrier of EF + to escape. 

11 An electron at a distance x from the surface of a conductor experiences a force as if there were a positive charge 
of +e at a distance 2x from it. The force is e2/[4,T£0(2x)2] or e2/[l 6jze0x1\. The result is called the image charge 
theorem. Integrating the force gives the potential energy in Equation 4.39. 
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From the definition of potential, which is potential energy per unit charge, when a 
voltage difference is applied between the anode and cathode, there is a PE gradient just 
outside the surface of the metal, given by e V(x), or 

F£appiiedU) = —ex*E [4.41] 

where £ is the applied field and is assumed, for all practical purposes, to be uniform. The 
variation of 7£apPiied (*) with x is depicted in Figure 4.36b. The total PE(x) of the electron 
outside the metal is the sum of Equations 4.40 and 4.41, as sketched in Figure 4.36c, 

PE(x) (Ef + <D) - exE 
I6n s0x 

[4.42] 

Note that the PE(x) outside the metal no longer goes up to (£> + 4>), and the PE 
barrier against thermal emission is effectively reduced to (EF + 4>eff), where 4>eff is a 
new effective work function that takes into account the effect of the applied field. The 
new barrier (EF + 4>eff) can be found by locating the maximum of PE(x), that is, by 
differentiating Equation 4.42 and setting it to zero. The effective work function in the 
presence of an applied field is therefore 

^eff <j> [4.43] 

This lowering of the work function by the applied field, as predicted by Equa¬ 
tion 4.43, is the Schottky effect. The current density is given by the Richardson- 
Dushman equation, but with 4>eff instead of <!>, 

J = BeT2e\p 
(fr-foE172)] 

kT J 
[4.44] 

where fis = [e3/4jre0]1/2 is the Schottky coefficient, whose value is 3.79 x 10 5 

(eV/VVnT1). 
When the field becomes very large, for example, £ > 107 V cm-1, the PE(x) out¬ 

side the metal surface may bend sufficiently steeply to give rise to a narrow PE barrier. 
In this case, there is a distinct probability that an electron at an energy EF will tunnel 
through the barrier and escape into vacuum, as depicted in Figure 4.37. The likelihood 
of tunneling depends on the effective height of the PE barrier above £>, as well 
as the width xF of the barrier at energy level EF. Since tunneling is temperature inde¬ 
pendent, the emission process is termed field emission. The tunneling probability P 
was calculated in Chapter 3, and depends on 4>eff and xF through the equation12 

P exp 
—2(2mg4>eff)1/2xF 

ft 

Field-assisted 

thermionic 

emission 

We can easily find xF by noting that when x = xF, PE(xF) is level with EF, as 
shown in Figure 4.37. From Equation 4.42, when the field is very strong, then around 

12 In Chapter 3 we showed that the transmission probability T = 70 exp(—2aa) where a2 = 2m (V0 - E)/h2 and a is 
the barrier width. The pre-exponential constant T0 can be taken to be ^1. Clearly VQ - E= 4>eff since electrons with 
E = Ef are tunneling and a = Xf. 
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Figure 4.37 
(a) Field emission is the tunneling of an electron at an energy E? through the narrow PE barrier induced 
by a large applied field. 

(b) For simplicity, we take the barrier to be rectangular. 

(c) A sharp point cathode has the maximum field at the tip where the field emission of electrons occurs. 
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x & xF the second term is negligible compared to the third, so putting x = xF and 
PE(xF) = EF in Equation 4.42 yields 4> = e'Exp. Substituting xF = 4>/e2: in Equa¬ 
tion 4.45, we can obtain the tunneling probability P 

P exp 
2(2me4>eff)1/24> 

eft*E 
[4.451 

Equation 4.45 represents the probability P that an electron in the metal at £> will tun¬ 
nel out from the metal, as in Figure 4.37a and b, and become field-emitted. In a more 
rigorous analysis we have to consider that electrons not just at EF but at energies 
below EF can also tunnel out (though with lower probability) and we have to abandon 
the rough rectangular PE(x) approximation in Figure 4.37b. 

To calculate the current density J we have to consider how many electrons are 
moving toward the surface per second and per unit area, the electron flux, and then 
multiply this flow by the probability that they will tunnel out. The final result of the 
calculations is the Fowler-Nordheim equation, which still has the exponential field 
dependence in Equation 4.45, 

Jfield- emission CE2 exp (-D 
in which C and “Ec are temperature-independent constants 

C = 
87t h$> 

and <LC = 
8;r(2me<I>3)1/2 

3 eh 

[4.46a] 

[4.46b] 
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Figure 4.38 
(a) Spindt-type cathode and the basic structure of one of the pixels in the FED. 

(b) Emission (anode) current versus gate voltage. 

(c) Fowler-Nordheim plot that confirms field emission. 

that depend on the work function <t> of the metal. Equation 4.46a can also be used for 
field emission of electrons from a metal into an insulating material by using the elec¬ 
tron PE barrier from metal’s £> into the insulator’s conduction band (where the 
electron is free) instead of <f». 

Notice that the field £ in Equation 4.46a has taken over the role of temperature in 
thermionic emission in Equation 4.38. Since field-assisted emission depends exponen¬ 
tially on the field via Equation 4.46a, it can be enhanced by shaping the cathode into a 
cone with a sharp point where the field is maximum and the electron emission occurs 
from the tip as depicted in Figure 4.37c. The field £ in Equation 4.46a is the effective 
field at the tip of the cathode that emits the electrons. 

A popular field-emission tip design is based on the Spindt tip cathode, named 
after its originator. As shown in Figure 4.38a, the emission cathode is an iceberg-type 
sharp cone and there is a positively biased gate above it with a hole to extract the emit¬ 
ted electrons. A positively biased anode draws and accelerates the electrons passing 
through the gate toward it, which impinge on a phosphor screen to generate light by 
cathodoluminescence, a process in which light is emitted from a material when it is 
bombarded with electrons. Arrays of such electron field-emitters are used in field 
emission displays (FEDs) to generate bright images with vivid colors. Color is ob¬ 
tained by using red, green, and blue phosphors. The field at the tip is controlled by the 
potential difference between the gate and the cathode, the gate voltage Vg, which 
therefore controls field emission. Since £ oc Vg, Equation 4.46a can be written to ob¬ 
tain the emission current or the anode current I a as 

lA = aVl e*p(~) l4-47! 

where a and b are constants that depend on the particular field-emitting structure and 
cathode material. Figure 4.38b shows the dependence of I a on Vg- There is a very 
sharp increase with the voltage once the threshold voltages (around ~45 V in Figure 
4.38b) are reached to start the electron emission. Once the emission is fully operating, 

Fowler- 

Nordheim 

anode current 

in a field 

emission 

device 
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Figure 4.39 
(a) A carbon nanotube (CNT) is a whisker-like, very thin and long carbon molecule with rounded ends, almost the 

perfect shape to be an electron field-emitter. 

(b) Multiple CNTs as electron emitters. 

(c) A single CNT as an emitter. 
I SOURCE: Courtesy of Professor W. I. Milne, University of Cambridge; G. Pirio et ai, Nanotechnology, 13, 1,2002. 

I a versus VG follows the Fowler-Nordheim emission. A plot of In (Ia/Vq) versus 
1/ VG is a straight line as shown in Figure 4.38c. 

Field emission has a number of distinct advantages. It is much more power effi¬ 
cient than thermionic emission which requires heating the cathode to high tempera¬ 
tures. In principle, field emission can be operated at high frequencies (fast switching 
times) by reducing various capacitances in the emission device or controlling the elec¬ 
tron flow with a grid. Field emission has a number of important realized and potential 
applications: field emission microscopy, microwave amplifiers (high power and wide 
bandwidth), parallel electron beam microscopy, nanolithography, portable X-ray gen¬ 
erators, and FEDs. For example, FEDs are thin flat displays (~2 mm thick), that have 
a low power consumption, quick start, and most significantly, a wide viewing angle of 
about 170°. Monochrome FEDs are already on the market, and color FEDs are ex¬ 
pected to be commercialized soon, probably before the fourth edition of this text. 

Typically molybdenum, tungsten, and hafnium have been used as the field-emission 
tip materials. Micromachining (microfabrication) has lead to the use of Si emission 
tips as well. Good electron emission characteristics have been also reported for 
diamond-like carbon films. Recently there has been a particular interest in using car¬ 
bon nanotubes as emitters. A carbon nanotube (CNT) is a very thin filament-like car¬ 
bon molecule whose diameter is in the nanometer range but whose length can be quite 
long, e.g., 10-100 microns, depending on how it is grown or prepared. A CNT is made 
by rolling a graphite sheet into a tube and then capping the ends with hemispherical 
buckminsterfullerene molecules (a half Buckyball) as shown in Figure 4.39a. De¬ 
pending on how the graphite sheet is rolled up, the CNT may be a metal or a semi¬ 
conductor13. The high aspect ratio (length/diameter) of the CNT makes it an efficient 

13 Carbon nanotubes can be single-walled or multiwalled (when the graphite sheets are wrapped more than once) 
and can have quite complicated structures. There is no doubt that they possess some remarkable properties, so it is 
likely that CNTs will eventually be used in various engineering applications. See, for example, M. Baxendale, 
J. Mater. Sci.: Mater Electron, 14, 657, 2003. 
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electron emitter. If one were to wonder what is the best shape for an efficient field 
emission tip, one might guess that it should be a sharp cone with some suitable apex 
angle. However, it turns out that the best emitter is actually a whisker-type thin fila¬ 
ment with a rounded tip, much like a CNT. It is as if the CNT has been designed by na¬ 
ture to be the best field emitter. Figure 4.39b and c shows SEM photographs of two 
CNT Spindt-type emitters. Figure 4.39b has several CNTs, and Figure 4.39c just one 
CNT for electron emission. (Which is more efficient?) 

FIELD EMISSION Field emission displays operate on the principle that electrons can be readily 
emitted from a microscopic sharp point source (cathode) that is biased negatively with respect 
to a neighboring electrode (gate or grid) as depicted in Figure 4.38a. Emitted electrons impinge 
on colored phosphors on a screen and cause light emission by cathodoluminescence. There are 
millions of these microscopic field emitters to constitute the image. A particular field emission 
cathode in a field-emission-type flat panel display gives a current of 61.0 pA when the voltage 
between the cathode and the grid is 50 V. The current is 279 pA when the voltage is 58.2 V. What 
is the current when the voltage is 56.2 V? 

EXAMPLE 4.14 

SOLUTION 

Equation 4.47 related IA to VG, 

IA=aVJ«p(“) 

where a and b are constants that can be determined from the two sets of data given. Thus, 

61.0 pA = a502 exp and 279 pA = a58.22 exp^— 

Dividing the first by the second gives 

61.0 502 

“'{-'’(sS - 5o)] 279 58.22 

which can be solved to obtain b = 431.75 V and hence a = 137.25 pA/V2. At V = 58.2 V, 

, ( 431.75 \ 
/ = (137.25)(56.2)2 expf-= 200 pA 

\ 56.2 / 

The experimental value for this device was 202 pA, which happens to be the device in Figure 
4.37b (close). 

4.10 PHONONS 

4.10.1 Harmonic Oscillator and Lattice Waves 

Quantum Harmonic Oscillator In the classical picture of a solid, the constituent 
atoms are held together by bonds which can be represented by springs. According to 
the kinetic molecular theory, the atoms in a solid are constantly vibrating about their 
equilibrium positions by stretching and compressing their springs. The oscillations are 
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Figure 4.40 
(a) Harmonic vibrations of an atom about its equilibrium position assuming its neighbors are fixed. 

(b) The PE curve V[x) versus displacement from equilibrium, x. 

(c) The energy is quantized. 
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assumed to be simple harmonic so that the average kinetic and potential energies are 
the same. Figure 4.40a shows a one-dimensional independent simple harmonic oscil¬ 
lator that represents an atom of mass M attached by springs to fixed neighbors. The 
potential energy V(jc) is a function of displacement x from equilibrium. For small 
displacements, V(x) is parabolic in x, as indicated in Figure 4.40b, that is, 

V(x) = x2 [4.48] 

where fi is a spring constant. The instantaneous energy, in principle, can be of any 
value. Equation 4.48 neglects the cubic term and is therefore symmetric about the 
equilibrium position at x = 0. It is called a harmonic approximation to the PE 
curve. 

In modem physics, the energy of such a harmonic oscillator must be calculated 
using the PE in Equation 4.48 in the Schrodinger equation so that 

d2xfr 2M ( 1 ,\ 
7^+AE-2pxh=o 14-491 

The solution of Equation 4.49 shows that the energy E„ of such a harmonic oscil¬ 
lator is quantized, 

where co is the angular frequency of the vibrations14 and n is a quantum number 
0, 1,2,3,.... The oscillation frequency is determined by the spring constant fi and the 
mass M through co = (fi/M)1/2. Figure 4.40c shows the allowed energies of the quan¬ 
tum mechanical harmonic oscillator. 

I 14 Henceforth frequency will imply co. 
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Figure 4.41 

(a) A chain of N atoms through a crystal in the absence of vibrations. 

(b) Coupled atomic vibrations generate a traveling longitudinal (L) wave along x. Atomic displacements (ur) are 
parallel to x. 

(c) A transverse (T) wave traveling along x. Atomic displacements (ur) are perpendicular to the x axis, (b) and 
(c) are snapshots at one instant. 

It is apparent that the minimum energy of the oscillator can never be zero but must 
be a finite value that is E0 = This energy is called the zero-point energy. As the 
temperature approaches 0 K, the harmonic oscillator would have an energy of E0 and 
not zero. The energy levels are equally spaced by an amount hco, which represents the 
amount of energy absorbed or emitted by the oscillator when it is excited and de- 
excited to a neighboring energy level. The vibrational energies of a molecule due to its 
atoms vibrating relative to each other, e.g., the vibrations of the CI2 molecule in which 
the Cl-Cl bond is stretched and compressed, can also be described by Equation 4.50. 

Phonons Atoms in a solid are coupled to each other by bonds. Atomic vibrations are 
therefore also coupled. These coupled vibrations lead to waves that involve coopera¬ 
tive vibrations of many atoms and cannot be represented by independent vibrations of 
individual atoms. Figure 4.41a shows a chain of atoms in a crystal. As an atom vibrates 
it transfers its energy to neighboring vibrating atoms and the coupled vibrations pro¬ 
duce traveling wave-trains in the crystal.15 (Consider grabbing and strongly vibrating 
the first atom in the atomic chain in Figure 4.41a. Your vibrations will be coupled and 
transferred by the springs to neighboring atoms in the chain along x.) Two examples 
are shown in Figure 4.41b and c. In the first, the atomic vibrations are parallel to the 
direction of propagation x and the wave is a longitudinal wave. In the second, the 
vibrations are transverse to the direction of propagation and the corresponding wave is 
a transverse wave. Suppose that xr is the position of the rth atom in the absence of 
vibrations, that is, xr = ra, where r is an integer from 0 to N, the number of atoms in 
the chain, as indicated in Figure 4.41a. By writing the mechanical equations (Newton’s 

I 15 In the presence of coupling, the individual atoms do not execute simple harmonic motion. 
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second law) for the coupled atoms in Figure 4.41a, we can show that the displacement 
ur from equilibrium at a location xr is given by a traveling-wave-like behavior,16 

ur = Aexp[j(Kxr — tot)] [4.51] 

where A is the amplitude, K is a wavevector, and a> is the angular frequency. Notice 
that the Kxr term is very much like the usual kx phase term of a traveling wave prop¬ 
agating in a continuous medium; the only difference is that Kxr exists at discrete xr 
locations. The wave-train described by Equation 4.51 in the crystal is called a lattice 
wave. Along the x direction it has a wavelength A = 2n/K over which the longitudi¬ 
nal (or transverse) displacement ur repeats itself. The displacement ur repeats itself at 
one location over a time period In/co. A wave traveling in the opposite direction to 
Equation 4.51 is of course also possible. Indeed, two oppositely traveling waves of the 
same frequency can interfere to set up a stationary wave which is also a lattice wave. 

The lattice wave described by Equation 4.51 is a harmonic oscillation with a fre¬ 
quency to that itself has no coupling to another lattice wave. The energy possessed by 
this lattice vibration is quantized in much the same way as the energy of the quantized 
harmonic oscillator in Equation 4.50. The energy of a lattice vibration therefore can 
only be multiples of hco above the zero-point energy, jtia>. The quantum of energy fico 
is therefore the smallest unit of lattice vibrational energy that can be added or sub¬ 
tracted from a lattice wave. The quantum of lattice vibration tuo is called a phonon in 
analogy with the quantum of electromagnetic radiation, the photon. Whenever a lattice 
vibration interacts with another lattice vibration, an electron or a photon, in the crystal, 
it does so as if it had possessed a momentum of fi K. Thus, 

^phonon — h(0 — hv [4.52] 

Pphonon = flK [4.53] 

The frequency of vibrations to and the wavevector A'of a lattice wave are related. 
If we were to use Equation 4.51 in the mechanical equations that describe the coupled 
atomic vibrations, we would find that 

[4.54] 

which relates co and K and is called the dispersion relation. Figure 4.42 shows how 
the frequency to of the lattice waves increases with increasing wavevector K, or de¬ 
creasing wavelength A. From Equation 4.54, there can be no frequencies higher than 
ci>max = 2 00/M)1/2, which is the lattice cut-off frequency. Both longitudinal and 
transverse waves exhibit this type of dispersion relationship shown in Figure 4.42a 
though their exact co-K curves would be different depending on the nature of 
interatomic bonding and the crystal structure. The dispersion relation in Equation 4.54 
is periodic in K with a period lit/a. Only values of K in the range — n/a < K < it/a 
are physically meaningful. A point A with KA is the same as a point B with KB because 
we can shift AT by the period, 2tz/a as shown in Figure 4.42a. 

16 The exponential notation for a wave is convenient, but we have to consider only the real part to actually 
represent the wave in the physical world. 
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O) vg 

Figure 4.42 

(a) Frequency co versus wavevector K relationship for lattice waves. 

(b) Group velocity vg versus wavevector K. 

The velocity at which traveling waves carry energy is called the group velocity vg 

of the wave.17 It depends on the slope dco/dK of the co-K dispersion curve, so for 
lattice waves, 

v 8 ~ 

do) 

dK (m) acosG*°) i4mi 
Group 

velocity 

which is shown in Figure 4.42b. Points A and B in Figure 4.42a have the same group 
velocity and are equivalent. 

The number of distinct or independent lattice waves, with different wavevectors, 
in a crystal is not infinite but depends on the number of atoms N. Consider a linear 
crystal as in Figure 4.43 with many atoms. We will take N to be large and ignore the 
difference between N and N — 2. The lattice waves in this crystal would be standing 
waves represented by two oppositely traveling Waves. The crystal length L = N a can 
support multiples of the half-wavelength | A as indicated in Figure 4.43, 

or 

9 2 
= L = Na q = 1, 2, 3,... [4.56a] 

K = II 

qjt 

~Na 
q = 1,2, 3,... [4.56b] 

Vibrational 

modes 

Vibrational 

modes 

where q is an integer. Each particular K value Kq represents one distinct lattice 
wave with a particular frequency as determined by the dispersion relation. Four ex¬ 
amples are shown in Figure 4.43. Each of these Kq values defines a mode or state of 
lattice vibration. Each mode is an independent lattice vibration. Its energy can be 
increased or decreased only by a quantum amount of ftco. Since Kq values outside the 
range —n/a < K < 7t/a are the same as those in that range (A and B are the same 

17 For those readers who are not familiar with the group velocity concept, this is discussed in Chapter 9 without 
prerequisite material. 
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Figure 4.43 Four examples of standing 
waves in a linear crystal corresponding to 
q — 1,2, 4, and N. 

is maximum when alternating atoms are 
brating in opposite directions. A portion from 

a very long crystal is shown. 

q = 4 

o/o\o/o\o /o\o /'o\ o q=N 
• • ♦' '♦ 

in Figure 4.42a), it is apparent that the maximum value of q is N and thus the num¬ 
ber of modes is also N. Notice that as q increases, A decreases. The smallest A oc¬ 
curs when alternating atoms in the crystal are moving in opposite directions which 
corresponds to ^A = a, that is, q = N, a^shown in Figure 4.43. In terms of the 
wavevector, K = 2n/A = n/a. Smaller wavelengths or longer wavevectors are 
meaningless and correspond to shifting K by a multiple of In/a. Since N is large, 
the a) versus K curve in Figure 4.42a consists of very finely separated distinct 
points, each corresponding to a particular q, analogous to the energy levels in an en¬ 
ergy band. 

The above ideas for the linear chain of atoms can be readily extended to a three- 
dimensional crystal. If Lx,Ly, and Lz are the sides of the solid along the x, y, and z 
axes, with Nx,Ny, and Nz number of atoms, respectively, then the wavevector compo¬ 
nents along x, y, and z are 

Lattice 
vibrational Kx = —— Ky = —— Kz = —— [4.57] 

modes in 3-D Lx Ly Lz 

where the integers qx,qy, and qz run from 1 to Nx, Ny, and Nz, respectively. The total 
number of permitted modes is NxNyNz or N, the total number of atoms in the solid. 
Vibrations however can be set up independently along the x, y, and z directions so that 
the actual number of independent modes is 3 N. 

4.10.2 Debye Heat Capacity 

The heat capacity of a solid represents the increase in the internal energy of the crystal 
per unit increase in the temperature. The increase in the internal energy is due to an 
increase in the energy of lattice vibrations. This is generally true for all the solids ex¬ 
cept metals at very low temperatures where the heat capacity is due to the electrons 
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near the Fermi level becoming excited to higher energies. For most practical tempera¬ 
ture ranges of interest, the heat capacity of solids is determined by the excitation of lat¬ 
tice vibrations. The molar heat capacity Cm is the increase in the internal energy Um 
of a crystal of NA atoms per unit increase in the temperature at constant volume,18 that 
is, Cm = dUm/dT. 

The simplest approach to calculating the average energy is first to assume that all 
the lattice vibrational modes have the same frequency co. (We will account for differ¬ 
ent modes having different frequencies later.) If En is the energy of a harmonic oscil¬ 
lator such as a lattice vibration, then the average energy, by definition, is given by 

/ 

OO 

E EnP{En) 
“F fl=0 E = 

00 

E P(E.) 
n=0 

Average 

[4.58] energy of 

oscillators 

where P(En) is the probability that the vibration has the energy En which is pro¬ 
portional to the Boltzmann factor. Thus we can use P(En) a exp(—En/kT) and 
En = (n + j)tuo in Equation 4.58. We can drop the zero-point energy as this does not 
affect the heat capacity (which deals with energy changes). The substitution and cal¬ 
culation of Equation 4.58 yields the vibrational mean energy at a frequency co. 

E{(o) = [4.59] 

This energy increases with temperature. Each phonon has an energy of ft to. Thus, 
the phonon concentration in the crystal increases with temperature; increasing the 
temperature creates more phonons. / 

To find the internal energy due to an the lattice vibrations we must also consider 
how many modes there are at various frequencies, that is, the distribution of the modes 
over the possible frequencies, the spectrum of the vibrations. Suppose that g(co) is the 
number of modes per unit frequency, that is, g(co) is the density of vibrational states 
or modes. Then g(co) dco is the number of states in the range dco. The internal energy 
Um of all lattice vibrations for 1 mole of solid is 

Um = I E(co)g(co)dco [4.60] 
Jo 

The integration is up to a certain allowed maximum frequency ci>max (Figure 4.42a). 
The density of states g(co) for the lattice vibrations can be found in a similar fashion to 
the density of states for electrons in an energy band, and we will simply quote the result, 

3V co2 
gia,)*—— [4.61] 

2Ttl V3 

Average 

energy of 

oscillators 

at a) 

Internal 

energy of all 

lattice 

vibrations 

Density of 

states for 

lattice 

vibrations 

18 Constant volume in the definition means that the heat added to the system increases the internal energy without 
doing mechanical work by changing the volume. 
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Figure 4.44 Density of states for phonons in copper. 

The solid curve is deduced from experiments on neutron 
scattering. The broken curve is the three-dimensional Debye 
approximation, scaled so that the areas under the two curves 
are the same. 

This requires that (omax 4.5 x 1013 rad s-1, or a Debye 
characteristic temperature To = 344 K. 

* 

Debye 

frequency 

Debye 

temperature 

where v is the mean velocity of longitudinal and transverse waves in the solid and V is 
the volume of the crystal. Figure 4.44 shows the spectrum g{co) for a real crystal such 
as Cu and the expression in Equation 4.61. The maximum frequency is rumax and is de¬ 
termined by the fact that the total number of modes up to <ymax must be 3NA. It is called 
the Debye frequency. Thus, integrating g(co) up to cumax we find, 

tOmM^vie^NA/V)1'3 [4.62] 

This maximum frequency co^ corresponds to an energy fia)max and to a tempera¬ 
ture To defined by, 

Td = 
ba)max 

k 
[4.63] 

Heat 

capacity: 

lattice 

vibrations 

and is called the Debye temperature. Qualitatively, it represents the temperature 
above which all vibrational frequencies are executed by the lattice waves. 

Thus, by using Equations 4.59 to 4.63 in Equation 4.60 we can evaluate Um and 
hence differentiate Um with respect to temperature to obtain the molar heat capacity at 
constant volume, 

Cm = 9R 
/ t \3 !T 

\7W Jo 

xAex dx 

(ex - l)2 
[4.64] 

which is the Debye heat capacity expression. 
Figure 4.45 represents the constant-volume molar heat capacity Cm of nearly 

all crystals, Equation 4.64, as a function of temperature, normalized with respect 
to the Debye temperature. The Dulong-Petlt rule of Cm = 3/? is only obeyed 
when T > To. Notice that Cm at T = 0.57^ is 0.825(3/?) whereas at T = TD it 
is 0.952(3/?). For most practical purposes, Cm is to within 6 percent of 3/? when 
the temperature is at 0.9TD. For example, for copper TD = 315 K and above 
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T/T, D 

Figure 4.45 Debye constant-volume molar heat capacity curve. 

The dependence of the molar heat capacity Cm on temperature with respect to the 
Debye temperature: Cm versus T/Tp. For Si, 7b = 625 K, so at room temperature 
(300 K), T/Td = 0.48 and Cm is only 0.81 (3R). 

about 0.9Td, that is, above 283 K (or 10 °C), Cm « 3R, as borne out by experiments.19 
Table 4.5 provides typical values for TD, and heat capacities for a few selected ele¬ 
ments. It is left as an exercise to check the accuracy of Equation 4.64 for predicting the 
heat capacity given the TD values. At the lowest temperatures when T TD, Equation 
4.64 predicts that Cm oc T\ and this is indeed observed in low-temperature heat ca¬ 
pacity experiments on a variety of crystals.20 

It is useful to provide a physical picture of the Debye model inherent in Equa¬ 
tion 4.64. As the temperature increases from near zero, the increase in the crystal’s 
vibrational energy is due to more phonons being created and higher frequencies being 
excited. The phonon concentration increases as T3, and the mean phonon energy 
increases as T. Thus, the internal energy increases as T4. At temperatures above TD, 
increasing the temperature creates more phonons but does not increase the mean 
phonon energy and does not excite higher frequencies. All frequencies up to ow have 
now been excited. The internal energy increases only due to more phonons being cre¬ 
ated. The phonon concentration and hence the internal energy increase as T; the heat 
capacity is constant as expected from Equation 4.64. 

19 Sometimes it is stated that the Debye temperature is a characteristics temperature for each material at which all 
the atoms are able to possess vibrational kinetic energies in accordance with the Maxwell equipartition of energy 
principle; that is, the average vibrational kinetic energy will be |feT per atom and average potential energy will 
also be§ kl. This means that the average energy per atom is 3kT, and hence the heat capacity is 3JcNa or 3R per 
mole which is the Dulong-Petit rule. 

20 Well-known exceptions are glasses, noncrystalline solids, whose heat capacity is proportional to aiT + 02T3, 
where ai and 02 are constants. 
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Table 4.5 Debye temperatures To, heat capacities, and thermal conductivities of selected elements 

Crystal 

Ag Be Cu Diamond Ge Hg Si W 

Td (K>* 215 1000 315 I860 360 100 625 310 

Cm(J K_1 mol-1)* 25.6 16.46 24.5 6.48 23.38 27.68 19.74 24.45 

c,(J K-‘ g-1)* 0.237 1.825 0.385 0.540 0.322 0.138 0.703 0.133 

KfWm-'K-y 429 183 385 1000 60 8.65 148 173 

*Td is obtained by fitting the Debye curve to the experimental molar heat capacity data at the point C„, = 5 (3R). 

tCm, cs, and k are at 25 °C. 

SOURCE: 7b data from J. De Launay, Solid State Physics, vol. 2, F. Seitz and D. Turnbull, eds., Academic Press, 
New York, 1956. 

It is apparent that, above the Debye temperature, the increase in temperature leads 
to the creation of more phonons. In^Khapters 1 and 2, using classical concepts only, we 
had mentioned that increasing the temperature increases the magnitude of atomic vi¬ 
brations. This simple and intuitive classical concept in terms of modem physics corre¬ 
sponds to creating more phonons with temperature. We can use the photon analogy 
from Chapter 3. When we increase the intensity of light of a given frequency, classi¬ 
cally we simply increase the electric field (magnitude of the vibrations), but in modem 
physics we have to increase the number of photons flowing per unit area. 

EXAMPLE 4.15 SPECIFIC HEAT CAPACITY OF Si Find the specific heat capacity cs of a silicon crystal at room 
temperature given TD = 625 K for Si. 

SOLUTION 

At room temperature, T = 300 K, (T/TD) = 0.48, and, from Figure 4.45, the molar heat 
capacity is 

Cm = 0.81(3 R) = 20.2 JK"1 mol-1 

The specific heat capacity cs from the Debye curve is 

(0.81 x 25 JK"1 mol"1) i-i> 

cs = = 0.72 JK"1 g"‘ 
Mat (28.09 g mol"1) 

The experimental value of 0.70 J K-1 g-1 is very close to the Debye value. 

EXAMPLE 4.16 SPECIFIC HEAT CAPACITY OF GoAs Example 4. 15 applied Equation 4.64, the Debye molar 
heat capacity Cm, to the silicon crystal in which all atoms are of the same type. It was relatively 
simple to calculate the specific heat capacity cs (what is really used in engineering) from the 
molar heat capacity Cm by using cs = Cm/Mu where Mat is the atomic mass of the type of atom 
(only one) in the crystal. When the crystal has two types of atoms, we must modify the specific 
heat capacity derivation. We can still keep the symbol Cm to represent the Debye molar heat 
capacity given in Equation 4.64. Consider a GaAs crystal that has NA units of GaAs, that is, 
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1 mole of GaAs. There will be 1 mole (/VA atoms) of Ga and 1 mole of As atoms. To a reason¬ 
able approximation we can assume that each mole of Ga and As contributes a Cm amount of heat 
capacity so that the total heat capacity of 1 mole GaAs will be Cm + Cm or 2Cm, a maximum of 
50 J K-1 mol-1. The total mass of this 1 mole of GaAs is M0a + MAs. Thus, the specific heat 
capacity of GaAs is 

_ C total   Cm Cm   2Cm 

total ^Ga + A^As ^Ga + A^As 

which can alternatively be written as 

j(AfGa + A/as) M 

where M = (A/Ga + MAs)/2 is the average atomic mass of the constituent atoms. Although we 
derived cs for GaAs, it can also be applied to other compounds by suitably calculating an aver¬ 
age atomic mass M. GaAs has a Debye temperature TD = 344 K, so that at a room temperature 
of 300 K, T/Td = 0.87, and from Figure 4.45, Cm/(3R) = 0.94. Therefore, 

Cs 
Cm 

~M 

(0.94)(25 J K~‘ mol"1) 

j(69.72 g mol'1 -I- 74.92 g mol-1) 
= 0.325 JK"1 g_1 

At -40 °C, T/Td = 0.68, andT^((3fl) = 0.90, so the new c, = (0.90/0.94)(0.325) = 
0.311 J K-1 g“1, which is not a large change in cs. 

The heat capacity per unit volume Cv can be found from Cv = csp, where p is the density. 
Thus, at 300 K, Cv = (0.325 J K“' g~')(5.32 g cm"3) = 1.73 J K"1 cm'3. The calculated cs 
match the reported experimental values very closely. 

Specific heat 

capacity of 

GaAs 

Specific heat 

capacity of a 

polyatomic 

crystal 

LATTICE WAVES AND SOUND VELOCITY Consider longitudinal waves in a linear crystal and 
three atoms at r — 1, r, and r + 1 as in Figure 4.46. The displacement of each atom from equi¬ 
librium in the +jc direction is ur-\, ur, and «r+1, respectively. Consider the rth atom. Its bond 
with the left neighbor stretches by (ur - «r_i). Its bond with the right neighbor stretches by 
(wr+1 — ur). The left spring exerts a force /3(ur — ur-0, and the right spring exerts a force 
P(ur+i — ur). The net force on the rth atom is mass x acceleration, 

Net force = j8(wr+i — ur) — y8(ur — «r-i) = M 
d2ur 

IF 

EXAMPLE 4.17 

so = p(ur+l - 2Ur + Kr_i) [4.65] 
Wave 

equation 

This is the wave equation that describes the coupled longitudinal vibrations of the atoms 
in the crystal. A similar expression can also be derived for transverse vibrations. We can substi¬ 
tute Equation 4.51 in Equation 4.65 to show that Equation 4.51 is indeed a solution of the wave 

Figure 4.46 Atoms executing 
longitudinal vibrations parallel to x. 

<r a 

x 
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equation. It is assumed that the crystal response is linear, that is, the net force is proportional to 
net displacement. 

The group velocity of lattice waves is given by Equation 4.55. For sufficiently small K, or 
long wavelengths, such that ^ Ka <K. 1, 

(\ \ fp\i/2 
vg = I — I a cos I -Ka 1 ^ ( — I a 

* \M) \2 ) \M) 
[4.66] 

which is a constant. It is the slope of the straight-line region of a> versus K curve for small K 
values in Figure 4.42. Furthermore, the elastic modulus Y depends on the slope of the net force 
versus displacement curve as derived in Example 1.5. From Equation 4.48 FN = dV fdx = fix 

and hence Y = (}/a. Moreover, each atom occupies a volume of a3, so the density p is M/a3. 
Substituting both of these results in Equation 4.66 yields 

[4.67] 

The relationship has to be modified for an actual crystal incorporating a small numerical 
factor multiplying Y. Aluminum has a density of 2.7 g cm-3 and Y = 70 GPa, so the long- 
wavelength longitudinal velocity from Equation 4.67 is 5092 ms-1. The sound velocity in A1 is 
5100 m s-1, whiehTg very close. 

4.10.3 Thermal Conductivity of Nonmetals 

Thermal 
conductivity 
due to 
phonons 

In nonmetals the heat transfer involves lattice vibrations, that is, phonons. The heat ab¬ 
sorbed in the hot region increases the amplitudes of the lattice vibrations, which is the 
same as generating more phonons. These new phonons travel toward the cold regions 
and thereby transport the lattice energy from the hot to cold end. The thermal 
conductivity k measures the rate at which heat can be transported through a medium 
per unit area per unit temperature gradient. It is proportional to the rate at which a 
medium can absorb energy; that is, k is proportional to the heat capacity, k is also pro¬ 
portional to the rate at which phonons are transported which is determined by their 
mean velocity uph. In addition, of course, k is proportional to the mean free path t ph that 
a phonon has to travel before losing its momentum just as the electrical conductivity is 
proportional to the electron’s mean free path. A rigorous classical treatment gives k as 

K = jCj)Uph'fph [4.68] 

where Cv is the heat capacity per unit volume. The mean free path fph depends on var¬ 
ious processes that can scatter the phonons and hinder their propagation along the di¬ 
rection of heat flow. Phonons collide with other phonons, crystal defects, impurities, 
and crystal surfaces. 

The mean phonon velocity uph is constant and approximately independent of tem¬ 
perature. At temperatures above the Debye temperature, Cv is constant and, thus, 
k a fph. The mean free path of phonons at these temperatures is determined by 
phonon-phonon collisions, that is, phonons interacting with other phonons as depicted 
in Figure 4.47. Since the phonon concentration nPh increases with temperature, nPh a T, 
the mean free path decreases as £ph oc l/T. Thus, k decreases with increasing tempera¬ 
ture as observed for most crystals at sufficiently high temperatures. 
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Figure 4.47 Phonons 
generated in the hot region travel 
toward the cold region and 
thereby transport heat energy. 

Phonon-phonon unharmonic 
interaction generates a new 
phonon whose momentum is 
toward the hot region. 

The phonon-phonon collisions that are responsible for limiting the thermal con¬ 
ductivity, that is, scattering the phonon momentum in the opposite direction to the heat 
flow, are due to the unharmonicity (asymmetry) of the interatomic potential energy 
curve. Stated differently, the net force F acting on an atom is not simply fix but also has 
an jc2 term; it is nonlinear. The greater the asymmetry or nonlinearity, the larger is the 
effect of such momentum flipping collisions. The same asymmetry that is responsible 
for thermal expansion of solids is also responsible for determining the thermal conduc¬ 
tivity. When two phonons 1 and 2 interact in a crystal region as in Figure 4.47, the non¬ 
linear behavior and the periodicity of the lattice cause a new phonon 3 to be generated. 
This new phonon 3 has the same energy as4he sum of 1 and 2, but it is traveling in the 
wrong direction! (The frequency of 3 is the sum of the frequencies of 1 and 2.) 

At low temperatures there are two factors. The phonon concentration is too low for 
phonon-phonon collisions to be significant. Instead, the mean free path lph is deter¬ 
mined by phonon collisions with crystal imperfections, most significantly, crystal 
surfaces and grain boundaries. Thus, tph depends on the sample geometry and crys¬ 
tallinity. Further, as we expect from the Debye model, Cv depends on T3, so k has the 
same temperature dependence as Cv, that is, k a T3. Between the two temperature 
regimes k exhibits a peak as shown in Figure 4.48 for sapphire (crystalline AI2O3) and 

Temperature (K) 

Unharmonic 
interaction 
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MgO crystals. Even though there are no conduction electrons in these two example 
crystals, they nonetheless exhibit substantial thermal conductivity. 

EXAMPLE 4.18 PHONONS IN GaAs Estimate the phonon mean free path in GaAs at room temperature 300 K 
and at 20 K from its k,Cv, and uph, using Equation 4.68. At room temperature, semiconductor 
data handbooks list the following for GaAs: k = 45 W m-1 K-1, elastic modulus Y = 85 GPa, 
density p = 5.32 g cm-3, and specific heat capacity cs = 0.325 J K_l g_l. At 20 K, k — 

4000 W m-1 K-1 and cs = 0.0052 JK'1 g-1. Y andp and hence vph do not change significantly 
with temperature compared with the changes in k and Cv with temperature. 

SOLUTION 

The phonon velocity vph from Equation 4.67 is approximately 

Vph 

Y 

P 

85 x 109 N m-2 

5.32 x 103 kg m-3 
= 4000 m s"‘ 

Heat capacity per unit volume C„ = csp = (325 J K 1 kg 1 )(5320 kg m 3) = 1.73 x 106 J K 1 
m“3. From Equation 4.68, k = \Cvvpiil^, 

^ph = 
3k (3)(45 W m~‘ K"1) 

Cvvph (1.73 x 106 J K_l m~3)(4000 m s-1) 
= 2.0 x 10“8m or 20 nm 

We can easily repeat the calculation at 20 K, given k & 4000 W m 1 K 1 and cs = 5.2 J K 1 
kg-1, so Cv = csp « (5.2 J K"1 kg _,)(5320 kg m~3) = 2.77 x 104 J K-1 m“3. Y and p and 
hence uph (s« 4000 m s“1), do not change significantly with temperature compared with k and Cv. 
Thus, 

-ph — 

3k _ (3)(4 x 103 Wm"1 K^1) 

C„i»ph ~ (2.77 x 104 JK-> m-3)(4000ms-1) 
= 1.1 x 10_4m or 0.011 cm 

For small specimens, the above phonon mean free path will be comparable to the sample size, 
which means that £ph will actually be limited by the sample size. Consequently k will depend 
on the sample dimensions, being smaller for smaller samples, similar to the dependence of the 
electrical conductivity of thin films on the film thickness. 

4.104 Electrical Conductivity 

Except at low temperatures, the electrical conductivity of metals is primarily con¬ 
trolled by scattering of electrons around EF by lattice vibrations, that is, phonons. 
These electrons have a speed vF = (2Ep/me)1/2 and a momentum of magnitude 
mevp. We know that the electrical conductivity a is proportional to the mean collision 
time r of the electrons, that is, cr a r. This scattering time assumes that each scatter¬ 
ing process is 100 percent efficient in randomizing the electron’s momentum, that is, 
destroying the momentum gained from the field, which may not be the case. If it takes 
on average N collisions to randomize the electron’s momentum, and r is the mean 
time between the scattering events, then the effective scattering time is simply Nr and 
a oc Nr. (1 /N indicates the efficiency of each scattering process in randomizing the 
velocity.) 
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£ - Final momentum 

Figure 4.49 Low-angle 
scattering of a conduction 
electron by a phonon. 

Figure 4.49 shows an example in which an electron with an initial momentum p, 
collides with a lattice vibration of momentum hK. The result of the interaction is that 
the electron’s momentum is deflected through a small angle 6 to p/ which still has a 
component along the original direction x. This is called a low-angle scattering process. 
It will take many such collisions to reverse the electron’s momentum which corre¬ 
sponds to flipping the momentum along the +x direction to the —x direction. Recall 
that the momentum gained from the field is actually very small compared with the mo¬ 
mentum of the electron which is mevp. A scattered electron must have an energy close 
to EF because lower energy states are filled. Thus, p, and p/ have approximately the 
same magnitude pt = pf — mevp as shown in Figure 4.49. 

At temperatures above the Debye temperature, we can assume that most of the 
phonons are vibrating with the Debye frequency comax and the phonon concentration 
nPh increases as T. These phonons have sufficient energies and momenta to fully scat¬ 
ter the electron on impact. Thus, 

a oc r a — a — [4.69a] 
nPh T 

When T < TD, the phonon concentration follows nph a T3, and the mean phonon 
energy £ph oc T, because, as the temperature is raised, higher frequencies are excited. 
However, these phonons have low energy and small momenta, thus they only cause 
small-angle scattering processes as in Figure 4.49. The average phonon momentum 
hK is also proportional to the temperature (recall that at low frequencies Figure 4.42a 
shows that hco oc hK). It will take many such collisions, say A/, to flip the electron’s 
momentum by 2mevp from +mevp to —meVf. During each collision, a phonon of 
momentum hK is absorbed as shown in Figure 4.49. Thus, if all phonons deflected the 
electron in the same angular direction, the collisions would sequentially add to 9 in 
Figure 4.49, and we will need (2mevp)/{hK) number of steps to flip the electron’s mo¬ 
mentum. The actual collisions add 9’s randomly and the process is similar to particle 
diffusion, random walk, in Example 1.12 (L2 = A/a2, where L = displaced distance 
after N jumps and a = jump step). Thus, 

(2meVf)2 

(hK)2 
oc 

1 

T2 

Electrical 

conductivity 

T> Td 

The conductivity is therefore given by 

A/ N 1 a oc Nr a — a — 
np h T5 

[4.69b] 

Electrical 

conductivity 

T < Td 
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which is indeed observed for Cu in Figure 2.8 when T < TD over the range where 
impurity scattering is negligible. 

ADDITIONAL TOPICS 

4.11 BAND THEORY OF METALS: ELECTRON 
DIFFRACTION IN CRYSTALS 

A rigorous treatment of the band theory of solids involves extensive quantum mechan¬ 
ical analysis and is beyond the scope of this book. However, we can attain a satisfac¬ 
tory understanding through a semiquantitative treatment. 

We know that the wavefunction of the electron moving freely along x in space is 
a traveling wave of the spatial form \frk(x) = exp(jkx), where k is the wavevector 
k = 2n/k of the electron and tik is its momentum. Here, ifrk (x) represents a traveling 
wave because it must be multiplied by exp(—jcot), where o> = E/ti, to get the total 
wavefunction q^x, t) = exp[j(kx — cot)]. 

We will assume that an electron moving freely within the crystal and within a 
given energy band should also have a traveling wave type of wavefunction, 

\ffk{x) = A exp(jkx) [4.70] 

where k is the electron wavevector in the crystal and A is the amplitude. This is a rea¬ 
sonable expectation, since, to a first order, we can take the PE of the electron inside a 
solid as zero, V = 0. Yet, the PE must be large outside, so the electron is contained 
within the crystal. When the PE is zero, Equation 4.70 is a solution to the Schrodinger 
equation. The momentum of the electron described by the traveling wave Equation 4.70 
is then fik and its energy is 

Ek 
m2 

2m e 
[4.71] 

The electron, as a traveling wave, will freely propagate through the crystal. How¬ 
ever, not all traveling waves, can propagate in the lattice. The electron cannot have any 
k value in Equation 4.70 and still move through the crystal. Waves can be reflected and 
diffracted, whether they are electron waves, X-rays, or visible light. Diffraction occurs 
when reflected waves interfere constructively. Certain k values will cause the electron 
wave to be diffracted, preventing the wave from propagating. 

The simplest illustration that certain k values will result in the electron wave being 
diffracted is shown in Figure 4.50 for a hypothetical linear lattice in which diffraction 
is simply a reflection (what we call diffraction becomes Bragg reflection). The electron 
is assumed to be propagating in the forward direction along x with a traveling wave 
function of the type in Equation 4.70. At each atom, some of this wave will be re¬ 
flected. At A, the reflected wave is A' and has a magnitude A'. If the reflected waves 
A', B', and C' will reinforce each other, a full reflected wave will be created, traveling 
in the backward direction. The reflected waves A', B', C',... will reinforce each other 
if the path difference between A', B', C1,... is nk, where k is the wavelength and 
n = 1,2, 3,... is an integer. When wave B' reaches A', it has traveled an additional 
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Forward wave • • 
Figure 4.50 An electron wave propagation 
through a linear lattice. 

x For certain k values, the reflected waves at 
successive atomic planes reinforce each other, 
giving rise to a reflected wave traveling in the 
backward direction. The electron cannot then 
propagate through the crystal. 

distance of 2a. The path difference between A' and B' is therefore 2a. For A' and B' to 
reinforce each other, we need 

2a = nX n = 1,2, 3,... 

Substituting X = 2n/k, we obtain the condition in terms of k 

k = 
flTT 

a 
n = 1,2, 3, [4.72] 

Thus, whenever k is such that it satisfies the condition in Equation 4.72, all the re¬ 
flected waves reinforce each other and produce a backward-traveling, reflected wave 
of the following form (with a negative k value): 

f-k(x) = Aexp(-jkx) [4.73] 

This wave will also probably suffer a reflection, since its k satisfies Equation 4.72, 
and the reflections will continue. The crystal will then contain waves traveling in the 
forward and backward directions. These waves will interfere to give standing waves 
inside the crystal. Hence, whenever the k value satisfies Equation 4.72, traveling 
waves cannot propagate through the lattice. Instead, there can only be standing waves. 
For k satisfying Equation 4.72, the electron wavefunction consists of waves xfrk and 
V*-* interfering in two possible ways to give two possible standing waves: 

%frc(x) = Aexp(jkx) + Aexp(—jkx) = Accos 

¥s(x) = A exp (jkx) — A exp(—jkx) = As sin 

[4.74] 

[4.75] 

The probability density distributions IVfc(*)l2 and IVfs(*)l2 for the two standing 
waves are shown in Figure 4.51. The first standing wave ¥c(x ) is at a maximum on the 
ion cores, and the other \/rs (x) is at a maximum between the ion cores. Note also that 
both the standing waves ¥c(x) and ¥s(x) are solutions to the Schrodinger equation. 

The closer the electron is to a positive nucleus, the lower is its electrostatic PE, by 
virtue of —e2/Ane0r. The PE of the electron distribution in ¥c(x) is lower than that in 
¥s(x), because the maxima for ¥c(x) are nearer the positive ions. Therefore, the en¬ 
ergy of the electron in ¥c(x) is lower than that of the electron in ¥s(x), or Ec < Es. 
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Figure 4.51 Forward and backward 
waves in the crystal with k = ±7i/a give 
rise to two possible standing waves i/c and 
xfis. Their probability density distributions 

\irc\2 and |Vf$l2 have maxima either at the 
ions or between the ions, respectively. 

It is not difficult to evaluate the energies Ec and Es. The kinetic energy of the elec¬ 
tron is the same in both \J/C(x) and ^s(x), because these wavefunctions have the same 
k value and KE is given by {hk)2/2me. However, there is an electrostatic PE arising 
from the interaction of the electron with the ion cores, and this PE is different for 
the two wavefunctions. Suppose that V(x) is the electrostatic PE of the electron at 
position x. We then must find the average, using the probability density distribution. 
Given that \irc(x)\2 dx is the probability of finding the electron at jc in dx, the potential 
energy Vc of the electron is simply VQt) averaged over the entire linear length L of the 
crystal. Thus, the potential energy Vc for tyc{x) is 

Vc = y f V(x)\irc(x)\2dx = -Vn [4.76] 
L J o 

where V„ is the numerical result of the integration, which depends onk = nnja or n, 
by virtue of Equation 4.74. The integration in Equation 4.76 is a negative number that 
depends on n. We do not need to evaluate the integral, as we only need its final nu¬ 
merical result. 

Using |^(x)|2, we can also find Vs, the PE associated with ^00- The result is 
that is a positive quantity given by + V„, where\V„ is again the numerical result of 
the integration in Equation 4.76, which depends on n. The energies of the wave- 
functions \j/c and xj/s whenever k — nit ja are 

(ihk)2 nn 
Ec = —— - Vn k = — [4.77] 

2m e a 

{hk)2 nn 
Es = + V k = — [4.78] 

2m a 

Clearly, whenever k has the critical values mi fa, there are only two possible val¬ 
ues for the energies Ec and Es as determined by Equations 4.77 and 4.78; no other 
energies are allowed in between. These two energies are separated by 2V„. 

Away from the critical k values determined by k = nnja, the electron simply 
propagates as a traveling wave; the wave does not get reflected. The energy is then 
given by the free-running wave solution to the Schrodinger equation, that is, Equation 
4.71, 

{hk)2 

2m e 
Away from k = 

nn 

a 
E, [4.79] 
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Figure 4.52 The energy of the electron as a function of its wavevector k inside a one-dimensional 

crystal. 

There are discontinuities in the energy at k = inn/ a, where the waves suffer Bragg reflections in the 
crystal. For example, there can be no energy value for the electron between Ec and Es. Therefore, Es - Ec 
is an energy gap at k = in/a. Away from the critical k values, the E-k behavior is like that of a free 
electron, with E increasing with k as E = [hk)2/2mg. In a solid, these energies fall within an energy band. 

It seems that the energy of the electron increases parabolically with k along Equa¬ 
tion 4.79 and then suddenly, at k = nn/a, it suffers^ sharp discontinuity and increases 
parabolically again. Although the discontinuities at the critical points k = nn/a are 
expected, by virtue of the Bragg reflection of waves, reflection effects will still be 
present to a certain extent, even within a small region around k = nn/a. The indivi¬ 
dual reflections shown in Figure 4.50 do not occur exactly at the origins of the atoms 
at x = a, 2a, 3a,.... Rather, they occur over some distance, since the wave must 
interact with the electrons in the ion cores to be reflected. We therefore expect E-k 
behavior to deviate from Equation 4.79 in the neighborhood of the critical points, even 
if k is not exactly nn/a. Figure 4.52 shows the E-k behavior we expect, based on 
these arguments. 

In Figure 4.52, we notice that there are certain energy ranges occurring at 
k = iinnja) in which there are no allowed energies for the electron. As we saw pre¬ 
viously, the electron cannot possess an energy between Ec and Es at k = n/a. These 
energy ranges form energy gaps at the critical points k = i(nn/a). 

The range of k values from zero to the first energy gap at k = ±(n/a) defines a 
zone of k values called the first Brillouin zone. The zone between the first and second 
energy gap defines the second Brillouin zone, and so on. The Brillouin zone bound¬ 
aries therefore identify where the energy discontinuities, or gaps, occur along the k axis. 

F 
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Figure 4.53 Diffraction of the electron in a 
two-dimensional crystal. 

Diffraction occurs whenever k has a component 
satisfying k\ = ±rur/a, = ±n7r/a, or 
£3 = ±n7T -s/2/a. In general terms, diffraction 
occurs when fc sin 0 = n;r/a. 

Bragg 

diffraction 

condition 

Electron motion in the three-dimensional crystal can be readily understood based 
on the concepts described here. For simplicity, we consider an electron propagating in 
a two-dimensional crystal, which is analogous, for example, to propagation in the xy 
plane of a crystal, as depicted in Figure 4.53. For certain k values and in certain direc¬ 
tions, the electron will suffer diffraction and will be unable to propagate in the crystal. 

Suppose that the electron’s k vector along x \s k\. Whenever k\ = ±nn/a, the 
electron will be diffracted by the planes perpendicular to x, that is, the (10) planes.21 
Similarly, it will be diffracted by the (01) planes whenever its k vector along y is 
k2 = ±nn/a. The electron can also be diffracted by the (11) planes, whose separation 
is a/V2. If the component of k perpendicular to the (11) plane is k$, then whenever 
k3 = ±nn(V2/a), the electron will experience diffraction. These diffraction condi¬ 
tions can all be expressed through the Bragg diffraction condition 2d sin 6 — nX, or 

mt 
k sin 9 = — [4.801 

d 

where d is the interplanar separation and n is an integer; d = a for (10) planes, and 
d = a/+fl for (11) planes. 

When we plot the energy of the electron as a function of k, we must consider the 
direction of k, since the diffraction behavior in Equation 4.80 depends on sin 9. Along 
x, at 9 = 0, the energy gap occurs at k = ±(nn/a). Along 9 = 45°, it is at 
k = ±njr(\/2/a), which is farther away. The E-k behavior for the electron in the two- 
dimensional lattice is shown in Figure 4.54 for the [10] and [11] directions. The figure 
shows that the first energy gap along x, in the [10] direction, is at k = n/a. Along the 
[11] direction, which is at 45° to the x axis, the first gap is at k = ttyfl/a. 

21 We use Miller indices in two dimensions by dropping the third digit but keeping the same interpretation. The 
direction along x is [10] and the plane perpendicular to x is (10). 
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Figure 4.54 The E-k behavior for the electron 
along different directions in the two-dimensional 
crystal. 

The energy gap along [10] is at n/a whereas it 
is at •JT.n/a along [11 ]. 

When we consider the overlap of the energy bands along [10] and [11], in the case 
of a metal, there is no apparent energy gap. The electron can always find any energy 
simply by changing its direction. 

The effects of overlap between energy bands and of energy gaps in different di¬ 
rections are illustrated in Figure 4.55. In the case of a semiconductor, the energy gap 
along [10] overlaps that along [11], so there is an overall energy gap. The electron in 
the semiconductor cannot have an energy that falls into this energy gap. 

The first and second Brillouin zones for the two-dimensional lattice of Figure 4.53 
are shown in Figure 4.56. The zone boundaries mark the occurrences of energy gaps in 
k space (space defined by k axes along the x and y directions). When we look at the 
E-k behavior, we must consider the crystal directions. This is most conveniently done 
by plotting energy contours in k space, as in Figure 4.57. Each contour connects all 
those values of k that possess the same energy. A point such as P on an energy contour 
gives the value of k for that energy along the direction OP. Initially, the energy con¬ 
tours are circles, as the energy follows (hk)2/2me behavior, whatever the direction of k. 
However, near the critical values, that is, near the Brillouin zone boundaries, E in¬ 
creases more slowly than the parabolic relationship, as is apparent in Figure 4.52. 
Therefore, the circles begin to bulge as critical k values are approached. In Figure 4.57, 
the high-energy contours are concentrated in the comers of the zone, simply because 
the critical value is reached last along [11]. The energy contours do not continue 
smoothly across the zone boundary, because of the energy discontinuity in the E-k re¬ 
lationship at the boundary. Indeed, Figure 4.54 shows that the lowest energy in the sec¬ 
ond Brillouin zone may be lower than the highest energy in the first Brillouin zone. 

| There are two cases of interest. In the first, there is no apparent energy gap, as in 
Figure 4.57a, which corresponds to Figure 4.55a. The electron can have any energy 
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(a) For the electron in a metal, there is no apparent energy gap because the second BZ (Brillouin zone) along [10] 
overlaps the first BZ along [11], Bands overlap the energy gaps. Thus, the electron can always find any energy by 
changing its direction. 

(b) For the electron in a semiconductor, there is an energy gap arising from the overlap of the energy gaps along the [10] 
and [11] directions. The electron can never have an energy within this energy gap Eg. 

Figure 4.56 The Brillouin zones in two dimensions for 
the cubic lattice. 

The Brillouin zones identify the boundaries where there 
are discontinuities in the energy (energy gaps). 

value. In the second case, there is a range of energies that are not allowed, as shown in 
Figure 4.57b, which corresponds to Figure 4.55b. 

In three dimensions, the E-k energy contour in Figure 4.57 becomes a surface in 
three-dimensional k space. To understand the use of such E-k contours or surfaces, 
consider that an E-k contour (or a surface) is made of many finely separated indi¬ 
vidual points, each representing a possible electron wavefunction \frk with a possible 
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ky t01] * [01] 

Figure 4.57 Energy contours in k space (space defined by kx, ky). 

Each contour represents the same energy value. Any point P on the contour gives the values of kx and ky for that energy in 
that direction from O. For point P, E= 3 eV and OP along [11] is k. 

(a) In a metal, the lowest energy in the second zone (5 eV) is lower than the highest energy (6 eV) in the first zone. There 
is an overlap of energies between the Brillouin zones. 

(b) In a semiconductor or an insulator, there is an energy gap between the highest energy contour (6 eV) in the first zone 
and the lowest energy contour (10 eV) in the second zone. J 

energy E. At absolute zero, all the energies up to the Fermi energy are taken by the 
valence electrons. In k space, the energy surface, corresponding to the Fermi energy is 
termed the Fermi surface. The shape of this Fermi surface provides a means of inter¬ 
preting the electrical and magnetic properties of solids. 

For example, Na has one 35 electron per atom. In the solid, the 35 band is half full. 
The electrons take energies up to £>, which corresponds to a spherical Fermi surface 
within the first Brillouin zone, as indicated in Figure 4.58a. We can then say that all the 
valence electrons (or nearly all) in this alkali solid exhibit an E = (tik)2/2me type of 
behavior, as if they were free. When an external force is applied, such as an electric or 
magnetic field, we can treat the electron behavior as if it were free inside the metal with 
a constant mass. This is a desirable simplification for studying such metals. We can il¬ 
lustrate this desirability with an example. The Hall coefficient Rh derived in Chapter 2 
was based on treating the electron as if it were a free particle inside the metal, or 

1 
R h =- [4.81] 

en 

For Na, the experimental value of RH is -2.50 x 10-10 m3 C-1. Using the density 
(0.97 g cm-3) and atomic mass (23) of Na and one valence electron per atom, we can 
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(b) Group IB metals. 

(c) Be (Group IIA), Zn, and Cd (Group IIB). 

(d) A semiconductor. 

calculate n — 2.54 x 1028 m~3 and Rh = —2.46 x 10~10 m3 C-1, which is very close 
to the experimental value. 

In the case of Cu, Ag, and Au (the IB metals in the Periodic Table), the Fermi sur¬ 
face is inside the first Brillouin zone, but it is not spherical as depicted in Figtire 4.58b. 
Also, it touches the centers of the zone boundaries. Some of those electrons near the 
zone boundary behave quite differently than E = 0hk)2/2me, although the majority of 
the electrons in the sphere do exhibit this type of behavior. To an extent, we can expect 
the free electron derivations to hold. The experimental value of RH for Cu is 
—0.55 x 10~10 m3 C-1, whereas the expected value, based on Equation 4.81 with one 
electron per atom, is -0.73 x 10-10 m3 C_1, which is noticeably greater than the ex¬ 
perimental value. 

The divalent metals Be, Mg, and Ca have closed outer s subshells and should have 
a full s band in the solid. Recall that electrons in a full band cannot respond to an ap¬ 
plied field and drift. We also know that there should be an overlap between the s and 
p bands, forming one partially filled continuous energy band, so these metals are in¬ 
deed conductors. In terms of Brillouin zones, their structure is based on Figure 4.55a, 
which has the second zone overlapping the first Brillouin zone. The Fermi surface ex¬ 
tends into the second zone and the comers of the first zone are empty, as depicted in 
Figure 4.58c. Since there are empty energy levels next to the Fermi surface, the elec¬ 
trons can gain energy and drift in response to an applied field. But the surface is not 
spherical; indeed, near the comers of the first zone, it even has the wrong curvature. 
Therefore, it is no longer possible to describe these electrons on the Fermi surface as 
obeying E = (fik)2/2me. When a magnetic field is applied to a drifting electron to 
bend its trajectory, its total behavior is different than that expected when it is acting as 
a free particle. The external force changes the momentum fik and the corresponding 
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change in the energy depends on the Fermi surface and can be quite complicated. To 
finish the example on the Hall coefficient, we note that based on two valence electrons 
per atom (Group IIA), the Hall coefficient for Be should be —0.25 x 10~10 m3 C-1, 
but the measured value is a positive coefficient of +2.44 x 10~10 m3 C-1. Equa¬ 
tion 4.81 is therefore useless. It seems that the electrons moving at the Fermi surface 
of Be are equivalent to the motion of positive charges (like holes), so the Hall effect 
registers a positive coefficient. 

The Fermi surface of a semiconductor is simply the boundary of the first Brillouin 
zone, because there is an energy gap between the first and the second Brillouin zones, 
as depicted in Figure 4.55b. In a semiconductor, all the energy levels up to the energy 
gap are taken up by the valence electrons. The first Brillouin zone forms the valence 
band and the second forms the conduction band. 

4.12 GRUNEISEN’S MODEL OF THERMAL EXPANSION 

We considered thermal expansion in Section J.4.2 where the principle is illustrated 
in Figure 1.18, which shows the potential energy curve U(r) for two atoms sepa¬ 
rated by a distance r in a crystal. At temperature T\ we know that the atoms will be 
vibrating about their equilibrium positions between positions B and C, compress¬ 
ing (B) and stretching (C) the bond between them. The line BC corresponds to the 
total energy E of the pair of atoms. The average separation at T\ is at A, halfway be¬ 
tween B and C. We also know that the PE curve U (r) is asymmetric, and it is this 
asymmetry that leads to the phenomenon of thermal expansion. When the temperal- 
ture increases from Ti to T2, the atoms vibrate between B' and C' and the average 
separation between the atoms also increases, from A to A\ which we identified as 
thermal expansion. If the PE curve were symmetric, then there would be no ther¬ 
mal expansion. 

Since the linear expansion coefficient k is related to the shape of the PE curve, 
U (r), it is also related to the elastic bulk modulus K that measures how difficult it is to 
stretch or compress the bonds. K depends on U(r) in the same way that the elastic 
modulus Y depends on U(r) as explained in Example 1.5.22 Further, k also depends on 
the amount of increase from BC to B'C' per degree of increase in the temperature, k 
must therefore also depend on the heat capacity. When the temperature increases by a 
small amount 8 T, the energy per atom increases by (Cv 8 T )/N where Cv is the heat ca¬ 
pacity per unit volume and N is the number of atoms per unit volume. If CV8T is large, 
then the line B'C1 in Figure 1.18 will be higher up on the energy curve and the average 
separation A' will therefore be larger. Thus, the larger is the heat capacity, the greater 
is the interatomic separation, which means k oc Cv. Further, the average separation, 
point A, depends on how much the bonds are stretched and compressed. For large 

22 K is a measure of the elastic change in the volume of a body in response to an applied pressure; large K means 
a small change in volume for a given pressure. Y is a measure of the elastic change in the length of the body in 
response to an applied stress; large Y means a small change in length. Both involve stretching or compressing 
bonds. 
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amounts of displacement from equilibrium, the average A will be greater as more 
asymmetry of the PE curve is used. Thus, the smaller is the elastic modulus K, the 
greater is A.; we see that k oc Cv/K. 

If we were to expand U(r) about its minimum value C/min at r = ra, we would ob¬ 
tain the Taylor expansion, 

U(r) = t/min + a2(r - ra)2 + a3(r - rQ)3 H- 

where a2 and a3 are coefficients related to the second and third derivatives of U at ra. 
The term (r — ra) is missing because we are expanding a series about Umi„ where 
dU I dr = 0. The t/min and the a2(r — ra)2 term give a parabola about t/mjn which is a 
symmetric curve around ra and therefore does not lead to thermal expansion. It is the 
a3 term that gives the expansion because it leads to asymmetry. Thus the amount of ex¬ 
pansion k also depends on the amount of asymmetry with respect to symmetry, that is 
a2/a2. Thus, 

k oc 
& 3 Cy 

^1~K 

The ratio of a3 and a2 depends on the nature of the bond. A simplified analytical 
treatment (beyond the scope of this book) gives A as 

k [4.82] 

where y is a “constant” called the Gruneisen parameter. The Gruneisen constant y is 
approximately —(r0a2)/(2a2) where r0 is the equilibrium atomic separation, and thus 
y represents the asymmetry of the energy curve. The approximate equally simply em¬ 
phasizes the number of assumptions that are typically made in deriving Equation 4.82. 
The Gruneisen parameter y is of the order of unity for many materials; experimentally, 
y = 0.1 — 1. We can also write the Gruneisen law in terms of the molar heat capacity 
Cm (heat capacity per mole) or the specific heat capacity cs (heat capacity per unit 
mass). If p is the density, and Mat is the atomic mass of the constituent atoms of the 
crystal, then 

Gruneisen’s 

law 
k = 3y 

pGm 
M*K 

[4.83] 

We can calculate the Gruneisen parameter y for materials that possess different 
types of interatomic bonding and thereby obtain typical values for y. This would also 
expose the extent of unharmonicity in the bonding. Given the experimental values for 
k, K, p and cs, the Gruneisen parameters have been calculated from Equation 4.83 and 
are listed in Table 4.6. An interesting feature of the results is that the experimental y 

values, within a factor of 2-3, are about the same, at least to an order of magnitude. 
Equation 4.83 also indicates that the k versus T behavior should resemble the Cv ver¬ 
sus T dependence, which is approximately the case if one compares Figure 1.20 with 
Figure 4.45. (K does not change much with temperature.) There is one notable differ¬ 
ence. At very low temperatures k can change sign and become negative for certain 
crystals, whereas Cv cannot. 
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Table 4.6 The Gruneisen parameter for some selected materials with different types of 

interatomic bonding 

Material p (g cm 3) X (x 10~6 KT1) K (GPa) c.v (J kg K-') Y 

Iron (metallic, BCC) 7.9 12.1 170 444 0.20 

Copper (metallic, FCC) 8.96 17 140 380 0.23 

Germanium (covalent) 5.32 6 77 322 0.09 

Glass (covalent-ionic) 2.45 8 70 800 0.10 

NaCl (ionic) 2.16 39.5 28 880 0.19 

Tellurium (mixed) 6.24 18.2 40 202 0.19 

Polystyrene (van der Waals) 1.05 100 3 1200 0.08 

CD Selected Topics and Solved Problems 
--;'Trl~-„T»r-:- 

Selected Topics 

Hall Effect 

Thermal Conductivity 

Thermoelectric Effects in Metals: 

Thermocouples 

Thermal Expansion (Griineisen’s Law) 

Solved Problems 

The Water Molecule 

DEFINING TERMS 

Average energy Eiy of an electron in a metal is deter¬ 

mined by the Fermi-Dirac statistics and the density of 

states. It increases with the Fermi energy and also with 

the temperature. 

Boltzmann statistics describes the behavior of a 

collection of particles (e.g., gas atoms) in terms of 

their energy distribution. It specifies the number of 

particles N(E) with given energy, through N(E) a 

exp(—E/kT), where k is the Boltzmann constant. 

The description is nonquantum mechanical in that 

there is no restriction on the number of particles that 

can have the same state (the same wavefunction) with 

an energy E. Also, it applies when there are only a 

few particles compared to the number of possible 

states, so the likelihood of two particles having the 

same state becomes negligible. This is generally the 

case for thermally excited electrons in the conduction 

band of a semiconductor, where there are many more 

states than electrons. The kinetic energy distribution 

of gas molecules in a tank obeys the Boltzmann 

statistics. 

Cathode is a negative electrode. It emits electrons or 

attracts positive charges, that is, cations. 

Debye frequency is the maximum frequency of lat¬ 

tice vibrations that can exist in a particular crystal. It is 

the cut-off frequency for lattice vibrations. 

Debye temperature is a characteristic temperature 

of a particular crystal above which nearly all the 

atoms are vibrating in accordance with the kinetic 

molecular theory, that is, each atom has an average 

energy (potential + kinetic) of 3kT due to atomic vi¬ 

brations, and the heat capacity is determined by the 

Dulong-Petit rule. 

Density of states g(E) is the number of electron states 

[e.g., wavefunctions, ^/(n, l, mt, m,)] per unit energy 

per unit volume. Thus, g(E) dE is the number of states 

in the energy range E to (E + dE) per unit volume. 
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Density of vibrational states is the number of lattice 

vibrational modes per unit angular frequency range. 

Dispersion relation relates the angular frequency co 

and the wavevector K of a wave. In a crystal lattice, 

the coupling of atomic oscillations leads to a particular 

relationship between co and K which determines the 

allowed lattice waves and their group velocities. The 

dispersion relation is specific to the crystal structure, 

that is, it depends on the lattice, basis, and bonding. 

Effective electron mass ml represents the inertial re¬ 

sistance of an electron inside a crystal against an accel¬ 

eration imposed by an external force, such as the ap¬ 

plied electric field. If fext = eEx is the external 

applied force due to the applied field Ex, then the 

effective mass m* determines the acceleration a of the 

electron by eEx = m*a. This takes into account the 

effect of the internal fields on the motion of the elec¬ 

tron. In vacuum where there are no internal fields, m*e 

is the mass in vacuum me. 

Fermi-Dirac statistics determines the probability of 

an electron occupying a state at an energy level E. This 

takes into account that a collection of electrons must 

obey the Pauli exclusion principle. The Fermi-Dirac 

function quantifies this probability via /(E) = 1 / {1 + 

exp[(£ — EF)/kT]), where £> is the Fermi energy. 

Fermi energy is the maximum energy of the electrons 

in a metal at 0 K. 

Field emission is the tunneling of an electron from the 

surface of a metal into vacuum, due to the application 

of a strong electric field (typically "E > 109V m-1). 

Group velocity is the velocity at which traveling 

waves carry energy. If co is the angular frequency and 

K is the wavevector of a wave, then the group velocity 

vg = dco/dK. 

Harmonic oscillator is an oscillating system, for ex¬ 

ample, two masses joined by a spring, that can be de¬ 

scribed by simple harmonic motion. In quantum me¬ 

chanics, the energy of a harmonic oscillator is 

quantized and can only increase or decrease by a dis¬ 

crete amount tico. The minimum energy of a harmonic 

oscillator is not zero but \hco (see zero-point energy). 

Lattice wave is a wave in a crystal due to coupled os¬ 

cillations of the atoms. Lattice waves may be traveling 

or stationary waves. 

Linear combination of atomic orbitals (LCAO) is a 

method for obtaining the electron wavefunction in the 

molecule from a linear combination of individual 

atomic wavefunctions. For example, when two H atoms 

A and B come together, the electron wavefunctions, 

based on LCAO, are 

fa = f\ j(A) + f\s(B) 

fb = fis(A) - fu(B) 

where fis(A) and f\s(B) are atomic wavefunctions 

centered around the H atoms A and B, respectively. The 

fa and fb represent molecular orbital wavefunctions 

for the electron; they reflect the behavior of the elec¬ 

tron, or its probability distribution, in the molecule. 

Mode or state of lattice vibration is a distinct, inde¬ 

pendent way in which a crystal lattice can vibrate with its 

own particular frequency co and wavevector K. There are 

only a finite number of vibrational modes in a crystal. 

Molecular orbital wavefunction, or simply molecu¬ 

lar orbital, is a wavefunction for an electron within a 

system of two or more nuclei (e.g., molecule). A mo¬ 

lecular orbital determines the probability distribution 

of the electron within the molecule, just as the atomic 

orbital determines the electron’s probability distribu¬ 

tion within the atom. A molecular orbital can take two 

electrons with opposite spins. 

Orbital is a region of space in an atom or molecule 

where an electron with a given energy may be found. 

An orbit, which is a well-defined path for^n-electron, 

cannot be used to describe the whereabouts of the elec¬ 

tron in an atom or molecule because the electron has a 

probability distribution. Orbitals are generally repre¬ 

sented by a surface within which the total probability is 

high, for example, 90 percent. 

Orbital wavefunction, or simply orbital, describes 

the spatial dependence of the electron. The orbital is 

f{r,9,cj>), which depends on n, i, and mt, and the spin 

dependence ms is excluded. 

Phonon is a quantum of lattice vibrational energy of 

magnitude hco, where co is the vibrational angular fre¬ 

quency. A phonon has a momentum h K where K is the 

wavevector of the lattice wave. 

Seebeck effect is the development of a built-in poten¬ 

tial difference across a material as a result of a temper¬ 

ature gradient. If dV is the built-in potential across a 
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temperature difference dT, then the Seebeck coeffi¬ 

cient S is defined as S = dV/dT. The coefficient 

gauges the magnitude of the Seebeck effect. Only the 

net Seebeck voltage difference between different met¬ 

als can be measured. The principle of the thermocouple 

is based on the Seebeck effect. 

State is a possible wavefunction for the electron 

that defines its spatial (orbital) and spin properties, 

for example, x/r(n, l, mt, ms) is a state of the elec¬ 

tron. From the Schrodinger equation, each state cor¬ 

responds to a certain electron energy E. We thus 

speak of a state with energy E, state of energy E, or 

even an energy state. Generally there may be more 

than one state i(r with the same energy E. 

QUESTIONS AND PROBLEMS 
4.1 Phase of an atomic orbital 

a. What is the functional form of a Is wavefunction Sketch schematically the atomic wave- 
function ir\s(r) as a function of distance from the nucleus. 

b. What is the total wavefunction 'I'i* (r, r)? 

c. What is meant by two wavefunctions Vu (A) and ty\s (B) that are out of phase? 

d. Sketch schematically the two wavefunctions ^is(A) and ^\s(B) at one instant. 

4.2 Molecular orbitals and atomic orbitals Consider a linear chain of four identical atoms representing 
a hypothetical molecule. Suppose that each atomic wavefunction is a Is wavefunction. This system of 
identical atoms has a center of symmetry C with respect to the center of the molecule (midway between 
the second and the third atom), and all molecular wavefunctions must be either symmetric or antisym¬ 
metric about C. 

a. Using the LCAO principle, sketch the possible molecular orbitals. 

b. Sketch the probability distributions | |2. 

c. If more nodes in the wavefunction lead to greater energies, order the energies of the molecular orbitals. 

Note: The electron wavefunctions, and the related probability distributions, in a simple potential energy 
well that are shown in Figure 3.15 can be used as a rough guide toward finding the appropriate njetect> 
lar wavefunctions in the four-atom symmetric molecule. For example, if we were to smooth the electron 
potential energy in the four-atom molecule into a constant potential energy, that is, generate a potential 
energy well, we should be able to modify or distort, without flipping, the molecular orbitals to somewhat 
resemble to ^4 sketched in Figure 3.15. Consider also that the number of nodes increases from none 
for to three for ^4 in Figure 3.15. 

4.3 Diamond and tin Germanium, silicon, and diamond have the same crystal structure, that of diamond. 
Bonding in each case involves sp3 hybridization. The bonding energy decreases as we go from C to Si 
to Ge, as noted in Table 4.7. 

a. What would you expect for the bandgap of diamond? How does it compare with the experimental 
value of 5.5 eV? 

b. Tin has a tetragonal crystal structure, which makes it different than its group members, diamond, 
silicon, and germanium. 

1. Is it a metal or a semiconductor? 

2. What experiments do you think would expose its semiconductor properties? 

Thermionic emission is the emission of electrons 

from the surface of a heated metal. 

Work function is the minimum energy needed to free 

an electron from the metal at a temperature of absolute 

zero. It is the energy separation of the Fermi level from 

the vacuum level. 

Zero-point energy is the minimum energy of a har¬ 

monic oscillator Even at 0 K, an oscillator in 

quantum mechanics will have a finite amount of en¬ 

ergy which is its zero-point energy. Heisenberg’s un¬ 

certainty principle does not allow a harmonic oscillator 

to have zero energy because that would mean no un¬ 

certainty in the momentum and consequently an infi¬ 

nite uncertainty in space (Apx Ax > h). 
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Table 4.7 

Property Diamond Silicon Germanium Tin 

Melting temperature, °C 3800 1417 937 232 
Covalent radius, nm 0.077 0.117 0.122 0.146 
Bond energy, eV 3.60 1.84 1.7 1.2 

First ionization energy, eV 11.26 8.15 7.88 7.33 
Bandgap, eV ? 1.12 0.67 ? 

4.4 Compound III-V Semiconductors Indium as an element is a metal. It has a valency of III. Sb as an 
element is a metal and has a valency of V. InSb is a semiconductor, with each atom bonding to four 
neighbors, just like in silicon. Explain how this is possible and why InSb is a semiconductor and not a 
metal alloy. (Consider the electronic structure and sp3 hybridization for each atom.) 

4.5 Compound II-VI semiconductors CdTe is a semiconductor, with each atom bonding to four neigh¬ 
bors, just like in silicon. In terms of covalent bonding and the positions of Cd and Te in the Periodic 
Table, explain how this is possible. Would you expect the bonding in CdTe to have more ionic character 
than that in III-V semiconductors? 

*4.6 Density of states for a two-dimensional electron gas Consider a two-dimensional electron gas in 
which the electrons are restricted to move freely within a square area a2 in the xy plane. Following the 
procedure in Section 4.5, show that the density of states g(E) is constant (independent of energy). 

4.7 Fermi energy of Cu The Fermi energy of electrons in copper at room temperature is 7.0 eV. The elec¬ 
tron drift mobility in copper, from Hall effect measurements, is 33 cm2 V-1 s^1. 

a. What is the speed vp of conduction electrons with energies around Ep in copper? By how many 
times is this larger than the average thermal speed thermal of electrons, if they behaved like an ideal 
gas (Maxwell-Boltzmann statistics)? Why is vp much larger than thermal? 

b. What is the De Broglie wavelength of these electrons? Will the electrons get diffracted by the lat¬ 
tice planes in copper, given that interplanar separation in Cu = 2.09 A? (Solution guide: Diffrac¬ 
tion of waves occurs when Id sin# = X, which is the Bragg condition. Find the relationship be¬ 
tween X and d that results in sin# > 1 and hence no diffraction.) 

c. Calculate the mean free path of electrons at Ep and comment. 

4.8 Free electron model, Fermi energy, and density of states Na and Au both are valency I metals; that 
is, each atom donates one electron to the sea of conduction electrons. Calculate the Fermi energy (in eV) 
of each at 300 K and 0 K. Calculate the mean speed of all the conduction electrons and also the speed of 
electrons at Ep for each metal. Calculate the density of states as states per eV cm“3 at the Fermi energy 
and also at the center of the band, to be taken at (Ep + 3>)/2. (See Table 4.1 for <I>.) 

4.9 Fermi energy and electron concentration Consider the metals in Table 4.8 from Groups I, II, and III 
in the Periodic Table. Calculate the Fermi energies at absolute zero, and compare the values with the ex¬ 
perimental values. What is your conclusion? 

Table 4.8 

Metal Group Mat Density (gem 3) 
EF(e\) 

[Calculated] 

*V(eV) 
[Experiment] 

Cu I 63.55 8.96 — 6.5 
Zn II 65.38 7.14 _ 11.0 
A1 III 27 2.70 — 11.8 
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4.10 Temperature dependence of the Fermi energy 

a. Given that the Fermi energy for Cu is 7.0 eV at absolute zero, calculate the £> at 300 K. What is 
the percentage change in Ep and what is your conclusion? 

b. Given the Fermi energy for Cu at absolute zero, calculate the average energy and mean speed per 
conduction electron at absolute zero and 300 K, and comment. 

4.11 X-ray emission spectrum from sodium Structure of the Na atom is [Ne]3s1. Figure 4.59a shows the 
formation of the 3s and 3p energy bands in Na as a function of intemuclear separation. Figure 4.59b 
shows the X-ray emission spectrum (called the L-band) from crystalline sodium in the soft X-ray range 
as explained in Example 4.6. 

a. From Figure 4.59a, estimate the nearest neighbor equilibrium separation between Na atoms in the 
crystal if some electrons in the 3s band spill over into the states in the 3 p band. 

b. Explain the origin of the X-ray emission band in Figure 4.59b and the reason for calling it the 
L-band. 

c. What is the Fermi energy of the electrons in Na from Figure 4.59b? 

d. Taking the valency of Na to be I, what is the expected Fermi energy and how does it compare with 
that in part (c)? 

> 
w 

8? 
<u 

W 

0 0.5 1 1.5 

Intemuclear distance (nm) Photon energy (eV) 

(a) (b) 

Figure 4.59 

(a) Energy band formation in sodium. 

(b) /.-emission band of X-rays from sodium. 
I SOURCE: (b) Data extracted from W. M. Cadt and D. H. Tomboulian, Phys. Rev., 59, 1941, p. 381. 

4.12 Conductivity of metals in the free electron model Consider the general expression for the conduc¬ 
tivity of metals in terms of the density of states g(Ef) at Ep given by 

a = \e2v\ rg(EF) 

Show that within the free electron theory, this reduces to a = e2nxlmey the Drude expression. 

Mean free path of conduction electrons in a metal 
mean free path i and conductivity o are related by 

_€1_tnV 

Show that within the free electron theory, the 

87 x 1( 

Mean free path 

and conductivity 

in the free 

electron model 
Calculate t for Cu and Au, given each metal’s resistivity of 17 nQ m and 22 n£2 m, respectively, and that 
each has a valency of I. We are used to seeing a oc n. Can you explain why 0 oc n2^ ? 
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I „w temnerature heat capacity of metals The heat capacity of conduction electrons in a metal is 

orooortional to the temperature. The overall heat capacity of a metal is determined by the lattice heat ca- 

SXTal lowest temper K SB, is Ute increase in the ,«al 
Lns (per unit volume) and ST is the increase in the temperature of the metal as a result of heat addtt . 

E, has been calculated as follows: 

Heat capacity of 

conduction 

electrons 

oo 7f 2 \ 

I EgiE)f(E) dE Et(0) + ^ J 1 

. prp F mi is the total energy per unit volume at 0 K, n is the concentration of conduction electrons, and 

EFO is the Fermi energy at 0 K. Show that the heat capacity per unit volume due to conduction electrons 

in the free electron model of metals is 

n2 ( nk2\rr T [4.84] it2 / nk2 \ 
T WoJ 

where v - (jt2/2)(nk2/EFO). Calculate Ce for Cu, and then using the Debye equation for the lattice 

^"ap^i. find C, L £« 10 K. Compare ft. two values tmd — Wha,«the compmrs^ , 
F 7 o m r — r i (o/Mnt) where p is the density m g cm , ^volume 1S m 

room temperature? (Note. Cvoiume — Cmoiarlp/*«at;» v 
J K-1 cm-3, and Mat is the atomic mass in g mol- .) 

4 15 Secondary emission and photomultiplier tubes When an energetic (high velocity) projectile elec- 

frcolX^Ja material with a low work function, it can cause electron emission from the surf ce. 

This phenomenon is called secondary emission. It is fruitfully utilized in photomultiplier tubes as - 

lustrated in Figure 4.60. The tube is evacuated and has a photocathode for receiving Phot°n^s “ 

An incoming photon causes photoemission of an electron from the photocathode material. Thede 

^thenaTcelerated by a posidve voltage applied to an electrode called a dynode which ha.a work func- 

tion that easily allows secondary emission. When the accelerated electron strikes dynode D,, it c 

“Lse severed electrons All these electrons, the original and the secondary electrons, are then acceler- 

leased by seeoudary emission. The seconder; emission process continues at each dynode 
MeSe called the anode, is reached whereupon all the electrons are collected which re nils m a 

sitmal. Typical applications for photomultiplier tubes are in X-ray and nuclear medical instrumen 
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(X-ray CT scanner, positron CT scanner, gamma camera, etc.), radiation measuring instruments (e.g., 
radon counter). X-ray diffractometers, and radiation measurement in high-energy physics research. 

A particular photomultiplier tube has the following properties. The photocathode is made of a 
semiconductor-type material with Eg ^ 1 eV, an electron affinity x of 0.4 eV, and a quantum efficiency 
of 20 percent at 400 nm. Quantum efficiency is defined as the number of photoemitted electrons per 
absorbed photon. The diameter of the photocathode is 18 mm. There are 10 dynode electrodes and an ap¬ 
plied voltage of 1250 V between the photocathode and anode. Assume that this voltage is equally dis¬ 
tributed among all the electrodes. 

a. What is the longest threshold wavelength for the phototube? 

b. What is the maximum kinetic energy of the emitted electron if the photocathode is illuminated with 
a 400 nm radiation? 

c. What is the emission current from the photocathode at 400 nm illumination? 

d. What is the KE of the electron as it strikes the first dynode electrode? 

e. It has been found that the tube has a gain of 106 electrons per incident photon. What is the average 
number of secondary electrons released at each dynode? 

4.16 Thermoelectric effects and Ep Consider a thermocouple pair that consists of gold and aluminum. 
One junction is at 100 °C and the other is at 0 °C. A voltmeter (with a very large input resistance) is in¬ 
serted into the aluminum wire. Use the properties of Au and A1 in Table 4.3 to estimate the emf regis¬ 
tered by the voltmeter and identify the positive end. 

4.17 The thermocouple equation Although inputting the measured emf for V in the thermocouple equa¬ 
tion V = a AT -I- b(AT)2 leads to a quadratic equation, which in principle can be solved for AT, in 

general AT is related to the measured emf via 

AT = a\V + a^V1 + 03V3 -I- 

with the coefficients a\, ai, etc., determined for each pair of TCs. By carrying out a Taylor’s expansion 
of the TC equation, find the first two coefficients a\ and ai. Using an emf table for the K-type thermo¬ 
couple or Figure 4.33, evaluate a\ and a2. 

4.18 Thermionic emission A vacuum tube is required to have a cathode operating at 800 °C and providing 
an emission (saturation) current of 10 A. What should be the surface area of the cathode for the two ma¬ 
terials in Table 4.9? What should be the operating temperature for the Th on W cathode, if it is to have 
the same surface area as the oxide-coated cathode? 

Table 4.9 

B« (Am 2 K 2) <t> (eV) 

Th on W 3 x 104 2.6 
Oxide coating 100 1 

4.19 Field-assisted emission in MOS devices Metal-oxide-semiconductor (MOS) transistors in micro¬ 
electronics have a metal gate on an Si02 insulating layer on the surface of a doped Si crystal. Consider 
this as a parallel plate capacitor. Suppose the gate is an Al electrode of area 50 fim x 50 (im and has a 
voltage of 10 V with respect to the Si crystal. Consider two thicknesses for the SiC>2, (a) 100 A and (b) 
40 A, where (1 A = 10“10 m). The work function of Al is 4.2 eV, but this refers to electron emission into 
vacuum, whereas in this case, the electron is emitted into the oxide. The potential energy barrier d># be¬ 
tween Al and SiC>2 is about 3.1 eV, and the field-emission current density is given by Equation 4.46a and 
b. Calculate the field-emission current for the two cases. For simplicity, take m€ to be the electron mass 
in free space. What is your conclusion? 
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Fowler- 

No rdheimfield 

emission current 

4.20 CNTs and field emission The electric field at the tip of a sharp emitter is much greater than the “applied 
field,” £<?. The applied field is simply defined as Vg Id where d is the distance from the cathode tip to the 
gate or the grid; it represents the average nearly uniform field that would exist if the tip were replaced by a 
flat surface so that the cathode and the gate would almost constitute a parallel plate capacitor. The tip ex¬ 
periences an effective field £ that is much greater than T,0, which is expressed by a field enhancement fac¬ 
tor that depends on the geometry of the cathode-gate emitter, and the shape of the emitter; £ = jfl£0. 
Further, we can take O & d>3//2 in Equation 4.46. The final expression for the field-emission current 
density then becomes 

J = 
1.5 x 106 

O 
02£«ex p 

6.44 x 107<I>3/2\ 

Wo ) [4.85] 

where d> is in eV. For a particular CNT emitter, d> = 4.9 eV. Estimate the applied field required to 
achieve a field-emission current density of 100 mA cm2 in the absence of field enhancement (ft = 1) 
and with a field enhancement of ft = 800 (typical value for a CNT emitter). 

4.21 Nordheim-Fowler field emission in an FED Table 4.10 shows the results of I-V measurements on a 
Motorola FED microemitter. By a suitable plot show that the I-V follows the Nordheim-Fowler emis¬ 
sion characteristics. Can you estimate d>? 

Table 4.10 Tests on a Motorola FED micro field emitter 

40.0 42 44 46 48 50 52 53.8 56.2 58.2 60.4 
/emission 0.40 2.14 9.40 20.4 34.1 61 93.8 142.5 202 279 367 

4.22 Lattice waves and heat capacity 

a. Consider an aluminum sample. The nearest separation 2R (2 x atomic radius) between the Al-Al 
atoms in the crystal is 0.286 nm. Taking a to be 2/?, and given the sound velocity in A1 as 
5100 m s"1, calculate the force constant ft in Equation 4.66. Use the group velocity vg from the 
actual dispersion relation, Equation 4.55, to calculate the “sound velocity” at wavelengths of 
A = 1mm, 1 fxm, and 1 nm. What is your conclusion? 

b. Aluminum has a Debye temperature of 394 K. Calculate its specific heat at 30 °C (Darwin, 
Australia) and at — 30 °C (January, Resolute Nunavut, Canada). 

c. Calculate the specific heat capacity of a germanium crystal at 25 °C and compare it with the ex¬ 
perimental value in Table 2.5. 

4.23 Specific heat capacity of GaAs and InSb 

a. The Debye temperature To of GaAs is 344 K. Calculate its specific heat capacity at 300 K and at 
30 °C. 

b. For InSb, 7b = 203 K. Calculate the room temperature specific heat capacity of InSb and compare 
it with the value expected from the Dulong-Petit rule (T > 7b). 

4.24 Thermal conductivity 

a. Given that silicon has a Young’s modulus of about 110 GPa and a density of 2.3 g cm-3, calculate 
the mean free path of phonons in Si at room temperature. 

b. Diamond has the same crystal structure as Si but has a very large thermal conductivity, about 
1000 W m_l K_1 at room temperature. Given that diamond has a specific heat capacity cs of 
0.50 J K-1 g_1, Young’s modulus Y of 830 GPa, and density p of 0.35 g cm-3, calculate the mean 
free path of phonons in diamond. 

c. GaAs has a thermal conductivity of 200 W m”1 K-1 at 100 K and 80 W m-1 K~! at 200 K. Cal¬ 
culate its thermal conductivity at 25 °C and compare with the experimental value of 44 W m"1 
K-1. (Hint: Take k ocT n in the temperature region of interest; see Figure 4.48.) 
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*4.25 Overlapping bands Consider Cu and Ni with their density of states as schematically sketched in Fig¬ 
ure 4.61. Both have overlapping 3d and 45 bands, but the 3d band is very narrow compared to the 45 
band. In the case of Cu the band is full, whereas in Ni, it is only partially filled. 

a. In Cu, do the electrons in the 3d band contribute to electrical conduction? Explain. 

b. In Ni, do electrons in both bands contribute to conduction? Explain. 

c. Do electrons have the same effective mass in the two bands? Explain. 

d. Can an electron in the 45 band with energy around Ep become scattered into the 3d band as a re¬ 
sult of a scattering process? Consider both metals. 

e. Scattering of electrons from the 45 band to the 3d band and vice versa can be viewed as an additional 
scattering process. How would you expect the resistivity of Ni to compare with that of Cu, even 
though Ni has two valence electrons and nearly the same density as Cu? In which case would you ex¬ 
pect a stronger temperature dependence for the resistivity? 

> E > E 

Figure 4.61 Density of states and electron filling in Cu and Ni. 

*4.26 Overlapping bands at Ep and higher resistivity Figure 4.61 shows the density of states for Cu (or 
Ag) and Ni (or Pd). The d band in Cu is filled, and only electrons at Ep in the s band make a contribu¬ 
tion to the conductivity. In Ni, on the other hand, there are electrons at Ep both in the s and d bands. The 
d band is narrow compared with the s band, and the electron’s effective mass in this d band is large; for 

simplicity, we will assume m* is “infinite” in this band. Consequently, the d-band electrons cannot be 
accelerated by the field (infinite m*), have a negligible drift mobility, and make no contribution to the 
conductivity. Electrons in the s band can become scattered by phonons into the d band, and hence be¬ 
come relatively immobile until they are scattered back into the s band when they can drift again. Con¬ 
sider Ni and one particular conduction electron at Ep starting in the s band. Sketch schematically the 
magnitude of the velocity gained \vx — ux\ from the field Ex as a function of time for 10 scattering 
events; vx and ux are the instantaneous and initial velocities, and |i>* — ux | increases linearly with time, 
as the electron accelerates in the s band and then drops to zero upon scattering. If rss is the mean time 
for 5 to 5-band scattering, zsd is for 5-band to d-band scattering, ids is for d-band to 5-band scattering, 

assume the following sequence of 10 events in your sketch: zss, zSSi zsd, r^, zSSl zsd, *ds, zSSt zsd, 
What would a similar sketch look like for Cu? Suppose that we wish to apply Equation 4.27. What does 
g(Ep) and r represent? What is the most important factor that makes Ni more resistive than Cu? Con¬ 
sider Matthiessen’s rule. (Note: There are also electron spin related effects on the resistivity of Ni, but 
for simplicity these have been neglected.) 

4.27 Griineisen’s law A1 and Cu both have metallic bonding and the same crystal structure. Assuming that 
the Gruneisen’s parameter y for A1 is the same as that for Cu, y = 0.23, estimate the linear expansion 
coefficient X of Al, given that its bulk modulus K = 75 GPa, cs = 900 J K“1 kg-1, and p = 2.7 g cm-3. 
Compare your estimate with the experimental value of 23.5 x 10-6 K_1. 



First point-contact transistor invented at Bell Labs. 

I SOURCE: Courtesy of Bell Labs. 

The three inventors of the transistor: William Shockley (seated), John Bardeen (left), and Walter Brattain 
(right) in 1948; the three inventors shared the Nobel prize in 1956. 

I SOURCE: Courtesy of Bell Labs. 



CHARTER 

Semiconductors 

In this chapter we develop a basic understanding of the properties of intrinsic and 
extrinsic semiconductors. Although most of our discussions and examples will be 
based on Si, the ideas are applicable to Ge and to the compound semiconductors such 
as GaAs, InP, and others. By intrinsic Si we mean an ideal perfect crystal of Si that has 
no impurities or crystal defects such as dislocations and grain boundaries. The crystal 
thus consists of Si atoms perfectly bonded to each other in the diamond structure. At 
temperatures above absolute zero, we know that the Si atoms in the crystal lattice will 
be vibrating with a distribution of energies. Even though the average energy of the vi¬ 
brations is at most 3kT and incapable of breaking the Si-Si bond, a few of the lattice 
vibrations in certain crystal regions may nonetheless be sufficiently energetic to “rup¬ 
ture” a Si-Si bond. When a Si-Si bond is broken, a “free” electron is created that can 
wander around the crystal and also contribute to electrical conduction in the presence 
of an applied field. The broken bond has a missing electron that causes this region to 
be positively charged. The vacancy left behind by the missing electron in the bonding 
orbital is called a hole. An electron in a neighboring bond can readily tunnel into this 
broken bond and fill it, thereby effectively causing the hole to be displaced to the orig¬ 
inal position of the tunneling electron. By electron tunneling from a neighboring bond, 
holes are therefore also free to wander around the crystal and also contribute to elec¬ 
trical conduction in the presence of an applied field. In an intrinsic semiconductor, the 
number of thermally generated electrons is equal to the number of holes (broken 
bonds). In an extrinsic semiconductor, impurities are added to the semiconductor that 
can contribute either excess electrons or excess holes. For example, when an impurity 
such as arsenic is added to Si, each As atom acts as a donor and contributes a free elec¬ 
tron to the crystal. Since these electrons do not come from broken bonds, the numbers 
of electrons and holes are not equal in an extrinsic semiconductor, and the As-doped Si 
in this example will have excess electrons. It will be an n-type Si since electrical con¬ 
duction will be mainly due to the motion of electrons. It is also possible to obtain a 
p-type Si crystal in which hole concentration is in excess of the electron concentration 
due to, for example, boron doping. 

373 
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5.1 INTRINSIC SEMICONDUCTORS 

5.1.1 Silicon Crystal and Energy Band Diagram 

The electronic configuration of an isolated Si atom is [Ne]3.s2p2. However, in the 
vicinity of other atoms, the 3s and 3p energy levels are so close that the interactions 
result in the four orbitals %fr(3s),^(3px),\(r(3py), and \{r(3pz) mixing together to form 
four new hybrid orbitals (called i/rhyb) that are symmetrically directed as far away from 
each other as possible (toward the comers of a tetrahedron). In two dimensions, we can 
simply view the orbitals pictorially as in Figure 5.1a. The four hybrid orbitals, V'hyb. 
each have one electron so that they are half-occupied. Therefore, a V^hyb orbital of one 
Si atom can overlap a V'hyb orbital of a neighboring Si atom to form a covalent bond 
with two spin-paired electrons. In this manner one Si atom bonds with four other Si 
atoms by overlapping the half-occupied t/rhyb orbitals, as illustrated in Figure 5.1b. 

% .orbitals 

Si ion core (+4e) 

(a) 

Conduction band (CB) 
Empty of electrons at 0 K. 

* 

Band gap = E 

I 

Valence band (VB) 
Full of elections at 0 K. 

(b) (c) 

Figure 5.1 
(a) A simplified two-dimensional illustration of a Si atom with four hybrid orbitals i^yb. Each orbital 
has one electron. 

(b) A simplified two-dimensional view of a region of the Si crystal showing covalent bonds. 

(c) The energy band diagram at absolute zero of temperature. 
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Figure 5.2 A twodimensional pictorial view of the Si 

crystal showing covalent bonds as two lines where each 

line is a valence electron. 

Each Si-Si bond corresponds to a bonding orbital, \J/B, obtained by overlapping two 
neighboring V'hyb orbitals. Each bonding orbital (i/rfi) has two spin-paired electrons and 
is therefore full. Neighboring Si atoms can also form covalent bonds with other Si 
atoms, thus forming a three-dimensional network of Si atoms. The resulting structure 
is the Si crystal in which each Si atom bonds with four Si atoms in a tetrahedral 
arrangement. The crystal structure is that of a diamond, which was described in 
Chapter 1. We can imagine the Si crystal in two dimensions as depicted in Figure 5.1b. 
The electrons in the covalent bonds are the valence electrons. 

The energy band diagram of the silicon crystal is shown in Figure 5.1c.1 The 
vertical axis is the electron energy in the crystal. The valence band (VB) contains 
those electronic states that correspond to the overlap of bonding orbitals (irB). 
Since all the bonding orbitals (ij/B) are full with valence electrons in the crystal, 
the VB is also full with these valence electrons at a temperature of absolute zero. 
The conduction band (CB) contains electronic states that are at higher energies, 
those corresponding to the overlap of antibonding orbitals. The CB is separated 
from the VB by an energy gap Eg, called the bandgap. The energy level Ev marks 
the top of the VB and Ec marks the bottom of the CB. The energy distance from Ec 

to the vacuum level, the width of the CB, is called the electron affinity x- The gen¬ 
eral energy band diagram in Figure 5.1c applies to all crystalline semiconductors 
with appropriate changes in the energies. 

The electrons shown in the VB in Figure 5.1c are those in the covalent bonds be¬ 
tween the Si atoms in Figure 5.1b. An electron in the VB, however, is not localized to 
an atomic site but extends throughout the whole solid. Although the electrons appear 
localized in Figure 5.1b, at the bonding orbitals between the Si atoms this is not, in fact, 
true. In the crystal, the electrons can tunnel from one bond to another and exchange 
places. If we were to work out the wavefunction of a valence electron in the Si crystal, 
we would find that it extends throughout the whole solid. This means that the electrons 
in the covalent bonds are indistinguishable. We cannot label an electron from the start 
and say that the electron is in the covalent bond between these two atoms. 

We can crudely represent the silicon crystal in two dimensions as shown in 
Figure 5.2. Each covalent bond between Si atoms is represented by two lines corre¬ 
sponding to two spin-paired electrons. Each line represents a valence electron. 

I ’ The formation of energy bands in the silicon crystal was described in detail in Chapter 4. 
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5.1.2 Electrons and Holes 

The only empty electronic states in the silicon crystal are in the CB (Figure 5.1c). An 
electron placed in the CB is free to move around the crystal and also respond to an 
applied electric field because there are plenty of neighboring empty energy levels. An 
electron in the CB can easily gain energy from the field and move to higher energy lev¬ 
els because these states are empty. Generally we can treat an electron in the CB as if it 
were free within the crystal with certain modifications to its mass, as explained later in 
Section 5.1.3. 

Since the only empty states are in the CB, the excitation of an electron from the 
VB requires a minimum energy of Eg. Figure 5.3a shows what happens when a pho¬ 
ton of energy hv > Eg is incident on an electron in the VB. This electron absorbs the 
incident photon and gains sufficient energy to surmount the energy gap Eg and reach 
the CB. Consequently, a free electron and a “hole,” corresponding to a missing elec¬ 
tron in the VB, are created. In some semiconductors such as Si and Ge, the photon ab¬ 
sorption process also involves lattice vibrations (vibrations of the Si atoms), which we 
have not shown in Figure 5.3b. 

Although in this specific example a photon of energy hv > Eg creates an electron- 
hole pair, this is not necessary. In fact, in the absence of radiation, there is an electron- 
hole generation process going on in the sample as a result of thermal generation. Due 
to thermal energy, the atoms in the crystal are constantly vibrating, which corresponds 
to the bonds between the Si atoms being periodically deformed. In a certain region, the 
atoms, at some instant, may be moving in such a way that a bond becomes over¬ 
stretched, as pictorially depicted in Figure 5.4. This will result in the overstretched 
bond rupturing and hence releasing an electron into the CB (the electron effectively 

Electron energy 

(a) (b) 

Figure 5.3 
(a) A photon with an energy greater than Eg can excite an electron from the VB to the CB. 

(b) When a photon breaks a Si-Si bond, a free electron and a hole in the Si-Si bond 
are created. 
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Figure 5.4 Thermal vibrations of atoms can break 

bonds and thereby create electron-hole pairs. 

becomes “free”). The empty electronic state of the missing electron in the bond is what 
we call a hole in the valence band. The free electron, which is in the CB, can wander 
around the crystal and contribute to the electrical conduction when an electric field is 
applied. The region remaining around the hole in the VB is positively charged because 
a charge of — e has been removed from an otherwise neutral region of the crystal. This 
hole, denoted as h+, can also wander around the crystal as if it were free. This is be¬ 
cause an electron in a neighboring bond can “jump,” that is, tunnel, into the hole to fill 
the vacant electronic state at this site and thereby create a hole at its original position. 
This is effectively equivalent to the hole being displaced in the opposite direction, as 
illustrated in Figure 5.5a. This single step can reoccur, causing the hole to be further 
displaced. As a result, the hole moves around the crystal as if it were a free positively 
charged entity, as pictured in Figure 5.5a to d. Its motion is quite independent from that 
of the original electron. When an electric field is applied, the hole will drift in the di¬ 
rection of the field and hence contribute to electrical conduction. It is now apparent 
that there are essentially two types of charge carriers in semiconductors: electrons and 
holes. A hole is effectively an empty electronic state in the VB that behaves as if it were 
a positively charged “particle” free to respond to an applied electric field. 

When a wandering electron in the CB meets a hole in the VB, the electron has 
found an empty state of lower energy and therefore occupies the hole. The electron 
falls from the CB to the VB to fill the hole, as depicted in Figure 5.5e and f. This is 
called recombination and results in the annihilation of an electron in the CB and a 
hole in the VB. The excess energy of the electron falling from CB to VB in certain 
semiconductors such as GaAs and InP is emitted as a photon. In Si and Ge the excess 
energy is lost as lattice vibrations (heat). 

It must be emphasized that the illustrations in Figure 5.5 are pedagogical pictorial 
visualizations of hole motion based on classical notions and cannot be taken too 
seriously, as discussed in more advanced texts (see also Section 5.11). We should 
remember that the electron has a wavefunction in the crystal that is extended and not 
localized, as the pictures in Figure 5.5 imply. Further, the hole is a concept that corre¬ 
sponds to an empty valence band wavefunction that normally has an electron. Again, 
we cannot localize the hole to a particular site, as the pictures in Figure 5.5 imply. 
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Figure 5.5 A pictorial illustration of a hole in the valence band wandering around the crystal due to the tunneling 
of electrons from neighboring bonds. 

5.1.3 Conduction in Semiconductors 

When an electric field is applied across a semiconductor as shown in Figure 5.6, the 
energy bands bend. The total electron energy E is KE + PE, but now there is an addi¬ 
tional electrostatic PE contribution that is not constant in an applied electric field. A 
uniform electric field Ex implies a linearly decreasing potential V(x), by virtue of 
{dV/dx) = —'Ex, that is, V = — Ax + B. This means that the PE, — eV(x), of the 
electron is now eAx — eB, which increases linearly across the sample. All the energy 
levels and hence the energy bands must therefore tilt up in the x direction, as shown in 
Figure 5.6, in the presence of an applied field. 

Under the action of Ex, the electron in the CB moves to the left and immediately 
starts gaining energy from the field. When the electron collides with a thermal vibra¬ 
tion of a Si atom, it loses some of this energy and thus “falls” down in energy in the 
CB. After the collision, the electron starts to accelerate again, until the next collision, 
and so on. We recognize this process as the drift of the electron in an applied field, as 
illustrated in Figure 5.6. The drift velocity Vde of the electron is neEx where /xe is the 
drift mobility of the electron. In a similar fashion, the holes in the VB also drift in an 
applied field, but here the drift is along the field. Notice that when a hole gains energy, 
it moves “down” in the VB because the potential energy of the hole is of opposite sign 
to that of the electron. 
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Figure 5.6 When an electric field is 
applied, electrons in the CB and holes in the 
VB can drift and contribute to the 
conductivity. 

(a) A simplified illustration of drift in £x. 

(b) Applied field bends the energy bands 
since the electrostatic PE of the electron is 
-eV(x) and V(x) decreases in the direction of 

^X/ whereas PE increases. 

Since both electrons and holes contribute to electrical conduction, we may write 
the current density J, from its definition, as 

J = envde + epvdh 15.1 ] 

where n is the electron concentration in the CB, p is the hole concentration in the VB, 
and vde and vdh are the drift velocities of electrons and holes in response to an applied 
electric field £*, Thus, 

vde ~ and vdh — pfi'Ex [5.2] 

where pe and ph are the electron and hole drift mobilities. In Chapter 2 we derived the 
drift mobility pe of the electrons in a conductor as 

exe 
Pe = - [5.3] 

me 

where xe is the mean free time between scattering events and me is the electronic mass. 
The ideas on electron motion in metals can also be applied to the electron motion in the 
CB of a semiconductor to rederive Equation 5.3. We must, however, use an effective 
mass m* for the electron in the crystal rather than the mass me in free space. A “free” 
electron in a crystal is not entirely free because as it moves it interacts with the potential 
energy (PE) of the ions in the solid and therefore experiences various internal forces. 
The effective mass m* accounts for these internal forces in such a way that we can relate 
the acceleration a of the electron in the CB to an external force Eext (e.g., -<?£*) by 
Fext = m*a just as we do for the electron in vacuum by Fext = mea. In applying the 

Electron and 

hole drift 

velocities 
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Fext = m*a type of description to the motion of the electron, we are assuming, of course, 
that the effective mass of the electron can be calculated or measured experimentally. It 
is important to remark that the true behavior is governed by the solution of the 
Schrodinger equation in a periodic lattice (crystal) from which it can be shown that we 
can indeed describe the inertial resistance of the electron to acceleration in terms of an 
effective mass m*. The effective mass depends on the interaction of the electron with its 
environment within the crystal. 

We can now speculate on whether the hole can also have a mass. As long as we 
view mass as resistance to acceleration, that is, inertia, there is no reason why the hole 
should not have a mass. Accelerating the hole means accelerating electrons tunneling 
from bond to bond in the opposite direction. Therefore it is apparent that the hole will 
have a nonzero finite inertial mass because otherwise the smallest external force will 
impart an infinite acceleration to it. If we represent the effective mass of the hole in the 
VB by ml, then the hole drift mobility will be 

[5.4] 

Conductivity 

of a 

semiconductor 

where xh is the mean free time between scattering events for holes. 
Taking Equation 5.1 for the current density further, we can write the conductivity 

of a semiconductor as 

a — enpe + epph [5.5] 

where n and p are the electron and hole concentrations in the CB and VB, respectively. 
This is a general equation valid for all semiconductors. 

5.1A Electron and Hole Concentrations 

The general equation for the conductivity of a semiconductor, Equation 5.5, depends 
on n, the electron concentration, and p, the hole concentration. How do we determine 
these quantities? We follow the procedure schematically shown in Figure 5.7a to d in 
which the density of states is multiplied by the probability of a state being occupied 
and integrated over the entire CB for n and over the entire VB for p. 

We define gCb(E) as the density of states in the CB, that is, the number of states 
per unit energy per unit volume. The probability of finding an electron in a state with 
energy E is given by the Fermi-Dirac function/(£), which is discussed in Chapter 4. 
Then gCb(E)f(E) is the actual number of electrons per unit energy per unit volume 
tie{E) in the CB. Thus, 

nE dE = gch(E)f(E) dE 

is the number of electrons in the energy range E to E + dE. Integrating this from the 
bottom (Ec) to the top (Ec + x) of the CB gives the electron concentration n, number 
of electrons per unit volume, in the CB. In other words, 

fEc+X fEc+X 
n= nE(E)dE = gch(E)f(E)dE 

Jec Jec 
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(a) (b) (c) (d) 

g(E)~(E-Ec)m 

Figure 5.7 
(a) Energy band diagram. 

(b) Density of states (number of states per unit energy per unit volume). 

(c) Fermi-Dirac probability function (probability of occupancy of a state). 

(d) The product of g(E) and f(E) is the energy density of electrons in the CB (number of electrons 

per unit energy per unit volume). The area under nf(E) versus E is the electron concentration. 

We will assume that (Ec — EF) kT (i.e., £Visat least a few kT below Ec) so that 

f{E) « exp[—(£ - EF)/kT] 

We are thus replacing Fermi-Dirac statistics by Boltzmann statistics and thereby in¬ 
herently assuming that the number of electrons in the CB is far less than the number of 
states in this band. 

Further, we will take the upper limit to be E = oo rather than Ec + x since / (E) 
decays rapidly with energy so that gch(E)f(E) -► 0 near the top of the band. Further¬ 
more, since gcb(E)f (E) is significant only close to Ec, we can use 

9cb(E) 
(tt8\/2) m *3/2 

h3 
-(£ EC)X/2 

for an electron in a three-dimensional PE well without having to consider the exact 
form of gch(E) across the whole band. Thus 

n 
(7T 8\/2) m 

*3/2 

b? i. 

00 

(E - Ec)1/2 exp 
T (E-EF)m 
>- L kT J dE 

Density of 

states in 

conduction 

band 
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which leads to 

The result of the integration in Equation 5.6 seems to be simple, but it is an 
approximation as it assumes that (Ec - £>) ;$> kT. Nc is a temperature-dependent 
constant, called the effective density of states at the CB edge. Equation 5.6 can be 
interpreted as follows. If we take all the states in the conduction band and replace 
them with an effective concentration Nc (number of states per unit volume) at Ec 
and then multiply this simply by the Boltzmann probability function, f(Ec) = 
exp[—(Ec — EF)/kT], we obtain the concentration of electrons at Ec, that is, in the 
conduction band. Nc is thus an effective density of states at the CB band edge. 

We can carry out a similar analysis for the concentration of holes in the VB. Mul¬ 
tiplying the density of states gvb(E) in the VB with the probability of occupancy by a 
hole [1 — /(£)], that is, the probability that an electron is absent, gives pe, the hole 
concentration per unit energy. Integrating this over the VB gives the hole concentration 

= f V Pe dE = f V gfvb(£)[(l — /(£)] dE 
J o •'O 

With the assumption that EF is a few kT above Ev, the integration simplifies to 

p = Nv exp 
(Ef — Ev) 

kT 
[5.8] 

where Nv is the effective density of states at the VB edge and is given by 

[5.9] 

We can now see the virtues of studying the density of states g(E) as a function of 
energy E and the Fermi-Dirac function /(£). Both were central factors in deriving the 
expressions for n and p. There are no specific assumptions in our derivations, except 
for Ef being a few kT away from the band edges, which means that Equations 5.6 and 
5.8 are generally valid. 

The general equations that determine the free electron and hole concentrations are 
thus given by Equations 5.6 and 5.8. It is interesting to consider the product np, 

\t c Ef) (Ef Ev) (Ec Ev) 
np = Nc exp-—- Nv exp-—- = NCNV exp-—- 

or 

np = NcNvex p(~ [5.10] 
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where Eg = Ec — Ev is the bandgap energy. First, we note that this is a general ex¬ 
pression in which the right-hand side, NCNV exp(—Eg/kT), is a constant that depends 
on the temperature and the material properties, for example, Eg, and not on the posi¬ 
tion of the Fermi level. In the special case of an intrinsic semiconductor, n = p, which 
we can denote as , the intrinsic concentration, so that NCNV exp(—Eg/kT) must be 
n]. From Equation 5.10 we therefore have 

np = n] — NCNV exp [5.11] 
Mass action 

law 

This is a general equation that is valid as long as we have thermal equilibrium. 
External excitation, such as photogeneration, is excluded. It states that the product np 

is a temperature-dependent constant. If we somehow increase the electron concentra¬ 
tion, then we inevitably reduce the hole concentration. The constant «,• has a special 
significance because it represents the free electron and hole concentrations in the in¬ 
trinsic material. 

An intrinsic semiconductor is a pure semiconductor crystal in which the electron 
and hole concentrations are equal. By pure we mean virtually no impurities in the 
crystal. We should also exclude crystal defects that may capture carriers of one sign 
and thus result in unequal electron and hole concentrations. Clearly in a pure semicon¬ 
ductor, electrons and holes are generated in pairs by thermal excitation across the 
bandgap. It must be emphasized that Equation 5.11 is generally valid and therefore 
applies to both intrinsic and nonintrinsic (n # p) semiconductors. 

When an electron and hole meet in the crystal, they “recombine.” The electron 
falls in energy and occupies the empty electronic state that the hole represents. Con¬ 
sequently, the broken bond is “repaired,” but we lose two free charge carriers. 
Recombination of an electron and hole results in their annihilation. In a semiconduc¬ 
tor we therefore have thermal generation of electron-hole pairs by thermal excitation 
from the VB to the CB, and we also have recombination of electron-hole pairs that re¬ 
moves them from their conduction and valence bands, respectively. The rate of re¬ 
combination R will be proportional to the number of electrons and also to the number 
of holes. Thus 

R oc np 

The rate of generation G will depend on how many electrons are available for ex¬ 
citation at Ev, that is, Nv; how many empty states are available at Ec, that is, Afc; and 
the probability that the electron will make the transition, that is, exp(—Eg/kT), so that 

G oc NCNV exp 

Since in thermal equilibrium we have no continuous increase in n or p, we must 
have the rate of generation equal to the rate of recombination, that is, G — R. This is 
equivalent to Equation 5.11. 

In sketching the diagrams in Figure 5.7a to d to illustrate the derivation of the ex¬ 
pressions for n and p (in Equations 5.6 and 5.8), we assumed that the Fermi level £> 
is somewhere around the middle of the energy bandgap. This was not an assumption in 
the mathematical derivations but only in the sketches. From Equations 5.6 and 5.8 we 
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Fermi energy 
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that is, EFi is right in the middle of the energy gap. Normally, however, the effective 
masses will not be equal and the Fermi level will be slightly shifted down from midgap 
by an amount |kT In(m*/mp, which is quite small compared with \Eg. For Si and 
Ge, the hole effective mass (for density of states) is slightly smaller than the electron 
effective mass, so EFi is slightly below the midgap. 

The condition np = nj means that if we can somehow increase the electron concen¬ 
tration in the CB over the intrinsic value—for example, by adding impurities into the Si 
crystal that donate additional electrons to the CB—we will then have n > p. The semi¬ 
conductor is then called n-type. The Fermi level must be closer to Ec than Ev, so that 

Ec — Ep < Ep — Ev 

and Equations 5.6 and 5.8 yield n > p. The np product always yields nj in thermal 
equilibrium in the absence of external excitation, for example, illumination. 

It is also possible to have an excess of holes in the VB over electrons in the CB, 
for example, by adding impurities that remove electrons from the VB and thereby gen¬ 
erate holes. In that case Ep is closer to Ev than to EC.A semiconductor in which p > n 
is called a p-type semiconductor. The general band diagrams with the appropriate 
Fermi levels for intrinsic, n-type, and p-type semiconductors (e.g., i-Si, n-Si, and p-Si, 
respectively) are illustrated in Figure 5.8a to c. 

It is apparent that if we know where EF is, then we have effectively determined n and 
p by virtue of Equations 5.6 and 5.8. We can view Ep as a material property that is related 
to the concentration of charge carriers that contribute to electrical conduction. Its signifi¬ 
cance, however, goes beyond n and p. It also determines the energy needed to remove an 
electron from the semiconductor. The energy difference between the vacuum level (where 
the electron is free) and EF is the work function <J> of the semiconductor, the energy re¬ 
quired to remove an electron even though there are no electrons at Ep in a semiconductor. 

also note that the position of Fermi level is important in determining the electron and 
hole concentrations. It serves as a “mathematical crank” to determine n and p. 

We first consider an intrinsic semiconductor, n = p = n,-. Setting p = n, in Equa¬ 
tion 5.8, we can solve for the Fermi energy in the intrinsic semiconductor, EFi, that is, 

w* "p[-(£"rg’?] = (NM''2 exp(-|?) 
which leads to 

1 1 SNA 
Efi = E„+-Es- j [5.12] 

Furthermore, substituting the proper expressions for Nc and Nv we get 

1 3 /m*\ 
Epi = Ev ~Eg — —kT In[ —- I [5.13] 

2 4 \mh/ 

It is apparent from these equations that if Nc = Nv or m* = m*h, then 

1 
Epi — Ev -Eg 
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Figure 5.8 Energy band diagrams for 

(a) intrinsic, (b) n-type, and (c) p-type 

semiconductors. 

In all cases, np = r?j. 

The Fermi level can also be interpreted in terms of the potential energy per electron 
for electrical work similar to the interpretation of electrostatic PE. Just as e AV is the elec¬ 
trical work involved in taking a charge e across a potential difference AV, any difference 
in EF in going from one end of a material (or system) to another is available to do an 
amount A£> of external work. A corollary to this is that if electrical work is done on the 
material, for example, by passing a current through it, then the Fermi level is not uniform 
in the material. A EF then represents the work done per electron. For a material in thermal 
equilibrium and not subject to any external excitation such as illumination or connections 
to a voltage supply, the Fermi level in the material must therefore be uniform, AEF = 0. 

What is the average energy of an electron in the conduction band of a semiconduc¬ 
tor? Also, what is the mean speed of an electron in the conduction band? We note that the 
concentration of electrons with energies E to E + dE is nE(E) dE or gcb(E)f(E) dE. 
Thus the average energy of electrons in the CB, by definition of the mean, is 

Ecb - f Egcb(E)f(E)dE 
n Jc b 

where the integration must be over the CB. Substituting the proper expressions for 
gch{E) and f(E) in the integrand and carrying out the integration from Ec to the top 
of the band, we find the very simple result that 

3 
Ec b = Ec + -kT [5.14] 

Thus, an electron in the conduction band has an average energy of §kT above Ec. 
Since we know that an electron at Ec is “free” in the crystal, \kT must be its average 
kinetic energy. 

This is just like the average kinetic energy of gas atoms (such as He atoms) in a tank 
assuming that the atoms (or the “particles”) do not interact, that is, they are independent. 
We know from the kinetic theory that the statistics of a collection of independent gas 
atoms obeys the classical Maxwell-Boltzmann description with an average energy given 
by | kT. We should also recall that the description of electron statistics in a metal involves 
the Fermi-Dirac function, which is based on the Pauli exclusion principle. In a metal the 
average energy of the conduction electron is | EF and, for all practical purposes, temper¬ 
ature independent. We see that the collective electron behavior is completely different in 
the two solids. We can explain the difference by noting that the conduction band in a 

Average 

electron 

energy in CB 
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Table 5.1 Selected typical properties of Ge, Si, and GaAs at 300 K 

Eg. 

(eV) 
X 

(eV) 

Nc 

(cm'3) 

Nv 

(cm-3) 

nt 

(cm"3) 

fie 

(cm2 V-1 s_I) (cm2 V-1 s-1) m*e/me ml/me 

Ge 0.66 4.13 1.04 x 1059 6.0 x 1018 2.3 x 10'3 3900 1900 0.12 a 

0.56b 

0.23 a 

0.40 b 

16 

Si 1.10 4.01 2.8 x 1019 1.2 x 1019 1.0 x 1010 1350 450 0.26a 

1.08fe 

0.38a 

0.606 

11.9 

GaAs 1.42 4.07 4.7 x 1017 7 x 1018 2.1 x 106 8500 400 0.067«,b 0.40a 

0.506 

13.1 

NOTE: Effective mass related to conductivity (labeled a) is different than that for density of states (labeled b). In numerous textbooks, n< is 
taken as 1.45 x 1010 cm-3 and is therefore the most widely used value of nf for Si, though the correct value is actually 1.0 x 1010 cm"3. 
(M. A. Green, J. Appl. Phys., 67, 2944, 1990.) 

semiconductor is only scarcely populated by electrons, which means that there are many 
more electronic states than electrons and thus the likelihood of two electrons trying to oc¬ 
cupy the same electronic state is practically nil. We can then neglect the Pauli exclusion 
principle and use the Boltzmann statistics. This is not the case for metals where the num¬ 
ber of conduction electrons and the number of states are comparable in magnitude. 

Table 5.1 is a comparative table of some of the properties of the important semi¬ 
conductors, Ge, Si, and GaAs. 

EXAMPLE 5.1 INTRINSIC CONCENTRATION AND CONDUCTIVITY OF Si Given that the density of states 
related effective masses of electrons and holes in Si are approximately 1.08me and 0.60me, 
respectively, and the electron and hole drift mobilities at room temperature are 1350 and 
450 cm2 V -1 s -1, respectively, calculate the intrinsic concentration and intrinsic resistivity of Si. 

SOLUTION 

We simply calculate the effective density of states Nc and Nv by 

3/2 
/ Z.JL ril IL L t 

Nc 

Thus 

and 

/ 2nm*kT \ /2jrm*itr\ 

-2HH “d *-2Hh 
3/2 

Nt 
2jt(1.08 x 9.1 x lO"31 kg)(1.38 x 10"23 J K") (300 K) -23 T ir-l> 

(6.63 x lO"34 Js)2 

= 2.81 x 1025 m-3 or 2.81 x 1019 cm-3 

'1 
3/2 

Nv = 2^ 
2;r(0.60 x 9.1 x 1CT31 kg)(1.38 x 10-23 J K_1)(300 K) -23 T v-M 13/2 

(6.63 x 10-34 J s)2 

= 1.16 x 1025 m-3 or 1.16 x 1019 cm-3 

The intrinsic concentration is 

n, = (N,N,)'/2 cxp(-^ 
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so that 

nt = [(2.81 x 1019 cm_3)(1.16 x 1019 

= 1.0 x 1010cm-3 

The conductivity is 

cm 3)]1/2exp 
(1.10 eV) 

2(300 K)(8.62 x 10“5 eVK 

that is. 

a = en(ie + ep(xh = ensile + /xh) 

or - (1.6 x 10-19 C)(1.0 x 1010 cm~3)(1350 + 450 cm2 V-1 s"1) 

= 2.9 x 10"® Cl'1 cm-1 

The resistivity is 

p = — = 3.5 x 105 £2 cm 
o 

Although we calculated = 1.0 >< 1010 cm-3, the most widely used n, value in the literature 
has been 1.45 x 1010 cm-3. The difference arises from a number of factors but, most impor¬ 
tantly, from what exact value of the effective hole mass should be used in calculating N„. 
Henceforth we will simply use2 n,- = 1.0 x 1010 cm-3, which seems to be the “true” value. 

MEAN SPEED OF ELECTRONS IN THE CB Estimate the mean speed of electrons in the con¬ 
duction band of Si at 300 K. If a is the magnitude of lattice vibrations, then the kinetic theory 
predicts a2 oc T; or stated differently, the mean energy associated with lattice vibrations (pro¬ 
portional to a2) increases with kT. Given the temperature dependence of the mean speed of 
electrons in the CB, what should be the temperature dependence of the drift mobility? The 
effective mass of an electron in the conduction band is 0.26me. 

EXAMPLE 5.2 

SOLUTION 

The fact that the average KE, \m*e v2, of an electron in the CB of a semiconductor is \ kT means 
that the effective mean speed ve must be 

1/2 r(3 x 1.38 x 10~23 _ /3Ary/i _ r i 
\ m* ) (0.26 x 9.1 x 10 

x 300)11/2 

>-31) J 

2.3 x 105 m s -l 

The effective mean speed ve is called the thermal velocity vth of the electron. 
The mean free time r of the electron between scattering events due to thermal vibrations of 

the atoms is inversely proportional to both the mean speed ve of the electron and the scattering 
cross section of the thermal vibrations, that is, 

1 
r oc-— 

ve(na2) 

where a is the amplitude of the atomic thermal vibrations. But, ve a Tl/1 and (jta2) cxkT, so 
that r a T~i/2 and consequently pe a 7’_3/2. 

Experimentally pe is not exactly proportional to r~3/2 but to T~2A, a higher power index. 
The effective mass used in the density of states calculations is actually different than that used 
in transport calculations such as the mean speed, drift mobility, and so on. 

2 The correct value appears to be 1.0 x 10'° cm-3 as discussed by M. A. Green (J. Appl. Phys., 67, 2944, 1990) 
and A. B. Sproul and M. A. Green (J. Appl. Phys., 70, 846, 1991). 
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5.2 EXTRINSIC SEMICONDUCTORS 
By introducing small amounts of impurities into an otherwise pure Si crystal, it is possi¬ 
ble to obtain a semiconductor in which the concentration of carriers of one polarity is 
much in excess of the other type. Such semiconductors are referred to as extrinsic semi¬ 
conductors vis-&-vis the intrinsic case of a pure and perfect crystal. For example, by 
adding pentavalent impurities, such as arsenic, which have a valency of more than four, 
we can obtain a semiconductor in which the electron concentration is much larger than 
the hole concentration. In this case we will have an n-type semiconductor. If we add 
trivalent impurities, such as boron, which have a valency of less than four, then we find 
that we have an excess of holes over electrons. We now have a p-type semiconductor. 
How do impurities change the concentrations of holes and electrons in a semiconductor? 

5.2.1 a-Type Doping 

Consider what happens when small amounts of a pentavalent (valency of 5) element 
from Group V in the Periodic Table, such as As, P, Sb, are introduced into a pure Si 
crystal. We only add small amounts (e.g., one impurity atom for every million host 
atoms) because we wish to surround each impurity atom by millions of Si atoms, 
thereby forcing the impurity atoms to bond with Si atoms in the same diamond crystal 
structure. Arsenic has five valence electrons, whereas Si has four. Thus when an As 
atom bonds with four Si atoms, it has one electron left unbonded. It cannot find a bond 
to go into, so it is left orbiting around the As atom, as illustrated in Figure 5.9. The As+ 
ionic center with an electron e~ orbiting it is just like a hydrogen atom in a silicon en¬ 
vironment. We can easily calculate how much energy is required to free this electron 
away from the As site, thereby ionizing the As impurity. Had this been a hydrogen 
atom in free space, the energy required to remove the electron from its ground state 
(at n — 1) to far away from the positive center would have been given by —En with 
n = 1. The binding energy of the electron in the H atom is thus 

4 
mee 

£‘=-£‘=i^=i3-6ev 

Figure 5.9 Arsenic-doped Si crystal. 

The four valence electrons of As allow it to bond just 
like Si, but the fifth electron is left orbiting the As site. 
The energy required to release the free fifth electron 
into the CB is very small. 
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If we wish to apply this to the electron around an As+ core in the Si crystal envi¬ 
ronment, we must use ers0 instead of e0, where er is the relative permittivity of silicon, 
and also the effective mass of the electron m* in the silicon crystal. Thus, the binding 
energy of the electron to the As+ site in the Si crystal is 

E Si 
b 

my 
Se2s2h2 

(13.6 eV) (£)(?) [5.15] 

With er — 11.9 and m* & for silicon, we find Efl = 0.032 eV, which is com¬ 
parable with the average thermal energy of atomic vibrations at room temperature, 
~3kT (~0.07 eV). Thus, the fifth valence electron can be readily freed by thermal 
vibrations of the Si lattice. The electron will then be “free” in the semiconductor, or, in 
other words, it will be in the CB. The energy required to excite the electron to the CB 
is therefore 0.032 eV. The addition of As atoms introduces localized electronic states 
at the As sites because the fifth electron has a localized wavefunction, of the hydro- 
genic type, around As+. The energy Ed of these states is 0.032 eV below Ec because 
this is how much energy is required to take the electron away into the CB. Thermal ex¬ 
citation by the lattice vibrations at room temperature is sufficient to ionize the As atom, 
that is, excite the electron from Ed into the CB. This process creates free electrons but 
immobile As+ ions, as shown in the energy band diagram of an n-type semiconductor 
in Figure 5.10. Because the As atom donates an electron into the CB, it is called a 
donor atom. Ed is the electron energy around the donor atom. Ed is close to Ec, so the 
spare fifth electron from the dopant can be readily donated to the CB. If Nd is the donor 
atom concentration in the crystal, then provided that Nd n,-, at room temperature the 
electron concentration in the CB will be nearly equal to Nd, that is n & Nd. The hole 
concentration will be p = nj/Nd> which is less than the intrinsic concentration be¬ 
cause a few of the large number of electrons in the CB recombine with holes in the VB 
so as to maintain np = nj. The conductivity will then be 

a = eNdpe + e % eNdpe [5.16] 

Electron 

binding 

energy at a 

donor 

n-type 
conductivity 

At low temperatures, however, not all the donors will be ionized and we need to 
know the probability, denoted as fd(Ed), of finding an electron in a state with energy 

Figure 5.10 Energy band diagram for an 
n-type Si doped with 1 ppm As. 

There are donor energy levels just below Ec 
around As+ sites. 

"T f f r- 
As atom sites every 106 Si atoms 

■> x Distance into 
crystal 
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Occupation 

probability at 

a donor 

Ea at a donor. This probability function is similar to the Fermi-Dirac function /{Ed) 
except that it has a factor of \ multiplying the exponential term. 

fd(Ed) « 
1 

i , 1 \{Ed-EF) 1 

2 L kT J 

[5.17] 

The factor \ is due to the fact that the electron state at the donor can take an elec¬ 
tron with spin either up or down but not both3 (once the donor has been occupied, a 
second electron cannot enter this site). Thus, the number of ionized donors at a tem¬ 
perature T is given by 

Nj = Nd 'x (probability of not finding an electron at Ed) 

= Nd[ 1 - fd(Ed)] 

Nd 

, , „ (EF-EdY 1 + 2expL tr 
[5.18] 

5.2.2 p-Type Doping 

We saw that introducing a pentavalent atom into a Si crystal results in n-type doping be¬ 
cause the fifth electron cannot go into a bond and escapes from the donor into the CB by 
thermal excitation. By similar arguments, we should anticipate that doping a Si crystal 
with a trivalent atom (valency of 3) such as B, Al, Ga, or In will result in ap-type Si crys¬ 
tal. We consider doping Si with small amounts of B as shown in Figure 5.11a. Because 
B has only three valence electrons, when it shares them with four neighboring Si atoms, 
one of the bonds has a missing electron, which of course is a hole. A nearby electron can 
tunnel into this hole and displace the hole further away from the boron atom. As the hole 
moves away, it gets attracted by the negative charge left behind on the boron atom and 
therefore takes an orbit around the B~ ion, as shown in Figure 5.11b. The binding energy 
of this hole to the B- ion can be calculated using the hydrogenic atom analogy as in the 
n-type Si case. This binding energy turns out to be very small, ~0.05 eV, so at room 
temperature the thermal vibrations of the lattice can free the hole away from the B- site. 
A free hole, we recall, exists in the VB. The escape of the hole from the B- site involves 
the B atom accepting an electron from a neighboring Si-Si bond (from the VB), which 
effectively results in the hole being displaced away and its eventual escape to freedom in 
the VB. The B atom introduced into the Si crystal therefore acts as an electron acceptor 
and, because of this, it is called an acceptor impurity. The electron accepted by the 
B atom comes from a nearby bond. On the energy band diagram, an electron leaves the 
VB and gets accepted by a B atom, which becomes negatively charged. This process 
leaves a hole in the VB that is free to wander away, as illustrated in Figure 5.12. 

It is apparent that doping a silicon crystal with a trivalent impurity results in a 
p-type material. We have many more holes than electrons for electrical conduction 

I 3 The proof con be found in advanced solid-state physics texts. 
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(a) (b) 

Figure 5.11 Boron-doped Si crystal. 

B has only three valence electrons. When it substitutes for a Si atom, one of its bonds 

has an electron missing and therefore a hole, as shown in (a). The hole orbits around 

the B- site by the tunneling of electrons from neighboring bonds, as shown in (b). 
Eventually, thermally vibrating Si atoms provide enough energy to free the hole from 
the B~ site into the VB, as shown. 

Electron energy 

Figure 5.12 Energy band 
diagram for a p-type Si doped with 

1 ppm B. 

There are acceptor energy levels Ea 

just above Ev around B~ sites. These 
acceptor levels accept electrons from 

the VB and therefore create holes in 
the VB. 

since the negatively charged B atoms are immobile and hence cannot contribute to the 
conductivity. If the concentration of acceptor impurities Na in the crystal is much 
greater than the intrinsic concentration nh then at room temperature all the acceptors 
would have been ionized and thus p & Na. The electron concentration is then deter¬ 
mined by the mass action law, n = nf/Na, which is much smaller than p, and conse¬ 
quently the conductivity is simply given by cr = eNafih. 

Typical ionization energies for donor and acceptor atoms in the silicon crystal are 
summarized in Table 5.2. / 
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Table 5.2 Examples of donor and acceptor ionization energies (eV) in Si 

Donors Acceptors 

p As Sb B A1 Ga 

0.045 0.054 0.039 0.045 0.057 0.072 

5.2.3 Compensation Doping 

Compensation 

doping 

What happens when a semiconductor contains both donors and acceptors? Com¬ 
pensation doping is a term used to describe the doping of a semiconductor with both 
donors and acceptors to control the properties. For example, a p-type semiconductor 
doped with Na acceptors can be converted to an n-type semiconductor by simply 
adding donors until the concentration Nd exceeds Na. The effect of donors compen¬ 
sates for the effect of acceptors and vice versa. The electron concentration is then 
given by Nd — Na provided the latter is larger than nt. When both acceptors and 
donors are present, what essentially happens is that electrons from donors recombine 
with the holes from the acceptors so that the mass action law np = nf is obeyed. Re¬ 
member that we cannot simultaneously increase the electron and hole concentrations 
because that leads to an increase in the recombination rate that returns the electron 
and hole concentrations to satisfy np = nj. When an acceptor atom accepts a valence 
band electron, a hole is created in the VB. This hole then recombines with an elec¬ 
tron from the CB. Suppose that we have more donors than acceptors. If we take the 
initial electron concentration as n — Nd, then the recombination between the elec¬ 
trons from the donors and Na holes generated by Na acceptors results in the electron 
concentration reduced by Na to n = Nd — Na. By a similar argument, if we have 
more acceptors than donors, the hole concentration becomes p — Na — Nd, with 
electrons from Nd donors recombining with holes from Na acceptors. Thus there are 
two compensation effects: 

n2 

1. More donors: Nd — lVa » n, n = (Nd - Na) and p — ——L—— 
(Nd - Na) 

2. More acceptors: Na — Nd ^ n{ p = (Na — Nd) and n =-!- 
(Na - Nd) 

These arguments assume that the temperature is sufficiently high for donors and 
acceptors to have been ionized. This will be the case at room temperature. At low tem¬ 
peratures, we have to consider donor and acceptor statistics and the charge neutrality 
of the whole crystal, as in Example 5.8. 

EXAMPLE 5.3 RESISTIVITY OF INTRINSIC AND DOPED Si Find the resistance of a 1 cm3 pure silicon crystal. 
What is the resistance when the crystal is doped with arsenic if the doping is 1 in 109, that is, 
1 part per billion (ppb) (note that this doping corresponds to one foreigner living in China)? 
Given data: Atomic concentration in silicon is 5 x 1022 cm"3, n( = 1.0 x 10'° cm-3, 
pe = 1350 cm2 V-1 s-1, and Ph = 450 cm2 V-1 s_I. 
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SOLUTION 

For the intrinsic case, we apply 

o — en/Ae + epfih = en(pe + ph) 

so or = (1.6 x 10"19 C)(1.0 x 1010 cm"3)(1350 + 450 cm2 V-1 s-1) 

= 2.88 x 10~6 S2"1 cm-1 

Since L = 1cm and A = 1 cm2, the resistance is 

L 1 , 
R = — = - = 3.47 x 105 

a A o 
or 347 

When the crystal is doped with 1 in 109, then 

Nsi 5 x 1022 
Nd = = 5 x 1013 cm-3 

109 109 

At room temperature all the donors are ionized, so 

n = Nd = 5 x 1013 cm"3 

The hole concentration is 

(1.0 x 1010)2 

(5 x 1013) 
= 2.0 x 106 cm 3 <£ n, 

Therefore, 

a = enne = (1.6 x 10"19C)(5 x 1013 cm~3)(1350 cm2 V"1 s"1) 

= 1.08 x 10"2 £2_1 cm"1 

L 1 
Further, R — — = — = 92.6 S2 

«tA a 

Notice the drastic fall in the resistance when the crystal is doped with only 1 in 109 atoms. 
Doping the silicon crystal with boron instead of arsenic, but still in amounts of 1 in 109, 

means that Na = 5 x 1013 cm"3, which results in a conductivity of 

a = epph = (1.6 x 10"19 C)(5 x 1013 cm"3)(450cm2 V"1 s~l) 

= 3.6 x 10"3 fl"1 cm"1 

L 1 
Therefore, R = — = — = 278 £2 

a A a 

The reason for a higher resistance with p-type doping compared with the same amount of ra-type 
doping is that/Life < pe. 

COMPENSATION DOPING An «-type Si semiconductor containing 1016 phosphorus (donor) 
atoms cm"3 has been doped with 1017 boron (acceptor) atoms cm"3. Calculate the electron and 
hole concentrations in this semiconductor. 

EXAMPLE 5.4 

SOLUTION 

This semiconductor has been compensation doped with excess acceptors over donors, so 

Na - Nd = 1017 - 1016 = 9 x 1016 cm"3 
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This is much larger than the intrinsic concentration n, = 1.0 x 1010 cm-3 at room tempera¬ 
ture, so 

p = Na - Nd = 9 x 1016 cm-3 

The electron concentration 

P 

(1.0 x 1010cm~3)2 

(9 x 1016 cm-3) 
= 1.1 x 103 cm-3 

Clearly, the electron concentration and hence its contribution to electrical conduction is 
completely negligible compared with the hole concentration. Thus, by excessive boron doping, 
the n-type semiconductor has been converted to a p-type semiconductor. 

EXAMPLE 5.5 THE FERMI LEVEL IN n- AND p-TYPE Si An n-type Si wafer has been doped uniformly with 
1016 antimony (Sb) atoms cm-3. Calculate the position of the Fermi energy with respect to the 
Fermi energy EFi in intrinsic Si. The above n-type Si sample is further doped with 2 x 1017 
boron atoms cm-3. Calculate the position of the Fermi energy with respect to the Fermi energy 
EFi in intrinsic Si. (Assume that T = 300 K, and kT = 0.0259 eV.) 

SOLUTION 

Sb gives n-type doping with Nd = 1016 cm 3, and since Nd » n, (= 1.0 x 1010 cm-3), we have 
16_—3 

For intrinsic Si, 

whereas for doped Si, 

n = Nd = 10 cm 

xr f (Ee-E„) 1 
"'=^eXP[-~J kT 

„ f (Ec-EFn) 1 
n = Nc exp -= Nd 

where EFi and EFn are the Fermi energies in the intrinsic and n-type Si. Dividing the two ex¬ 
pressions. 

Nd 

n{ 

f (Ep„ ~ Epi) 

L kT J 

so that 

EFn — E Fi — k T In (^) = (0.0259 eV,ta(I^li5)=0. 36 eV 
x 1010, 

When the wafer is further doped with boron, the acceptor concentration is 

Na = 2 x 1017 cm-3 > Nd = 1016 cm-3 

The semiconductor is compensation doped and compensation converts the semiconductor to 
p-type Si. Thus 

p = Na - Nd = (2 x 1017 - 1016) = 1.9 x 1017 cm-3 

For intrinsic Si, 

(Epi — Ev 

whereas for doped Si, 

„ r (EFi~Ev) i 
m = iVBexp|^-—-J 

xr f (Epp-Ev)-\ xr xr 
P = Nv exp!-y—-J = Na- Nd !'.r 
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where EFi and EFp are the Fermi energies in the intrinsic and p-type Si, respectively. Dividing 
the two expressions, 

P T (EfP — Epi) ] 

*=en——j 
so that 

/ p \ (1.9 x I017\ 
EFp - E„ = -tr = -(0.0259 y) 

= -0.43 eV 

ENERGY BAND DIAGRAM OF AN n-TYPE SEMICONDUCTOR CONNECTED TO A VOLTAGE 
SUPPLY Consider the energy band diagram for an n-type semiconductor that is connected to a 
voltage supply of V and is carrying a current. The applied voltage drops uniformly along the 
semiconductor, so the electrons in the semiconductor now also have an imposed electrostatic 
potential energy that decreases toward the positive terminal, as depicted in Figure 5.13. The 
whole band structure, the CB and the VB, therefore tilts. When an electron drifts from A toward 

EXAMPLE 5.6 

Figure 5.13 Energy band diagram of an 

n-type semiconductor connected to a voltage 

supply of V volts. 

The whole energy diagram tilts because the 

electron now also has an electrostatic potential 

energy. 
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B, its PE decreases because it is approaching the positive terminal. The Fermi level £> is above 
that for the intrinsic case, £>,. 

We should remember that an important property of the Fermi level is that a change in EF 
within a system is available externally to do electrical work. As a corollary we note that when 
electrical work is done on the system, for example, when a battery is connected to a semicon¬ 
ductor, then EF is not uniform throughout the whole system. A change in EF within a system 
AEf is equivalent to electrical work per electron or eV. EF therefore follows the electrostatic 
PE behavior, and the change in EF from one end to the other, EF(A) — EF(B), is just eV, the 
energy expended in taking an electron through the semiconductor, as shown in Figure 5.13. 
Electron concentration in the semiconductor is uniform, so Ec — EF must be constant from one 
end to the other. Thus the CB, VB, and EF all bend by the same amount. 

5.3 TEMPERATURE DEPENDENCE OF CONDUCTIVITY 

So far we have been calculating conductivities and resistivities of doped semiconduc¬ 
tors at room temperature by simply assuming that n « Nd for n-type and p & Na for 
p-type doping, with the proviso that the concentration of dopants is much greater than 
the intrinsic concentration n,. To obtain the conductivity at other temperatures we have 
to consider two factors: the temperature dependence of the carrier concentration and 
the drift mobility. 

5.3.1 Carrier Concentration Temperature Dependence 

Consider an n-type semiconductor doped with Nd donors per unit volume where 
Nd^> tii. We take the semiconductor down to very low temperatures until its con¬ 
ductivity is practically nil. At this temperature, the donors will not be ionized be¬ 
cause the thermal vibrational energy is insufficiently small. As the temperature is 
increased, some of the donors become ionized and donate their electrons io the CB, 
as shown in Figure 5.14a. The Si-Si bond breaking, that is, thermal excitation from 
Ev to Ec, is unlikely because it takes too much energy. Since the donor ionization 
energy AE = Ec — Ed is very small (<&Eg), thermal generation involves exciting 
electrons from Ed to Ec. The electron concentration at low temperatures is given by 
the expression 

n = (lArA)'/2exp(-M) Wfl 

similar to the intrinsic case, that is, 

n = (NCNV) ^ exp [5.20] 

Equation 5.20 is valid when thermal generation occurs across the bandgap Eg 
from Ev to Ec. Equation 5.19 is the counterpart of Equation 5.20 taking into account 
that at low temperatures the excitation is from Ed to Ec (across AE) and that instead 
of Nv, we have Nd as the number of available electrons. The numerical factor | in 
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T<T T <T<T. T>T 
s S I l 

CB 

(o) r = Ti (b) r = r2 (c) r= r3 

Figure 5.14 

(a) Below T$, the electron concentration is controlled by the ionization of the donors. 

(b) Between Ts and T„ the electron concentration is equal to the concentration of donors 

since they would all have ionized. 

(c) At high temperatures, thermally generated electrons from the VB exceed the number 

of electrons from ionized donors and the semiconductor behaves as if intrinsic. 

Equation 5.19 arises because donor occupation statistics is different by this factor from 
the usual Fermi-Dirac function, as mentioned earlier. 

As the temperature is increased further, eventually all the donors become ion¬ 
ized and the electron concentration is equal to the donor concentration, that is, 
n = Nd, as depicted in Figure 5.14b. This state of affairs remains unchanged until 
very high temperatures are reached, when thermal generation across the bandgap be¬ 
gins to dominate. At very high temperatures, thermal vibrations of the atoms will be 
so strong that many Si-Si bonds will be broken and thermal generation across Eg 
will dominate. The electron concentration in the CB will then be mainly due to ther¬ 
mal excitation from the VB to the CB, as illustrated in Figure 5.14c. But this process 
also generates an equal concentration of holes in the VB. Accordingly, the semicon¬ 
ductor behaves as if it were intrinsic. The electron concentration at these tempera¬ 
tures will therefore be equal to the intrinsic concentration which is given by 
Equation 5.20. 

The dependence of the electron concentration on temperature thus has three 
regions: 

1. Low-temperature range (T < Ts). The increase in temperature at these low 
temperatures ionizes more and more donors. The donor ionization continues until we 
reach a temperature Ts, called the saturation temperature, when all donors have been 
ionized and we have saturation in the concentration of ionized donors. The electron 
concentration is given by Equation 5.19. This temperature range is often referred to as 
the ionization range. 

2. Medium-temperature range (Ts <T < T,). Since nearly all the donors 
have been ionized in this range, n = Nd- This condition remains unchanged until 
T = Ti, when w,, which is temperature dependent, becomes equal to Nd. It is this 
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temperature range Ts < T < Tt that utilizes the n-type doping properties of the semi¬ 
conductor in pn junction device applications. This temperature range is often referred 
to as the extrinsic range. 

3. High-temperature range (T > r,). The concentration of electrons gener¬ 
ated by thermal excitation across the bandgap n, is now much larger than Nj, so the 
electron concentration n = n, (r). Furthermore, as excitation occurs from the VB to 
the CB, the hole concentration p — n. This temperature range is referred to as the 
intrinsic range. 

Figure 5.15 shows the behavior of the electron concentration with temperature in 
an n-type semiconductor. By convention we plot ln(n) versus the reciprocal tempera¬ 
ture T_1. At low temperatures, ln(n) versus T-1 is almost a straight line with a slope 
—(AEjlk), since the temperature dependence of iVc1/2(a I3/4) is negligible com¬ 
pared with the exp(— AE/lkT) part in Equation 5.19. In the high-temperature range, 
however, the slope is quite steep and almost —Eg/2k since Equation 5.20 implies 
that 

and the exponential part again dominates over the T3/2 part. In the intermediate range, 
n is equal to Nj and practically independent of the temperature. 

ln(n) 

Figure 5.15 The temperature dependence of the electron 
concentration in an n-type semiconductor. 

Figure 5.16 The temperature dependence of the intrinsic 
concentration. 
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Figure 5.16 displays the temperature dependence of the intrinsic concentration in 
Ge, Si, and GaAs as log(«j) versus 1/T where the slope of the lines is, of course, a 
measure of the bandgap energy Eg. The log(«4) versus 1 /T graphs can be used to find, 
for example, whether the dopant concentration at a given temperature is more than the 
intrinsic concentration. As we will find out in Chapter 6, the reverse saturation current 
in a/w junction diode depends on «?, so Figure 5.16 also indicates how this saturation 
current varies with temperature. 

SATURATION AND INTRINSIC TEMPERATURES An rc-type Si sample has been doped with 1015 
phosphorus atoms cm-3. The donor energy level for P in Si is 0.045 eV below the conduction 
band edge energy. 

EXAMPLE 5.7 

a. Estimate the temperature above which the sample behaves as if intrinsic. 

b. Estimate the lowest temperature above which most of the donors are ionized. 

SOLUTION 

Remember that n, (T) is highly temperature dependent, as shown in Figure 5.16 so that as T 
increases, eventually at T & Ti,ni becomes comparable to Nd. Beyond Tit rtiiT > 7)) » Nd. 
Thus we need to solve 

ni(Ti) = Nd = 1015 cm-3 

From the log(n,) versus 103/r graph for Si in Figure 5.16, when n, = 1015 cm"3, (103/71) « 
1.85, giving 7} « 541 K or 268 °C. 

We will assume that most of the donors are ionized, say at T Ts, where the extrinsic and 
the extrapolated ionization lines intersect in Figure 5.15: 

"= (I**')' exp(~^)" Nd 
This is the temperature at which the ionization behavior intersects the extrinsic region. In the 
above equation, Nd = 1015 cm-3, AE = 0.045 eV, and Nc <x T3/2, that is, 

/ T \3/2 
NC(TS) = Nc(300K)^j 

Clearly, then, the equation can only be solved numerically. Similar equations occur in a wide 
range of physical problems where one term has the strongest temperature dependence. Here, 
exp(-AEfkTs) has the strongest temperature dependence. First assume Nc is that at 300 K, 
Nc = 2.8 x 1019 cm“3, and evaluate Ts, 

A E 0.045 eV 

(8.62 x_10-5eV K-1) In 
2.8 x lO^cm-3 

2(1.0 x 1015 cm-3). 

54.7 K 

At T = 54.7 K, 

ATC(54.7K) = 1VC(300 K) = 2.18 x 1018cm~3 
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With this new Nc at a lower temperature, the improved Ts is 74.6 K. Since we only need an 
estimate of Ts, the extrinsic range of this semiconductor is therefore from about 75 to 541 K or 
— 198 to about 268 °C. 

EXAMPLE 5.8 

Electron 

TEMPERATURE DEPENDENCE OF THE ELECTRON CONCENTRATION By considering the mass 
action law, charge neutrality within the crystal, and occupation statistics of electronic states, we 
can show that at the lowest temperatures the electron concentration in an n-type semiconductor 
is given by 

concentration 

in the 

ionization 

region where AE = Ec - Ed. Furthermore, at the lowest temperatures, the Fermi energy is midway 
between Ed and Ec. 

There are only a few physical principles that must be considered to arrive at the effect of 
doping on the electron and hole concentrations. For an n-type semiconductor, these are 

1. Charge carrier statistics. 

n = Nc exp 
(Ee-EP)m' 

kT 
HI 

2. Mass action law. 

np = n? |2| 

3. Electrical neutrality of the crystal. We must have the same number of positive and neg¬ 
ative charges: 

P + N2 = n (3) 

where is the concentration of ionized donors. 

4. Statistics of ionization of the dopants. 

Nd = Njx. (probability of not finding an electron at Ed) = iVjfl — fd(Ed)] 

Nd 

- 141 l+2exp|^—J 

Solving Equations 1 to 4 for n will give the dependence of n on T and Nd. For example, 
from the mass action law, Equation 2, and the charge neutrality condition. Equation 3, we get 

This is a quadratic equation in n. Solving this equation gives 

i n i1/2 

*= 2(iV4) + [4(^+)2 + »iJ 

Clearly, this equation should give the behavior of n as a function of T and Nd when we also 
consider the statistics in Equation 4. In the low-temperature region (T < Ts), n] is negligible in 
the expression for n and we have 

_Nd_ 
(EF~Edy 

1 + 2 exp -—- 
L kT J 

n = Nf OH 1 „ r (Br - B,) 1 

2JVjexpL-jfcT J 
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But the statistical description in Equation 1 is generally valid, so multiplying the low- 
temperature region equation by Equation 1 and taking the square root eliminates EF from the 
expression, giving 

To find the location of the Fermi energy, consider the general expression 

n = Nc exp £ - 
(Ee-EFy 

k T 

which must now correspond to n at low temperatures. Equating the two and rearranging to obtain 
Ef we find 

Ef 
Ec + Eg 

2 
+ -kT]n 

2 

which puts the Fermi energy near the middle of A E = Ee — Ed at low temperatures. 

5.3.2 Drift Mobility: Temperature and Impurity Dependence 

The temperature dependence of the drift mobility follows two distinctly different tem¬ 
perature variations. In the high-temperature region, it is observed that the drift mobility 
is limited by scattering from lattice vibrations. As the magnitude of atomic vibrations 
increases with temperature, the drift mobility decreases in the fashion \x oc r_3/2. 
However, at low temperatures the lattice vibrations are not sufficiently strong to be the 
major limitation to the mobility of the electrons. It is observed that at low temperatures 
the scattering of electrons by ionized impurities is the major mobility limiting mecha¬ 
nism and ix oc T3/2, as we will show below. 

We recall from Chapter 2 that the electron drift mobility \x depends on the mean 
free time r between scattering events via 

ex 
»=— 15.21] 

m* 

in which 

1 
r =- 

Sv\hNs 
[5.22] 

where S is the cross-sectional area of the scatterer; v* is the mean speed of the elec¬ 
trons, called the thermal velocity; and Ns is the number of scatterers per unit volume. 
If a is the amplitude ofthe atomic vibrations about the equilibrium, then S = re a2. As 
the temperature increases, so does the amplitude a of the lattice vibrations following 
a2 <xT behavior, as shown in Chapter 2. An electron in the CB is free to wander 
around and therefore has only KE. We also know that the mean kinetic energy per elec¬ 
tron in the CB is \k.T, just as if the kinetic molecular theory could be applied to all 
those electrons in die CB. Therefore, 

1 3 
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Figure 5.17 Scattering of electrons by an ionized 
impurity. 

e KE = \my KE > \PE\ 

so that it* oc Tl/2. Thus the mean time rl between scattering events from lattice vibra¬ 
tions is 

Lattice¬ 
scattering- 
limited 
mobility 

1 
XL — -=- <x - . - cc T 3^2 

(;Ta2)VthNs (T)(T'V) 

;h leads to a lattice vibration scattering limited mobility. 

At low temperatures, scattering of electrons by thermal vibrations of the lattice 
will not be as strong as the electron scattering brought about by ionized donor impuri¬ 
ties. As an electron passes by an ionized donor As+, it is attracted and thus deflected 
from its straight path, as schematically shown in Figure 5.17. This type of scattering of 
an electron is what limits the drift mobility at low temperatures. 

The PE of an electron at a distance r from an As+ ion is due to the Coulombic 
attraction, and its magnitude is given by 

\PE\ = -- 
A7te0err 

If the KE of the electron approaching an As+ ion is larger than its PE at distance r 
from As+, then the electron will essentially continue without feeling the PE and therefore 
without being deflected, and we can say that it has not been scattered. Effectively, due 
to its high KE, the electron does not feel the Coulombic pull of the donor. On the other 
hand, if the KE of the electron is less than its PE at r from As+, then the PE of the 
Coulombic interaction will be so strong that the electron will be strongly deflected. This 
is illustrated in Figure 5.17. The critical radius rc corresponds to Ae case when the elec¬ 
tron is just scattered, which is when KE % \PE (rc) |. But average KE = \kT, soatr = rc 

3 e2 
-kT = \PE(rc)\ = -- 
2 4 ne0£rrc 

from which rc = e2/(6jte0erkT). As the temperature increases, the scattering radius 
decreases. The scattering cross section S = itr2 is thus given by 

S = 
ne 

(6jts0erkT)2 
a T -2 
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Incorporating v± oc T1,1 as well, the temperature dependence of the mean scattering 
time tj between impurities, from Equation 5.22, must be 

I 1 T3/2 
Tj =-a---—-oc- 

SVthNj (T~2)(Tl/2)Nl Nj 

where Nj is the concentration of ionized impurities (all ionized impurities including 
donors and acceptors). Consequently, the ionized impurity scattering limited mobility 
from Equation 5.21 is 

r3/2 
III oc —— [5.24] 

Ni 

Note also that fii decreases with increasing ionized dopant concentration Nf, 
which itself may be temperature dependent. Indeed, at the lowest temperatures, below 
the saturation temperature TSy Nr will be strongly temperature dependent because not 
all the donors would have been fully ionized. 

The overall temperature dependence of the drift mobility is then, simply, the recip¬ 
rocal additions of the /x/ and ixL by virtue of Matthiessen’s rule, that is, 

1 1 1 
— = — + — [5.25] 
{ie fii flL 

so the scattering process having the lowest mobility determines the overall (effective) 
drift mobility. 

The experimental temperature dependence of the electron drift mobility in both 
Ge and Si is shown in Figure 5.18 as a log-log plot for various donor concentrations. 
The slope on this plot corresponds to the index n in oc Tn, The simple theoretical 
sketches in the insets show how /il and pi from Equations 5.23 and 5.24 depend on 
the temperature. For Ge, at low doping concentrations (e.g,, Nj = 1013 cm"3), the 
experiments indicate a /xe oc J_15 type of behavior, which is in agreement with fie 
determined by pL in Equation 5.23. Curves for Si at low-level doping (/x/ negligible) 

Ionized 

impurity 

scattering 

limited 

mobility 

Effective 

mobility 

Figure 5.18 Log-log plot of drift mobility versus 

temperature for n-type Ge and n-type Si samples. 

Various donor concentrations for Si are shown. Nd are in 

cm-3. The upper right inset is the simple theory for lattice 

limited mobility, whereas the lower left inset is the simple 
theory for impurity scattering limited mobility. 

t 
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Figure 5.19 The variation of the 
drift mobility with dopant concentration 
in Si for electrons and holes at 300 K. 

at high temperatures, however, exhibit afieoc t~2 5 type of behavior rather than T~15, 
which can be accounted for in a more rigorous theory. As the donor concentration 
increases, the drift mobility decreases by virtue of /i/ getting smaller. At the highest 
doping concentrations and at low temperatures, the electron drift mobility in Si 
exhibits almost a fie <x J3/2 type of behavior. Similar arguments can be extended to the 
temperature dependence of the hole drift mobility. 

The dependences of the room temperature electron and hole drift mobilities on the 
dopant concentration for Si are shown in Figure 5.19 where, as expected, past a certain 
amount of impurity addition, the drift mobility is overwhelmingly controlled by juj in 
Equation 5.25. 

5.3.3 Conductivity Temperature Dependence 

Electron 

concentration 

in ionization 

region 

The conductivity of an extrinsic semiconductor doped with donors depends on the 
electron concentration and the drift mobility, both of which have been determined 
above. At the lowest temperatures in the ionization range, the electron concentration 
depends exponentially on the temperature by virtue of 

1/2 /i y/2 r (Ec-Ed) l 

which then also dominates the temperature dependence of the conductivity. In the 
intrinsic range at the highest temperatures, the conductivity is dominated by the 
temperature dependence of since 

a = entire + fih) 
/ 

hndrtj is an exponential function of temperature in contrast to /x a T -3/2. In the extrinsic 
temperature range, n — Nd and is constant, so the conductivity follows the temperature 
dependence of the drift mobility. Figure 5.20 shows schematically the semilogarithmic 
plot of the conductivity against the reciprocal temperature where through the extrinsic 
range a exhibits a broad “S” due to the temperature dependence of the drift mobility. 
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Figure 5.20 Schematic 

illustration of the temperature 
dependence of electrical 

conductivity for a doped (n-type) 

semiconductor. 

COMPENSATION-DOPED Si EXAMPLE 5.9 

a. A Si sample has been doped with 1017 arsenic atoms cm"3. Calculate the conductivity of 
the sample at 27 °C (300 K) and at 127 °C (400 K). 

b. The above n-type Si sample is further doped with 9 x 1016 boron atoms cm-3. Calculate 
the conductivity of the sample at 27 °C and 127 °C. 

SOLUTION 

a. The arsenic dopant concentration, Nd = 1017 cm-3, is much larger than the intrinsic con¬ 
centration n,, which means that n = Nd and p = (n2/Nd) <£ n and can be neglected. Thus 
n — 1017 cm-3 and the electron drift mobility at Nd — 1017 cm-3 is 800 cm2 V"1 s-1 from 
the drift mobility versus dopant concentration graph in Figure 5.19, so 

a = enpe + ep(ih = eNd(ie 

= (1.6 x 10”19 C)(1017 cm-3)(800 cm2 V”1 s’"1) = 12.8 ST1 cm"1 

At T = 127 °C = 400 K, 

(ie « 420 cm2 V"1 s"1 

(from the (ie versus T graph in Figure 5.18). Thus 

a = eNd(ie = 6.72 ft-1 cm”1 

b. With further doping we have Na = 9 x 1016 cm-3, so from the compensation effect 

Nd-Na = lx 1017 - 9 x 1016 = 1016 cm”3 

Since Nd — Na » we have an n-type material with n = Nd - Na = 1016 cm”3. But the 
drift mobility now is^about ~ 600 cm2 V”1 s”1 because, even though Nd — Na is now 
1016 cm-3 and not 1017 cm-3, all the donors and acceptors are still ionized and hence still 
scatter the charge carriers. The recombination of electrons from the donors and holes from 
the acceptors does not alter the fact that at room temperature all the dopants will be ionized. 
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Effectively, the compensation effect is as if all electrons from the donors were being 
accepted by the acceptors. Although with compensation doping the net electron concentra¬ 
tion is n = Nd — Na, the drift mobility scattering is determined by (Nd + Na), which in 
this case is 1017 + 9 x 1016 cm-3 = 1.9 x 1017 cm-3, which gives an electron drift mo¬ 
bility of ~600 cm2 V~l s-1 at 300 K and ~400 cm2 V-1 s-1 at 400 K. Then, neglecting the 
hole concentration p — nf/(Nd — Na), we have 

At 300 K, <r = e(Nd - Na)fxe * (1.6 x 1(T19 C)(1016 cm“3)(600 cm2 V"1 s"1) 

= 0.96 a-1 cm"1 

At 400 K, a = e(Nd -Na)ixe * (1.6 x 10"19 C)(1016 cm"3)(400 cm2 V s"1) 

= 0.64 ST1 cm"1 __ \ 

5.3.4 Degenerate and Nondegenerate Semiconductors 

The general exponential expression for the concentration of electron in the CB, 

(Ec- Ef)~I *r~-^ J [5M 
is based on replacing Fermi-Dirac statistics with Boltzmann statistics, which is only 
valid when Ec is several kT above EF. In other words, we assumed that the number of 
states in the CB far exceeds the number of electrons there, so the likelihood of two 
electrons trying to occupy the same state is almost nil. This means that the Pauli 
exclusion principle can be neglected and the electron statistics can be described by the 
Boltzmann statistics. Nc is a measure of the density of states in the CB. The Boltzmann 
expression for n is valid only when n «; Nc. Those semiconductors for which n «: Nc 
and p «: Nv are termed nondegenerate semiconductors. They essentially follow all 
the discussions above and exhibit all the normal semiconductor properties outlined 
above. 

When the semiconductor has been excessively doped with donors, then n may be so 
large, typically 1019-102° cm-3, that it may be comparable to or greater than Nc. In that 
case the Pauli exclusion principle becomes important in the electron statistics and we 
have to use the Fermi-Dirac statistics. Equation 5.26 for n is then no longer valid. Such 
a semiconductor exhibits properties that are more metal-like than semiconductor-like; 
for example, the resistivity follows p oc.T. Semiconductors that have n > Nc or 
p > Nv are called degenerate semiconductors. 

The large carrier concentration in a degenerate semiconductor is due to its 
heavy doping. For example, as the donor concentration in an n-type semiconductor 
is increased, at sufficiently high doping levels, the donor atoms become so close to 
each other that theirdrblfals overlap to form a narrow energy band that overlaps and 
becomes part of the conduction band. Ec is therefore slightly shifted down and Eg 
becomes slightly narrower. The valence electrons from the donors fill the band 
from Ec. This situation is reminiscent of the valence electrons filling overlapping 
energy bands in a metal. In a degenerate n-type semiconductor, the Fermi level is 
therefore within the CB, or above Ec just like EF is within the band in a metal. The 

n Nc exp 
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Figure 5.21 
(a) Degenerate n-type semiconductor. Large number of donors form a band that overlaps 
the CB. 

(b) Degenerate p-type semiconductor. 

majority of the states between Ec and EF are full of electrons as indicated in Figure 
5.21. In the case of a p-type degenerate semiconductor, the Fermi level lies in the 
VB below Ev. It should be emphasized that one cannot simply assume that n = Nd 
or p = Na in a degenerate semiconductor because the dopant concentration is so 
large that they interact with each other. Not all dopants are able to become ionized, 
and the carrier concentration eventually reaches a saturation typically around 
MO20 cm-3. Furthermore, the mass action law np = ttj is not valid for degenerate 
semiconductors. 

Degenerate semiconductors have many important uses. For example, they are used 
in laser diodes, zener diodes, and ohmic contacts in ICs, and as metal gates in many 
microelectronic MOS devices. 

5.4 RECOMBINATION AND MINORITY 
CARRIER INJECTION 

5 A 1 Direct and Indirect Recombination 

Above absolute zero of temperature, the thermal excitation of electrons from the VB 
to the CB continuously generates free electron-hole pairs. It should be apparent that 
in equilibrium there should be some annihilation mechanism that returns the electron 
from the CB down to an empty statfe (a hole) in the VB. When a free electron, wan¬ 
dering around in the CB of a crystal, “meets” a hole, it falls into this low-energy 
empty electronic state and fills it. This process is called recombination. Intuitively, 
recombination corresponds to the free electron finding an incomplete bond with a 
missing electron. The electron then enters and completes this bond. The free electron 
in the CB and the free hole in the VB are consequently annihilated. On the energy 
band diagram, the recombination process is represented by returning the electron 
from the CB (where it is free) into a hole in the VB (where it is in a bond). Figure 5.22 
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Figure 5.22 Direct recombination in GaAs. 

= kvb so that momentum conservation is 

satisfied. 

hv=E 

Distance 

shows a direct recombination mechanism, for example, as it occurs in GaAs, in which 
a free electron recombines with a free hole when they meet at one location in the crys¬ 
tal. The excess energy of the electron is lost as a photon of energy hv = Eg. In fact, it 
is this type of recombination that results in the emitted light from light emitting 
diodes (LEDs). 

The recombination process between an electron and a hole, like every other 
process in nature, must obey the momentum conservation law. The wavefimction of an 
electron in the CB, ^cb(kcb), will have a certain momentum hkcb associated with the 
wavevector kcb and, similarly, the electron wavefunction V'Vb(fcvb) in the VB will have 
a momentum tikVb associated with the wavevector kyb. Conservation of linear mo¬ 
mentum during recombination requires that when the electron drops from the CB to 
the VB, its wavevector should remain the same, kyb = kcb. For the elemental semicon¬ 
ductors, Si and Ge, the electronic states irvb(kyb) with kvb = kcb are right in the middle 
of the VB and are therefore fully occupied. Consequently, there are no empty states in 
the VB that can satisfy kyb = kcb, and so direct recombination in Si and Ge is next to 
impossible. For some compound semiconductors, such as GaAs and InSb, for exam¬ 
ple, the states with kyb = kcb are right at the top of the valence band, so they are essen¬ 
tially empty (contain holes). Consequently, an electron in the CB of GaAs can drop 
down to an empty electronic state at the top of the VB and maintain kvb = kcb- Thus 
direct recombination is highly probable in GaAs, and it is this very reason that makes 
GaAs an LED material. 

In elemental semiconductor crystals, for example, in Si and Ge, electrons and 
holes usually recombine through recombination centers. A recombination center 
increases the^probability of recombination because it can “take up” any momentum 
difference between a hole and electron. The process essentially involves a third body, 
which may be an impurity atom or a crystal defect. The electron is captured by the 
recombination center and thus becomes localized at this site. It is “held” at the center 
until some hole arrives and recombines with it. In the energy band diagram picture 
shown in Figure 5.23a, the recombination center provides a localized electronic state 
below Ec in the bandgap, which is at a certain location in the crystal. When an electron 
approaches the center, it is captured. The electron is then localized and bound to this 
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(a) Recombination 

Ui v, 
...—i i-1 

(b) Trapping 

Figure 5.23 Recombination and trapping. 

(a) Recombination in Si via a recombination center 
that has a localized energy level at Er in the bandgap, 

usually near the middle. 

(b) Trapping and detrapping of electrons by trapping 
centers. A trapping center has a localized energy 

level in the bandgap. 

center and “waits” there for a hole with which it can recombine. In this recombination 
process, the energy of the electron is usually lost to lattice vibrations (as “sound”) via 
the “recoiling” of the third body. Emitted lattice vibrations are called phonons. A 
phonon is a quantum of energy associated with atomic vibrations in the crystal analo¬ 
gous to the photon. 

Typical recombination centers, besides the donor and acceptor impurities, might 
be metallic impurities and crystal defects such as dislocations, vacancies, or intersti¬ 
tials. Each has its own peculiar behavior in aiding recombination, which will not be 
described here. 

It is instructive to mention briefly the phenomenon of charge carrier trapping 
since in many devices this can be the main limiting factor on the performance. An 

I electron in the conduction band can be captured by a localized state, just like a recom- 
| bination center, located in the bandgap, as shown in Figure 5.23b. The electron falls 

I into the trapping center at Et and becomes temporarily removed from the CB. At a 
I later time, due to an incident energetic lattice vibration, it becomes excited back into 
f the CB and is available for conduction again. Thus trapping involves the temporary re¬ 

moval of the electron from the CB, whereas in the case of recombination, the electron 
is permanently removed from the CB since the capture is followed by recombination 
with a hole. We can view a trap as essentially being a flaw in the crystal that results in 
the creation of a localized electronic state, around the flaw site, with an energy in the 
bandgap. A charge carrier pas'smg by the flaw can be captured and lose its freedom. The 
flaw can be an impurity or a crystal imperfection in the same way as a recombination 
center. The only difference is that when a charge carrier is captured at a recombination 
site, it has no possibility of escaping again because the center aids recombination. 
Although Figure 5.23b illustrates an electron trap, similar arguments also apply to 
hole traps, which are normally closer to Ev. In general, flaws and defects that give lo¬ 
calized states near the middle of the bandgap tend to act as recombination centers. 
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54.2 Minority Carrier Lifetime 

Consider what happens when an n-type semiconductor, doped with 5 x 1016 cm-3 
donors, is uniformly illuminated with appropriate wavelength light to photogenerate 
electron-hole pairs (EHPs), as shown in Figure 5.24. We will now define thermal equi¬ 
librium majority and minority carrier concentrations in an extrinsic semiconductor. In 
general, the subscript nor pis used to denote the type of semiconductor, and o to refer 
to thermal equilibrium in the dark. 

In an n-type semiconductor, electrons are the majority carriers and holes are the 
minority carriers 

nno is defined as the majority carrier concentration (electron concentration 
in an n-type semiconductor) in thermal equilibrium in the dark. These electrons, 
constituting the majority carriers, are thermally ionized from the donors. 

pno is termed the minority carrier concentration (hole concentration in an 
n-type semiconductor) in thermal equilibrium in the dark. These holes that 
constitute the minority carriers are thermally generated across the bandgap. 

In both cases the subscript no refers to an n-type semiconductor and thermal equi¬ 
librium conditions, respectively. Thermal equilibrium means that the mass action law 
is obeyed and nnopno = n?. 

When we illuminate the semiconductor, we create excess EHPs by photogen¬ 
eration. Suppose that the electron and hole concentrations at any instant are denoted by 
n„ and pn, which are defined as the instantaneous majority (electron) and minority 
(hole) concentrations, respectively. At any instant and at any location in the semi¬ 
conductor, we define the departure from the equilibrium by excess concentrations as 
follows: 

Ann is the excess electron (majority carrier) concentration: Ann = n„ — nno 

Apn is the excess hole (minority carrier) concentration: Apn — pn — pno 

Under illumination, at any instant, therefore 

nn = nno + A n„ and pn = pno + A pn 

Figure 5.24 Low-level photoinjection into an n-type 
semiconductor in which An„ < nn0. 
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Photoexcitation creates EHPs or an equal number of electrons and holes, as shown 
in Figure 5.24, which means that 

Ap„ = A n„ 

and obviously the mass action law is not obeyed: n„pn ^ nj.lt is worth remember¬ 
ing that 

dnn dAn„ dpn dAp„ 
-=- and -=- 
dt dt dt dt 

since nno and pno depend only on temperature. 
Let us assume that we have “weak” illumination, which causes, say, only a 10 percent 

change in nn0, that is, 

An„ = 0.1 nno = 0.5 x 1016cm-3 

Then 

Apn = An„ = 0.5 x 1016cm 3 

Figure 5.25 shows a single-axis plot of the majority (nn) and minority (pn) concentra¬ 
tions in the dark and in light. The scale is logarithmic to allow large orders of magni¬ 
tude changes to be recorded. Under illumination, the minority carrier concentration is 

pn = pno + Apn = 2.0 x 103 + 0.5 x 1016 0.5 x 1016 = Apn 

That is, pn Apn, which shows that although n„ changes by only 10 percent, pn 
changes drastically, that is, by a factor of ~ 1012. 

Figure 5.26 shows a pictorial view of what is happening inside an n-type semi¬ 
conductor when light is switched on at a certain time and then later switched off again. 
Obviously when the light is switched off, the condition p„ = Apn (state B in Fig¬ 
ure 5.26) must eventually revert back to the dark case (state A) where pn = pno. In 
other words, the excess minority carriers Apn and excess majority carriers An„ must 
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Figure 5.25 Low-level injection in an 
n-type semiconductor does not significantly 
affect nn but drastically affects the minority 
carrier concentration pn. 
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(b) In light: np * n? 
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Figure 5.26 Illumination of an n-type semiconductor results in excess 

electron and hole concentrations. 

After the illumination, the recombination process restores equilibrium; the 

excess electrons and holes simply recombine. 

Excess 

minority 

carrier 

concentration 

be removed. This removal occurs by recombination. Excess holes recombine with the 
electrons available and disappear. This, however, takes time because the electrons and 
holes have to find each other. In order to describe the rate of recombination, we intro¬ 
duce a temporal quantity, denoted by r* and called the minority carrier lifetime 
(mean recombination time), which is defined as follows; xh is the average time a hole 
exists in the VB from its generation to its recombination, that is, the mean time the hole 
is free before recombining with an electron. An alternative and equivalent definition is 
that 1 /rh is the average probability per unit time that a hole will recombine with an 
electron. We must remember that the recombination process occurs through recombi¬ 
nation centers, so the recombination time r/, will depend on the concentration of these 
centers and their effectiveness in capturing the minority carriers. Once a minority 
carrier has been captured by a recombination center, there are many majority carriers 
available to recombine with it, so rh in an indirect process is independent of the ma¬ 
jority carrier concentration. This is the reason for defining the recombination time as a 
minority carrier lifetime. 

If the minority carrier recombination time is, say, 10 s, and if there are some 1000 
excess holes, then it is clear that these excess holes will be disappearing at a rate of 
1000/10 s = 100 per second. The rate of recombination of excess minority carriers is 
simply Apn/xh. At any instant, therefore, 

Rate of increase in excess = Rate of — Rate of recombination 
hole concentration photogeneration of excess holes 

If G Ph is the rate of photogeneration, then clearly the net rate of change of Apn is 

dApn 
= GPh — 

A pn 

n dt 
[5.27] 
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This is a general expression that describes the time evolution of the excess minor¬ 
ity carrier concentration given the photogeneration rate GPh, the minority carrier life¬ 
time %h, and the initial condition at t = 0. The only assumption is weak injection 

(Apn < flno)• 
We should note that the recombination time rA depends on the semiconductor 

material, impurities, crystal defects, temperature, and so forth, and there is no typical 
value to quote. It can be anywhere from nanoseconds to seconds. Later it will be shown 
that certain applications require a short xA, as in fast switching of pn junctions, 
whereas others require a long r*, for example, persistent luminescence. 

PHOTORESPONSE TIME Sketch the hole concentration when a step illumination is applied to 
an n-type semiconductor at time t = 0 and switched off at time t = toffC^ zh)- 

EXAMPLE 5.10 

SOLUTION 

We use Equation 5.27 with Gph = constant in 0 < t < t0ff. Since Equation 5.27 is a first-order 
differential equation, integrating it we simply find 

where Cj is the integration constant. At t = 0, Apn = 0, so Ci = In Gph. Therefore the solu¬ 
tion is 

Ap„(t) = rAGph 1^1 - exp^-^-jJ 0 < t < r0ff [5.28] 

We see that as soon as the illumination is turned on, the minority carrier concentration 
rises exponentially toward its steady-state value Ap„(oo) = TAGph. This is reached after a time 
t > Th. 

At the instant the illumination is switched off, we assume that toff » zh so that from Equa¬ 
tion 5.28, 

Apn — TftGph 

We can define t' to be the time measured from t = toff, that is, t' = t — toff. Then 

A p„(t' = 0) = rAGph 

Solving Equation 5.27 with GPh = 0 in t > toff or t' > 0, we get 

A p„(t') = Apn (0) exp^— 

where Apn (0) is actually an integration constant that is equivalent to the boundary condition on 
Apn at t’ = 0. Putting t' — 0 and Apn = xhG^ gives 

A p„(t') = xh Gph exp [5.29] 

We see that the excess minority carrier concentration decays exponentially from the 
instant the light is switched off with a time constant equal to the minority carrier recom¬ 
bination time. The time evolution of the minority carrier concentration is sketched in 
Figure 5.27. 
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G and pn(t) 

Figure 5,27 Illumination is switched on at time t = 0 and then off at 

t = foff- 

The excess minority carrier concentration Apn[t) rises exponentially to its 

steady-state value with a time constant rFrom fQff/ the excess minority 
carrier concentration decays exponentially to its equilibrium value. 

Figure 5.28 A semiconductor 
slab of length L, width W, and depth 
D is illuminated with light of 

wavelength A.. /ph is the steady-state 
photocurrent. 

EXAMPLE 5.11 PHOTOCONDUCTIVITY Suppose that a direct bandgap semiconductor with no traps is illu¬ 
minated with light of intensity I (A.) and wavelength X that will cause photogeneration as shown 
in Figure 5.28. The area of illumination is A = (L x W), and the thickness (depth) of the 
semiconductor is D. If r) is the quantum efficiency (number of free EHPs generated per ab¬ 
sorbed photon) and r is the recombination lifetime of the photogenerated carriers, show that the 
steady-state photoconductivity, defined as 

Act = cr(in light) — cr(in dark) 

Steady-state 

photo¬ 

conductivity 

is given by 

Act 
er]lXr(fie + ph) 

hcD 
[5.30] 

A photoconductive cell has a CdS crystal 1 mm long, 1 mm wide, and 0.1 mm thick with 
electrical contacts at the end, so the receiving area of radiation is 1 mm2, whereas the area of 
each contact is 0.1 mm2. The cell is illuminated with a blue radiation of wavelength 450 nm and 
intensity 1 mW/cm2. For unity quantum efficiency and an electron recombination time of 1 ms, 
calculate 

a. The number of EHPs generated per second 

b. The photoconductivity of the sample 

c. The photocurrent produced if 50 V is applied to the sample 

Note that a CdS photoconductor is a direct bandgap semiconductor with an energy gap 
Eg = 2.6 eV, electron mobility pe = 0.034 m2 V-1 s_l, and hole mobility ph = 0.0018 
m2 V-1 s_1. 

SOLUTION 

If rph is the number of photons arriving per unit area per unit second (the photon flux), then 
Tph = i/hv where I is the light intensity (energy flowing per unit area per second) and hv 
is the energy per photon. The quantum efficiency rj is defined as the number of free EHPs 
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generated per absorbed photon. Thus, the number of EHPs generated per unit volume per 

second, the photogeneration rate per unit volume Gph is given by 

In the steady state, 

GPh = 
AD 

rjlk 

hcD 

dAn 

~dT 
= Gph - 

so 

But, by definition. 

An = rGph = 
r t}Ik 

hcD 

Aa - epe An + eph Ap = e An(pe + Ph) 

since electrons and holes are generated in pairs, An = Ap. Thus, substituting for An in the Aa 
expression, we get Equation 5.30: 

erjlk r(pe + tih) 
Aa =-—-- 

hcD 

a. The photogeneration rate per unit time is not Gph, which is per unit time per unit volume. 
We define EHPPh as the total number of EHPs photogenerated per unit time in the whole 
volume (AD). Thus 

EHPph = Total photogeneration rate 

nlk An Ik 
= (AD) Gph = (AD)f- = -f— 

hcD he 

= [(10“3 x 10-3 m2)(l)(10-3 x 104 Js_1 m-2)(450 x 10_9m)] 

-r [(6.63 x 10-34 Js)(3 x 108ms-1)] 

= 2.26 x 1013EHPs-1 

b. From Equation 5.30, 

A a = 
et]Ikr(pe + jxh) 

hcD 

That is 

(1.6 x 10-‘9C)(1)(10-3 x 104 J s-1 m_2)(450 x 10-9m)(l x 10~3 s)(0.0358 m2 V”1 s"1) 
Act =--------- 

(6.63 x 10-34 J s)(3 x 108 ms-1)(0.1 x 10"3m) 

= 1.30J2-1m“1 

c. Photocurrent density will be 

A J — £ Aa — (1.30 £2-1 m-1)(50 V/10-3 m) = 6.50 x 104 Am-2 
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Thus the photocurrent 

A/ = A AJ = (10-3 x 0.1 x 10-3 m2)(6.50 x 104AnT2) 

= 6.5 x 10-3 A or 6.5 mA 

We assumed that all the incident radiation is absorbed. 

5.5 DIFFUSION AND CONDUCTION EQUATIONS, 
AND RANDOM MOTION 

Definition of 

particle flux 

Definition 

of current 

density 

It is well known that, by virtue of their random motion, gas particles diffuse from high- 
concentration regions to low-concentration regions. When a perfume bottle is opened 
at one end of a room, the molecules diffuse out from the bottle and, after a while, can 
be smelled at the other end of the room. Whenever there is a concentration gradient of 
particles, there is a net diffusional motion of particles in the direction of decreasing 
concentration. The origin of diffusion lies in the random motion of particles. To quan¬ 
tify particle flow, we define the particle flux r just like current, as the number of par¬ 
ticles (not charges) crossing unit area per unit time. Thus if A N particles cross an area 
A in time A t, then, by definition, the particle flux is 

AN 
r =- 

A At 
[5.31] 

Clearly if the particles are charged with a charge Q (—e for electrons and +e for 
holes), then the electric current density J, which is basically a charge flux, is related to 
the particle flux r by 

J = QV [5.32] 

Suppose that the electron concentration at some time fin a semiconductor de¬ 
creases in the x direction and has the profile n(x, t) shown in Figure 5.29a. This may 
have been achieved, for example, by photogeneration at one end of a semiconductor. 
We will assume that the electron concentration changes only in the x direction so that 
the diffusion of electrons can be simplified to a one-dimensional problem as depicted 
in Figure 5.29a. We know that in the absence of an electric field, the electron motion is 
random and involves scattering from lattice vibrations and impurities. Suppose that i 
is the mean free path in the x direction and r is the mean free time between the scat¬ 
tering events. The electron moves a mean distance i in the +x or —x direction and then 
it is scattered and changes direction. Its mean speed along x is vx = i/x. Let us evalu¬ 
ate the flow of electrons in the +jc and —x directions through the plane at xa and hence 
find the net flow in the +jc direction. 

We can divide the jc axis into hypothetical segments of length t so that each segment 
corresponds to a mean free path. Going across a segment, the electron experiences one 
scattering process. Consider what happens during one mean free time, the time it takes 
for the electrons to move across a segment toward the left or right. Half of the electrons 
in (xQ — t) would be moving toward xQ and the other half away from x0, and in time r 
half of them will reach xQ and cross as shown in Figure 5.29b. If n\ is the concentra¬ 
tion of electrons at x0 — then the number of electrons moving toward the right to 
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Figure 5.29 
(a) Arbitrary electron concentration n(x, f) profile in a semiconductor. There is a net diffusion 

(flux) of electrons from higher to lower concentrations. 

(b) Expanded view of two adjacent sections at x0. There are more electrons crossing x0 coming 

from the left (x0 — t) than coming from the right (x0 +1). 

cross x0 is i At where A is the cross-sectional area and hence At is the volume of the 
segment. Similarly half of the electrons in (x0 + £) would be moving toward the left 
and in time r would reach x0. Their number is \n2At where n2 is the concentration at 
x0 + \t. The net number of electrons crossing xQ per unit time per unit area in the +x 
direction is the electron flux Fe, 

^ \ti\Al — |n2Al 
r„ = 

that is, 

l 
re = - —(n2 - Hi) [5.33] 

Smt L 

As far as calculus of variations is concerned, the mean free path l is small, so we 
can calculate n2 — n\ from the concentration gradient using 

We can now write the flux in Equation 5.33 in terms of the concentration gradient as 

or 

dn 
= —De— 

d x 
[5.34] 

Fick’s first 

law 
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Electron 

diffusion 

current 

density 

where the quantity {l2fix) has been defined as the diffusion coefficient of electrons 
and denoted by De. Thus, the net electron flux Te at a position x is proportional to the 
concentration gradient and the diffusion coefficient. The steeper this gradient, the 
larger the flux Te. In fact, we can view the concentration gradient dn/dx as the driving 
force for the diffusion flux, just like the electric field —(dV/dx) is the driving force 
for the electric current: J = <r£ = —a(dV/dx). 

Equation 5.34 is called Fick’s first law and represents the relationship between 
the net particle flux and the driving force, which is the concentration gradient. It is the 
counterpart of Ohm’s law for diffusion. De has the dimensions of m2 s_1 and is a mea¬ 
sure of how readily the particles (in this case, electrons) diffuse in the medium. Note 
that Equation 5.34 gives the electron flux Ve at a position x where the electron con¬ 
centration gradient is dn/dx. Since from Figure 5.29, the slope dn/dx is a negative 
number, Te in Equation 5.34 comes out positive, which indicates that the flux is in the 
positive x direction. The electric current (conventional current) due to the diffusion of 
electrons to the right will be in the negative direction by virtue of Equation 5.32. Rep¬ 
resenting this electric current density due to diffusion as Jo,e we can write 

dn 
J D,e = -eTe = eDe— [5.35] 

dx 

In the case of a hole concentration gradient, as shown in Figure 5.30, the hole flux 
rA(jc) is given by 

r„ 

Hole 

diffusion 

current 

density 

where Dh is the hole diffusion coefficient. Putting in a negative number for the slope 
dp/dx, as shown in Figure 5.30, results in a positive hole flux (in the positive x direc¬ 
tion), which in turn implies a diffusion current density toward the right. The current 
density due to hole diffusion is given by 

Jdm — eVh = —e£>h 
dp 

dx 
[5.36] 

Figure 5.30 Arbitrary hole concentration p[x, t) profile 
in a semiconductor. 

There is a net diffusion (flux) of holes from higher to lower 

concentrations. There are more holes crossing x0 coming 
from the left (x0 — t) than coming from the right (x0 +1). 
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Semitransparent electrode 
/ n-type semiconductor 

Light 

-vA^ 

•\A*> 

Figure 5.31 When there is an electric 

field and also a concentration gradient, 

charge carriers move both by diffusion and 
drift. 

419 

Suppose that there is also a positive electric field £* acting along +x in Figures 5.29 
and 5.30. A practical example is shown in Figure 5.31 in which a semiconductor is 
sandwiched between two electrodes, the left one semitransparent. By connecting a bat¬ 
tery to the electrodes, an applied field of T,x is set up in the semiconductor along -h*. 
The left electrode is continuously illuminated, so excess EHPs are generated at this 
surface that give rise to concentration gradients in n and p. The applied field imposes 
an electrical force on the charges, which then try to drift. Holes drift toward the right 
and electrons toward the left. Charge motion then involves both drift and diffusion. 
The total current density due to the electrons drifting, driven by £*, and also diffusing, 
driven by dn/dx, is then given by adding Equation 5.35 to the usual electron drift 
current density, 

Je — eniAe'Ex + eDe— [5.37] 
dx 

We note that as T,x is along jc, so is the drift current (first term), but the diffusion 
current (second term) is actually in the opposite direction by virtue of a negative dn/dx. 

Similarly, the hole current due to holes drifting and diffusing, Equation 5.36, is 
given by 

Jh = epph^x ~ eDh— [5.38] 
dx 

In this case the drift and diffusion currents are in the same direction. 
We mentioned that the diffusion coefficient is a measure of the ease with which the 

diffusing charge carriers move in the medium. But drift mobility is also a measure of 
the ease with which the charge carriers move in the medium. The two quantities are 
related through the Einstein relation, 

Total electron 

current due to 

drift and 

diffusion 

Total hole 

current due to 

drift and 

diffusion 

Dh - kT 

Pe e Ph e 
[5.39] 

Einstein 

relation 

In other words, the diffusion coefficient is proportional to the temperature and 
mobility. This is a reasonable expectation since increasing the temperature will 
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Diffusion 

coefficient 

increase the mean speed and thus accelerate diffusion. The randomizing effect against 
diffusion in one particular direction is introduced by the scattering of the carriers from 
lattice vibrations, impurities, and so forth, so that the longer the mean free path 
between scattering events, the larger the diffusion coefficient. This is examined in 
Example 5.12. 

We equated the diffusion coefficient D to t2/2t in Equation 5.34. Our analysis, as 
represented in Figure 5.29, is oversimplified because we simply assumed that all elec¬ 
trons move a distance l before scattering and all are free for a time r. We essentially as¬ 
sumed that all those at a distance l from x0 and moving toward x0 cross the plane exactly 
in time r. This assumption is not entirely true because scattering is a stochastic process 
and consequently not all electrons moving toward x0 will cross it even in the segment 
of thickness i. A rigorous statistical analysis shows that the diffusion coefficient is 
given by 

r 

EXAMPLE 5.12 THE EINSTEIN RELATION Using the relation between the drift mobility and the mean free time 
r between scattering events and the expression for the diffusion coefficient D = i2/r, derive 
the Einstein relation for electrons. 

SOLUTION 

In one dimension, for example, along x, the diffusion coefficient for electrons is given by 
De = l1 /t where l is the mean free path along jc and r is the mean free time between scatter¬ 
ing events for electrons. The mean free path t = vxr, where vx is the mean (or effective) speed 
of the electrons along x. Thus, 

De = v\x 

In the conduction band and in one dimension, the mean KE of electrons is \kT, so \kT = 
\m*v2x where m* is the effective mass of the electron in the CB. This gives 

, kT 
vx — — 

K 
Substituting for vx in the De equation, we get, 

kTx kT ( ex 
De = -= — — 

m* e \m* 

Further, we know from Chapter 2 that the electron drift mobility fxe is related to the mean 
free time r via /xe — ex/m*e, so we can substitute for r to obtain 

which is the Einstein relation. We assumed that Boltzmann statistics, that is, v2 = kTfm* 
is applicable, which, of course, is true for the conduction band electrons in a semiconductor 
but not for the conduction electrons in a metal. Thus, the Einstein relation is only valid for 
electrons and holes in a nondegenerate semiconductor and certainly not valid for electrons in 
a metal. 
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DIFFUSION COEFFICIENT OF ELECTRONS IN Si Calculate the diffusion coefficient of electrons 
at 27 °C in n-type Si doped with 1015 As atoms cm-3. 

EXAMPLE 5.13 

SOLUTION 

From the /xe versus dopant concentration graph, the electron drift mobility /ie with 1015 cm-3 
of dopants is about 1300 cm2 V-1 s_1, so 

De = = (1300 cm2 V-1 s-1)(0.0259 V) = 33.7 cm2 s_1 
e 

BUILT-IN POTENTIAL DUE TO DOPING VARIATION Suppose that due to a variation in the 
amount of donor doping in a semiconductor, the electron concentration is nonuniform across the 
semiconductor, that is, n = n(x). What will be the potential difference between two points in 
the semiconductors where the electron concentrations are nx and n2? If the donor profile in an 
n-type semiconductor is N(x) = N„ exp(—x/b), where b is a characteristic of the exponential 
doping profile, evaluate the built-in field (LX. What is your conclusion? 

EXAMPLE 5.14 

SOLUTION 

Consider a nonuniformly doped /i-type semiconductor in which immediately after doping the 
donor concentration, and hence the electron concentration, decreases toward the right. Ini¬ 
tially, the sample is neutral everywhere. The electrons will immediately diffuse from higher- to 
lower-concentration regions. But this diffusion accumulates excess electrons in the right re¬ 
gion and exposes the positively charged donors in the left region, as depicted in Figure 5.32. 
The electric field between the accumulated negative charges and the exposed donors prevents 
further accumulation. Equilibrium is reached when the diffusion toward the right is just bal¬ 
anced by the drift of electrons toward the left. The total current in the sample must be zero (it 
is an open circuit), 

dn 
Je = enHe'Ex + eDe— = 0 

dx 

But the field is related to the potential difference by T,x = —(dV/dx), so 

dV dn 
—enfie—-1- eDe— = 0 

dx dx 

Exposed 

As+ donor 

Net current = 0 

Figure 5.32 Nonuniform doping profile results in 
electron diffusion toward the less concentrated 

regions. 

This exposes positively charged donors and sets up a 
built-in field <EX. In the steady state, the diffusion of 

electrons toward the right is balanced by their drift 
toward the left. 
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Built-in 

potential and 

concentration 

We can now use the Einstein relation Dejp,e = kT/e to eliminate De and pe and then can¬ 
cel dx and integrate the equation, 

/ "2 dn_ 

, n 

Integrating, we obtain the potential difference between points 1 and 2, 

V2 [5.411 

To find the built-in field, we will assume that (and this is a reasonable assumption) the dif¬ 
fusion of electrons toward the right has not drastically upset the original n(x) = Nd(x) varia¬ 
tion because the field builds up quickly to establish equilibrium. Thus 

n(x) ss Nd(x) — jV„exp 

Built-in field 

Substituting into the equation for Je = 0, and again using the Einstein relation, we obtain Xx as 

k T 

be 
[5.421 

Note: As a result of the fabrication process, the base region of a bipolar transistor has 
nonuniform doping, which can be approximated by an exponential Nd(x). The resulting electric 
field “Ex in Equation 5.42 acts to drift minority carriers faster and therefore speeds up the tran¬ 
sistor operation as discussed in Chapter 6. 

5.6 CONTINUITY EQUATION4 

5.6.1 Time-Dependent Continuity Equation 

Many semiconductor devices operate on the principle that excess charge carriers are 
injected into a semiconductor by external means such as illumination or an applied 
voltage. The injection of carriers upsets the equilibrium concentration. To determine 
the carrier concentration at any point at any instant we need to solve the continuity 
equation, which is based on accounting for the total charge at that location in the semi¬ 
conductor. Consider an n-type semiconductor slab as shown in Figure 5.33 in which 
the hole concentration has been upset along the x axis from its equilibrium value 
by some external means. 

Consider an infinitesimally thin elemental volume A Sx as in Figure 5.33 in which 
the hole concentration is pn(x, t). The current density at jc due to holes flowing into the 
volume is Jh and that due to holes flowing out at x + Sx is Jh + 8Jh- There is a change 
in the hole current density //,; that is, Jh(x,t) is not uniform along jc. (Recall that the 
total current will also have a component due to electrons.) We assume that Jh(x,t) and 
p„(x,t) do not change across the cross section along the y or z directions. If SJh is 

I 4 This section may be skipped without loss of continuity. (No pun intended.) 
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Figure 5.33 Consider an 

elemental volume A Sx in which the 

hole concentration is p(x, f). 

negative, then the current leaving the volume is less than that entering the volume, 
which leads to an increase in the hole concentration in A <$jc. Thus, 

1 = Rate of increase in hole concentration [5.43] 
' due to the change in Jh 

The negative sign ensures that negative 8Jh leads to an increase in pn. Recombination 
Caking place in A 8x removes holes from this volume. In addition, there may also be 
photogeneration at x at time t. Thus, 

1 / —A 8Jh 

A 8x \ e 

The net rate of increase in the hole concentration pn in A <$x 
= Rate of increase due to decrease in Jh — Rate of recombination + Rate of 

photogeneration 

dpn 
8t 

Pn ~ Pno 
+ GPh [5.44] 

where r* is the hole recombination time (lifetime), GPh is the photogeneration rate at x 

at time t, and we used dJh/dx for 8 Jh/8x since Jh depends on x and t. 
Equation 5.44 is called the continuity equation for holes. The current density Jh is 

given by diffusion and drift components in Equations 5.37 and 5.38. There is a similar 
expression for electrons as well, but the negative sign multiplying 3 Je/dx is changed to 
positive (the charge e is negative for electrons). 

The solutions of the continuity equation depend on the initial and boundary condi¬ 
tions. Many device scientists and engineers have solved Equation 5.44 for various 
semiconductor problems to characterize the behavior of devices. In most cases numer¬ 
ical solutions are necessary as analytical solutions are not mathematically tractable. As 
a simple example, consider uniform illumination of the surface of a semiconductor with 
suitable electrodes at its end as in Figure 5.28. Photogeneration and current density do 
not vary with distance along the sample length, so dJh/dx — 0. If Apn is the excess 
concentration, Ap„ = pn — pno, then the time derivative of p„ in Equation 5.44 is the 
same as Ap„. Thus, the continuity equation becomes 

9 A pn 

31 

A pn 

*h 
+ GPh [5.45] 

which is identical to the semiquantitatively derived Equation 5.27 from which photo¬ 
conductivity was calculated in Example 5.11. 

Continuity 

equation for 

holes 

Continuity 

equation with 

uniform 

photo¬ 

generation 
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5.6.2 Steady-State Continuity Equation 

Steady-state 

continuity 

equation for 

holes 

Steady-state 

continuity 

equation with 

L-0 

For certain problems, the continuity equation can be further simplified. Consider, for ex¬ 
ample, the continuous illumination of one end of an n-type semiconductor slab by light 
that is absorbed in a very small thickness xQ at the surface as depicted in Figure 5.34a. 
There is no bulk photogeneration, so GPh = 0. Suppose we are interested in the steady- 
state behavior; then the time derivative would be zero in Equation 5.44 to give. 

1 

e 

Pn Pno 

Th 
[5.46] 

The hole current density Jh would have diffusion and drift components. If we 
assume that the electric field is very small, we can use Equation 5.38 with £ % 0 in 
Equation 5.46. Further, since the excess concentration Ap„(x) = p„(x) — pno, we 
obtain, 

d2&pn _ A£n 

dx2 “ L\ 
[5.47] 

where, by definition, Lh = VDhXh and is called the diffusion length of holes. Equa¬ 
tion 5.47 describes the steady-state behavior of minority carrier concentration in a 
semiconductor under time-invariant excitation. When the appropriate boundary condi¬ 
tions are also included, its solution gives the spatial dependence of the excess minor¬ 
ity carrier concentration Apn(x). 

In Figure 5.34a, both excess electrons and holes are photogenerated at the surface, 
but the percentage increase in the concentration of holes is much more dramatic since 

_ n-type semiconductor 

A/+- 
Light 

Excess concentration 

Currents (mA) 

(b) 

Figure 5.34 

(a) Steady-state excess carrier concentration profiles in an n-type semiconductor that is continuously illuminated at 
one end. 

(b) Majority and minority carrier current components in open circuit. Total current is zero. 
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Pno <3C nm. We will assume weak injection, that is, Apn n„o. Suppose that illumi¬ 
nation is such that it causes the excess hole concentration at x = 0 to be Ap„(0). As 
holes diffuse toward the right, they meet electrons and recombine as a result of which 
the hole concentration pn(x) decays with distance into the semiconductor. If the bar is 
very long, then far away from the injection end we would expect pn to be equal to the 
thermal equilibrium concentration pno. The solution of Equation 5.47 with these 
boundary conditions shows that Apn(x) decays exponentially as 

A pn(x) = Apw(0) exp H) [5.48] 

This decay in the hole concentration results in a hole diffusion current Io,h(x) that 
has the same spatial dependence. Thus, if A is the cross-sectional area, the hole current is 

Idj1 = —AeDh 
dpn(x) AeDh 

Ap„(0) exp (-£) [5.491 

We find Apn(0) as follows. Under steady state, the holes generated per unit time 
in x0 must be removed by the hole current (at x = 0) at the same rate. Thus, 

AxaGph = -ID,h( 0) = ~Y~A.pn (0) 
e Lh 

[5.50] A/?n(0) = X0G ph^ — 

Similarly, electrons photogenerated in xQ diffuse toward the bulk, but their diffu¬ 
sion coefficient De and length Le are larger than those for holes. The excess electron 
concentration An„ decays as 

An„(x) = An„(0) expf-^ [5.511 An„(x) = An„(0)exp^-—J [5.511 

where Le = VDeth and Ann(x) decays more slowly than Apn(x) as Le > L/,. (Note 
that ze = zh.) The electron diffusion current Io,e is 

dn„(x) AeDe ( x 
ID<e = AeDe— -=--—An„(0) exp I - — 

dx Le \ Le 
[5.52] 

The field at the surface is zero. Under steady state, the electrons generated per unit 
time in x0 must be removed by the electron current at the same rate. Thus, similarly to 
Equation 5.50, 

(\ 1/2 
—J [5.53] 

so that 

>Pn( 0) _ (De V 
mn( 0) \Dh) 

Minority 

carrier 

concentration, 

long bar 

Hole 

diffusion 

current 

Majority 

carrier 

concentration, 

long bar 

Electron 

diffusion 

current 

which is greater than unity for Si. 

[5.54] 
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Table 5.3 Currents in an infinite slab illuminated at one end for weak injection near the surface 

Minority 

Diffusion Minority Drift 

Majority 

Diffusion Majority Drift Field £ 

Currents at ID,h (mA) fdrift,h (mA) W(mA) /drift,* (mA) (V cm-1) 

x = 0 3.94 0 -3.94 0 0 

II 0.70 0.0022 -1.45 0.75 0.035 

Electron drift 

current 

Electric field 

Hole drift 

current 

It is apparent that the hole and electron diffusion currents are in opposite direc¬ 
tions. At the surface, the electron and hole diffusion currents are equal and opposite, so 
the total current is zero. As apparent from Equations 5.49 and 5.52, the hole diffusion 
current decays more rapidly than the electron diffusion current, so there must be some 
electron drift to keep the total current zero. The electrons are majority carriers which 
means that even a small field can cause a marked majority carrier drift current. If /drifts 
is the electron drift current, then in an open circuit the total current / = ID,h + lD,e + 
/drift,« = 0, SO 

/drift,e “ /D,h /D,e [5.55] 

The electron drift current increases with distance, so the total current / at every 
location is zero. It must be emphasized that there must be some field *E in the sample, 
however small, to provide the necessary drift to balance the currents to zero. The field 
can be found from /drifts ~ Aen„0/ze£, inasmuch as nno does not change significantly 
(weak injection), 

£   /drift, e 

Aen noP-e 

The hole drift current due to this field is 

[5.56] 

/drift ,h —Ae/XfiPn (.x)*E [5.57] 

and it will be negligibly small as pn <*C nno. 
We can use actual values to gauge magnitudes. Suppose that A = 1 mm2 and 

Nd = 1016 cm-3 so that nno = Nd = 1016 cm-3 and pn0 = nj/Nd = 1 x 104 cm-3. 
The light intensity is adjusted to yield Ap„(0) = 0.05n„o = 5 x 1014 cm~3: weak 
injection. Typical values at 300 K for the material properties in this Nd-doped n-type 
Si would bet* = 480 ns, pe = 1350 cm2 V-1 s ~\De = 34.9cm2 s ~l,Le = 0.0041 cm = 
41 pm, jjLfj = 450 cm2 V-1 s-1, Dh = 11.6 cm2 s-1, Lh = 0.0024 cm — 24 pm. We 
can now calculate each current term using the Equations 5.49, 5.52, 5.55 and 5.57 
above as shown in Figure 5.34b. The actual values at two locations, x — 0 and 
x = Le = 41 pm, are shown in Table 5.3.5 

5 The reader may have observed that the currents in Table 5.3 do not add exactly to zero. The analysis here is only 
approximate and, further, it was based on neglecting the hole drift current and taking the field as nearly zero to use 
Equation 5.47 in deriving the carrier concentration profiles. Note that hole drift current is much smaller than the 
other current components. 
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INFINITELY LONG SEMICONDUCTOR ILLUMINATED AT ONE END Find the minority carrier 
concentration profile pn(x) in an infinite n-type semiconductor that is illuminated continuously 
at one end as in Figure 5.34. Assume that photogeneration occurs near the surface. Show that 
the mean distance diffused by the minority carriers before recombination is Lh. 

EXAMPLE 5.15 

SOLUTION 

Continuous illumination means that we have steady-state conditions and thus Equation 5.47 can 
be used. The general solution of this second-order differential equation is 

Apn(x) = A exp^— + B exp^-^-^ [5.58] 

where A and B are constants that have to be found from the boundary conditions. For an infinite 
bar, atx = oo, Ap„(oo) = 0 gives B — 0. At* = 0, Apn = Ap„(0) so A = Ap„(0). Thus, the 
excess (photoinjected) hole concentration at position x is 

A p„(x) = Apn (0) exp^—[5.59] 

which is shown in Figure 5.34a. To find the mean position of the photoinjected holes, we use the 
definition of the “mean,” that is, 

__ x Apn(x) dx 

/0°° Ap„(x)dx 

Substituting for Apn(x) from Equation 5.59 and carrying out the integration gives x = Lh. 
We conclude that the diffusion length Lh is the average distance diffused by the minority car¬ 
riers before recombination. As a corollary, we should infer that 1 /Lh is the mean probability per 
unit distance that the hole recombines with an electron. 

5.7 OPTICAL ABSORPTION 
We have already seen that a photon of energy hv greater than Eg can be absorbed in 
a semiconductor, resulting in the excitation of an electron from the valence band to 
the conduction band, as illustrated in Figure 5.35. The average energy of electrons 
in the conduction band is \ kT above Ec (average kinetic energy is \kT), which 
means that the electrons are very close to Ec. If the photon energy is much larger 
than the bandgap energy Eg, then the excited electron is not near Ec and has to lose 
the extra energy hv — Eg to reach thermal equilibrium. The excess energy hv — Eg 

is lost to lattice vibrations as heat as the electron is scattered from one atomic vi¬ 
bration to another. This process is called thermalization. If, on the other hand, the 
photon energy hv is less than the bandgap energy, the photon will not be absorbed 
and we can say that the semiconductor is transparent to wavelengths longer than 
he/Eg provided that there are no energy states in the bandgap. There, of course, will 
be reflections occurring at the air/semiconductor surface due to the change in the 
refractive index. 
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| Ec+X 

Figure 5.35 Optical absorption generates 

electron-hole pairs. 

Energetic electrons must lose their excess energy to 

lattice vibrations until their average energy is \ kT in 

the CB. 

Semiconductor 

' . i i \ 

Photon flux in | | Photon flux out 

I(x) I(x)-Sl 

Figure 5.36 Absorption of photons within a small 

elemental volume of width 8x. 

Suppose that IQ is the intensity of a beam of photons incident on a semiconductor 
material. Thus, l0 is the energy incident per unit area per unit time. If rph is the photon 
flux, then 

I0 — /tuTph 

When the photon energy is greater than Eg, photons from the incident radiation will be 
absorbed by the semiconductor. The absorption of photons requires the excitation of 
valence band electrons, and there are only so many of them with the right energy per 
unit volume. Consequently, absorption depends on the thickness of the semiconductor. 
Suppose that I(x) is the light intensity at x and 81 is the change in the light intensity 
in the small elemental volume of thickness 8x at x due to photon absorption, as illus¬ 
trated in Figure 5.36. Then 81 will depend on the number of photons arriving at this 
volume I(x) and the thickness 8x. Thus 

81= —a 18x 

Definition of 

absorption 

coefficient 

Beer-Lambert 

law 

where a is a proportionality constant that depends on the photon energy and hence 
wavelength, that is, a = a (A). The negative sign ensures that 81 is a reduction. The 
constant a as defined by this equation is called the absorption coefficient of the semi¬ 
conductor. It is therefore defined by 

81 
a = 

I8x 
[5.60] 

which has the dimensions of length-1 (m-1). 
When we integrate Equation 5.60 for illumination with constant wavelength light, 

we get the Beer-Lambert law, the transmitted intensity decreases exponentially with 
the thickness, 

I(x) = I0exp(—ax) [5.61] 
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E a (1 /micron) 

Figure 5.37 The absorption coefficient a depends on the photon energy hv and hence on the wavelength. 

Density of states increases from band edges and usually exhibits peaks and troughs. Generally a increases with the photon 

energy greater than Eg because more energetic photons can excite electrons from populated regions of the VB to numerous 

available states deep in the CB. 

As apparent from Equation 5.61, over a distance x = 1 /a, the light intensity falls 
to a value 0.3710; that is, it decreases by 63 percent. This distance over which 67 per¬ 
cent of the photons are absorbed is called the penetration depth, denoted by 
S = 1/a. 

The absorption coefficient depends on the photon absorption processes occurring 
in the semiconductor. In the case of band-to-band (interband) absorption, a 
increases rapidly with the photon energy hv above Eg as shown for Si (Eg =1.1 eV) 
and GaAs (Eg = 1.42 eV) in Figure 5.37. Notice that a is plotted on a logarithmic 
scale. The general trend of the a versus hv behavior can be intuitively understood from 
the density of states diagram also shown in the same figure. 

Density of states g(E) represents the number of states per unit energy per unit vol¬ 
ume. We assume that the VB states are filled and the CB states are empty since the 
number of electrons in the CB is much smaller than the number of states in this band 
(n <£ Nc). The photon absorption process increases when there are more VB states 
available as more electrons can be excited. We also need available CB states into 
which the electrons can be excited, otherwise the electrons cannot find empty states to 
fill. The probability of photon absorption depends on both the density of VB states and 
the density of CB states. For photons of energy hvA = Eg, the absorption can only 
occur from Ev to Ec where the VB and CB densities of states are low and thus the 
absorption coefficient is small, which is illustrated as A in Figure 5.37. For photon 
energies hvB, which can take electrons from very roughly the middle region of the VB 
to the middle of the CB, the densities of states are large and a is also large as indicated 
by B in Figure 5.37. Furthermore, there are more choices of excitation for the hvB 
photon as illustrated by the three arrows in the figure. At even higher photon energies, 
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photon absorption can of course excite electrons from the VB into vacuum. In reality, 
the density of states g(E) of a real crystalline semiconductor is much more compli¬ 
cated with various sharp peaks and troughs on the density of states function, shown as 
dashed curves in g(E) in Figure 5.37, particularly away from the band edges. In addi¬ 
tion, the absorption process has to satisfy the conservation of momentum and quantum 
mechanical transition rules which means that certain transitions from the CB to the VB 
will be more favorable than others. For example, GaAs is a direct bandgap semicon¬ 
ductor, so photon absorption can lead directly to the excitation of an electron from the 
CB to the VB for photon energies just above Eg just as direct recombination of an elec¬ 
tron and hole results in photon emission. Si is an indirect bandgap semiconductor. 
Just as direct electron and hole recombination is not possible in silicon, the electron 
excitation from states near Ev to states near Ec must be accompanied by the emission 
or absorption of lattice vibrations, and hence the absorption is less efficient; a versus 
hv for GaAs rises more sharply than that for Si above Eg as apparent in Figure 5.37. 
At sufficiently high photon energies, it is possible to excite electrons directly from the 
VB to the CB in Si and this gives the sharp rise in a versus hv before B in Figure 5.37. 
(Band-to-band absorption is further discussed in Chapter 9.) 

EXAMPLE 5.16 PHOTOCONDUCTIVITY OF A THIN SLAB Modify the photoconductivity expression 

A a 
er)I0kr(fie + y.h) 

hcD 

derived for a direct bandgap semiconductor in Figure 5.28 to take into account that some of the 
light intensity is transmitted through the material. 

SOLUTION 

If we assume that all the photons are absorbed (there is no transmitted light intensity), then the 
photoconductivity expression is 

Act 
et}I0k T(ne + Hh) 

hcD 

But, in reality, l0 exp(—a£>) is the transmitted intensity through the specimen with thickness D, 
so absorption is determined by the intensity lost in the material I„[l — exp(—otD)], which 
means that Act must be accordingly scaled down to 

er}I0[ 1 - exp(-aD)]A.r(jLt, + fxh) 

EXAMPLE 5.17 PHOTOGENERATION IN GaAs AND THERMAUZATION Suppose that a GaAs sample is illu¬ 
minated with a 50 mW HeNe laser beam (wavelength 632.8 nm) on its surface. Calculate how 
much power is dissipated as heat in the sample during thermalization. Give your answer as mW. 
The energy bandgap Eg of GaAs is 1.42 eV. 

SOLUTION 

Suppose PL is the power in the laser beam; then PL = I A, where I is the intensity of the 
beam and A is the area of incidence. The photon flux, photons arriving per unit area per unit 



5.8 Piezoresistivity 431 

time, is 

r Pl 

Ahv 

so the number of EHPs generated per unit time is 

™-r A-lL 
dt ph hv 

These carriers thermalize—lose their excess energy as lattice vibrations (heat) via colli¬ 
sions with the lattice—so eventually their average kinetic energy becomes |kT above Eg as de¬ 
picted in Figure 5.35. Remember that we assume that electrons in the CB are nearly free, so they 
must obey the kinetic theory and hence have an average kinetic energy of |kT. The average en¬ 
ergy of the electron is then Eg + \kT 1.46 eV. The excess energy 

/ 3 
£lE = hv — I Eg + — kT 

is lost to the lattice as heat, that is, lattice vibrations. Since each electron loses an amount of 
energy A £ as heat, the heat power generated is 

® A£ - (£)(A£) 
The incoming photon has an energy hv = hc/X = 1.96 eV, so 

(50mW)(1.96eV - 1.46 eV) 
PH =-= 12.76 mW 

1.96 eV 

Notice that in this example, and also in Figure 5.35, we have assigned the excess energy 
AE = hv — Eg — \kT to the electron rather than share it between the electron and the hole that 
is photogenerated. This assumption depends on the ratio of the electron and hole effective 
masses, and hence depends on the semiconductor material. It is approximately true in GaAs be¬ 
cause the electron is much lighter than the hole, almost 10 times, and consequently the absorbed 
photon is able to “impart” a much higher kinetic energy to the electron than to the hole; hv — Eg 

is used in the photogeneration, and the remainder goes to impart kinetic energy to the photo¬ 
generated electron hole pair. 

5.8 PIEZORESISTIVITY 

When a mechanical stress is applied to a semiconductor sample, as shown in Figure 
5.38a, it is found that the resistivity of the semiconductor changes by an amount that 
depends on the stress.6 Piezoresistivity is the change in the resistivity of a semicon¬ 
ductor (indeed, any material), due to an applied stress. Elastoresistivity refers to the 
change in the resistivity due to an induced strain in the substance. Since the applica¬ 
tion of stress invariably leads to strain, piezoresistivity and elastoresistivity refer to 

6 Mechanical stress is defined as the applied force per unit area, <rm = F/A, and the resulting strain em is the 
fractional change in the length of a sample caused by crm; sm = &L/L, where L is the sample length. The two are 
related through the elastic modulus Y; am = Yem. Subscript m is used to distinguish the stress am and strain sm from 
the conductivity a and permittivity e. 
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Figure 5.38 Piezoresistivity and its applications. 

(a) Stress am along the current (longitudinal) direction changes the resistivity by Sp. 

(b) Stresses oi and oj cause a resistivity change. 

(c) A force applied to a cantilever bends it. A piezoresistor at the support end (where the 

stress is large) measures the stress, which is proportional to the force. 

(d) A pressure sensor has four piezoresistors R\, R2, £3, R4 embedded in a diaphragm. The 

pressure bends the diaphragm, which generates stresses that are sensed by the four 

piezoresistors. 

the same phenomenon. Piezoresistivity is fruitfully utilized in a variety of useful 
sensor applications such as force, pressure and strain gauges, accelerometers, and 
microphones. 

The change in the resistivity may be due to a change in the concentration of 
carriers or due to a change in the drift mobility of the carriers, both of which can be 
modified by a strain in the crystal. Typically, in an extrinsic or doped semiconductor, 
the concentration of carriers does not change as significantly as the drift mobility; the 
piezoresistivity is then associated with the change in the mobility. For example, in an 
n-type Si, the change in the electron mobility fxe with mechanical strain em, d/xe/dem, 
is of the order of 105 cm2 V-1 s-1, so that a strain of 0.015 percent will result in a 
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change in the mobility that is about 1 percent, and a similar change in the resistivity, 
which is readily measurable. In this case, the change in the mobility pe is due to the 
induced strain changing the effective mass^ m* which then modifies p,e. (Recall that 
fie = ex/m*, where r is the mean scattering time.) 

The change in the resistivity 8p has been shown to be proportional to the induced 
strain in the crystal and hence proportional to the applied stress om. The fractional 
change 8p/p can be written as 

8p 
— 7T Om 

P 
[5.62] 

Piezoresis¬ 

tivity 

where tt is a constant called the piezoresistive coefficient; n has the units of 1/stress, 
e.g., m2/N or 1/Pa. The piezoresistive coefficient jr depends on the type of doping, 
p-or n-type; the dopant concentration; the temperature; and the crystallographic direc¬ 
tion. A stress along a certain direction in a crystal, for example, along the length of a 
semiconductor crystal, will change the resistivity not only in the same direction but also 
in transverse directions. We know from elementary mechanics that a strain in one di¬ 
rection is accompanied by a transverse strain, as implied by the Poisson ratio, so it is not 
unexpected that a stress in one direction will also modify the resistivity in a transverse 
direction. Thus, the change in the resistivity of a semiconductor in a “longitudinal” 
direction, taken as the direction of current flow, is due to stresses in the longitudinal and 
transverse directions. If oL is the stress along a longitudinal direction, the direction of 
current flow, and aT is the stress along a transverse direction, as in Figure 5.38b, then, 
generally, the fractional change in the resistivity along the current flow direction (lon¬ 
gitudinal direction) is given by 

ip — = nLoL + tzjgj 
P 

[5.63] 
tivity 

where nL is the piezoresistive coefficient along a longitudinal direction (different for 
p- and n-type Si), and ttt is the piezoresistive coefficient in the transverse direction. 

The piezoresistive effect is actually more complicated than what we have implied. 
In reality, we have to consider six types of stresses, three uniaxial stresses along the x, 
y, and z directions (e.g., trying to pull the crystal along in three independent directions) 
and three shear stresses (e.g., trying to shear the crystal in three independent ways). In 
very simple terms, a change in the resistivity (8p/p)i along a particular direction i (an 
arbitrary direction) can be induced by a stress oj along another direction j (which may 
or may not be identical to i). The two, (8p/p)t and oj, are then related through a 
piezoresistivity coefficient denoted by jtij. Consequently, the full description of piezore¬ 
sistivity involves tensors, and the piezoresistivity coefficients Try form the elements of 
this tensor; a treatment beyond the scope of this book. Nonetheless, it is useful to be 
able to calculate nL and nT from various tabulated piezoresistivity coefficients 7Ty, 
without having to learn tensors. It turns out that it is sufficient to identify three princi¬ 

pal piezoresistive coefficients to describe the piezoresistive effect in cubic crystals, 
which are denoted as 7Tn, 7Ti2, and n^. From the latter set we can easily calculate ttl 

and ttt for a crystallographic direction of interest; the relevant equations can be found 
in advanced textbooks. 
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Advances in silicon fabrication technologies and micromachining (ability to fab¬ 
ricate micromechanical structures) have now enabled various piezoresistive silicon 
microsensors to be developed that have a wide range of useful applications. Figure 
5.38c shows a very simple Si microcantilever in which an applied force F to the free 
end bends the cantilever; the tip of the cantilever is deflected by a distance h. 

According to elementary mechanics, this deflection induces a maximum stress am that 
is at the surface, at the support end, of the cantilever. A properly placed piezoresistor at 
this end can be used to measure this stress om, and hence the deflection or the force. 
The piezoresistor is implanted by selectively diffusing dopants into the Si cantilever at 
the support end. Obviously, we need to relate the deflection h of the cantilever tip 
to the stress am, which is well described in mechanics. In addition, h is proportional to 
the applied force F through a factor that depends on the elastic modulus and the geom¬ 
etry of the cantilever. Thus, we can measure both the displacement (h) and force (F). 

Another useful application is in pressure sensors, which are commercially available. 
Again, the structure is fabricated from Si. A very thin elastic membrane, called a di¬ 
aphragm, has four piezoresistors embedded, by appropriate dopant diffusion, on its sur¬ 
face as shown in Figure 5.38d. Under pressure, the Si diaphragm deforms elastically, and 
the stresses that are generated by this deformation cause the resistance of the piezoresistors 
to change. There are four piezoresistors because the four are connected in a Wheatstone 
bridge arrangement for better signal detection. The diaphragm area is typically 1 mm x 
1 mm, and the thickness is 20 pm. There is no doubt that recent advances in microma¬ 
chining have made piezoresistivity an important topic for a variety of sensor applications. 

EXAMPLE 5.18 PIEZORESISTIVE STRAIN GAUGE Suppose that we apply a stress aL along the length, taken 
along the [110] direction, of a p-type silicon crystal sample. We will measure the resistivity 
along this direction by passing a current along the length and measuring the voltage drop be¬ 
tween two fixed points as in Figure 5.38a. The stress aL along the length will result in a strain 
eL along the same length given by eL = oL/Y, where Y is the elastic modulus. From Equation 
5.63 the change in the resistivity is 

A p 
- — TCi<Ti + 71J-0T = XlYSl 
p 

Semi¬ 

conductor 

strain gauge 

where we have ignored the presence of any transverse stresses; crT & 0. These transverse 
stresses depend on how the piezoresistor is used, that is, whether it is allowed to contract later¬ 
ally. If the resistor cannot contract, it must be experiencing a transverse stress. In any event, for 
the particular direction of interest, [110], the Poisson ratio is very small (less than 0.1), and we 
can simply neglect any aT. Clearly, we can find the strain eL from the measurement of A p/p, 
which is the principle of the strain gauge. The gauge factor G of a strain gauge measures the 
sensitivity of the gauge in terms of the fractional change in the resistance per unit strain, 

where we have assumed that A/? is dominated by Ap, since the effects from geometric changes 
in the sample shape can be ignored compared with the piezoresistive effect in semiconductors. 
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Using typical values for a p-type Si piezoresistor which has a length along [ 110], Y « 170 GPa, 
nL f*t 72 x 10"11 Pa-1, we find G & 122. This is much greater than G ^ 1.7 for metal 
resistor-based strain gauges. In most metals, the fractional change in the resistance A R/R is 
due to the geometric effect, the sample becoming elongated and narrower, whereas in semicon¬ 
ductors it is due to the piezoresistive effect. 

5.9 SCHOTTKY JUNCTION 

5.9.1 Schottky Diode 

We consider what happens when a metal and an n-type semiconductor are brought into 
contact. In practice, this process is frequently carried out by the evaporation of a metal 
onto the surface of a semiconductor crystal in vacuum. 

The energy band diagrams for the metal and the semiconductor are shown in 
Figure 5.39. The work function, denoted as 0, is the energy difference between the 
vacuum level and the Fermi level. The vacuum level defines the energy where the elec¬ 
tron is free from that particular solid and where the electron has zero KE. 

For the metal, the work function <Dm is the minimum energy required to remove an 
electron from the solid. In the metal there are electrons at the Fermi level EFm, but in the 

John Bardeen, Walter Schottky, and Walter Brattain. Walter H. 
Schottky (1 886-1976) obtained his PhD from the University of Berlin 
in 1912. He made many distinct contributions to physical electronics. 
He invented the screen grid vacuum tube in 1915, and the tetrode 
vacuum tube in 1919 while at Siemens. The Schottky junction theory 
was formulated in 1938. He also made distinct contributions to 
thermal and shot noise in devices. His book Thermodynamik was 
published in 1929 and included an explanation of the Schottky 
defect (Chapter 1). 

I SOURCE: AIR Emilio Segre Visual Archives, Brattain Collection. 
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Figure 5.39 Formation of a Schottky junction between a metal and an n-type semiconductor when <l>m > <t>„. 

semiconductor there are none at EFn. Nonetheless, the semiconductor work function 4>„ 
still represents the energy required to remove an electron from the semiconductor. It 
may be thought that the minimum energy required to remove an electron from the semi¬ 
conductor is simply the electron affinity x, but this is not so. Thermal equilibrium re¬ 
quires that only a certain fraction of all the electrons in the semiconductor should be in 
the CB at a given temperature. When an electron is removed from the conduction band, 
then thermal equilibrium can be maintained only if an electron is excited from the VB 
to CB, which involves absorbing heat (energy) from the environment; thus it takes more 
energy than simply x • We will not derive the effective thermal energy required to re¬ 
move an electron but state that, as for a metal, this is equal to 4>„, even though there are 
no electrons at EFn. In fact, the thermionic emission of electrons from a heated semi¬ 
conductor is also described by the Richardson-Dushman expression in Equation 4.37 
but with <t> representing the work function of the semiconductor, 4>„ in the present 
n-type case. (In contrast, the minimum photon energy required to remove an electron 
from a semiconductor above absolute zero would be the electron affinity.) 

We assume that <t>m > <J>n, the work function of the metal is greater than that of the 
semiconductor. When the two solids come into contact, the more energetic electrons in 
the CB of the semiconductor can readily tunnel into the metal in search of lower empty 
energy levels (just above EFm) and accumulate near the surface of the metal, as illus¬ 
trated in Figure 5.39. Electrons tunneling from the semiconductor leave behind an 
electron-depleted region of width W in which there are exposed positively charged 
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donors, in other words, net positive space charge. The contact potential, called the 
built-in potential Va, therefore develops between the metal and the semiconductor. 
There is obviously also a built-in electric field from the positive charges to the neg¬ 
ative charges on the metal surface. Eventually this built-in potential reaches a value 
that prevents further accumulation of electrons at the metal surface and an equilibrium 
is reached. The value oTthe built-in voltage V0 is the same as that in the metal-metal 
junction case in Chapter 4, namely, (4>m — 4>„)/e. The depletion region has been de¬ 
pleted of free carriers (electrons) and hence contains the exposed positive donors. This 
region thus constitutes a space charge layer (SCL) in which there is a nonuniform 
internal field directed from the semiconductor to the metal surface. The maximum 
value of this built-in field is denoted as *E0 and occurs right at the metal-semiconductor 
junction (this is where there are a maximum number of field lines from positive to neg¬ 
ative charges). 

The Fermi level throughout the whole solid, the metal and semiconductor in con¬ 
tact, must be uniform in equilibrium. Otherwise, a change in the Fermi level A EF going 
from one end to the other end will be available to do external (electrical) work. Thus, 
EFm and EFn line up. The W region, however, has been depleted of electrons, so in this 
region Ec — EFn must increase so that n decreases. The bands must bend to increase 
Ec— EFn toward the junction, as depicted in Figure 5.39. Far away from the junction, 
we, of course, still have an n-type semiconductor. The bending is just enough for the 
vacuum level to be continuous and changing by 4>m — 4>n from the semiconductor to 
the metal, as this much energy is needed to take an electron across from the semicon¬ 
ductor to the metal. The PE barrier for electrons moving from the metal to the semicon¬ 
ductor is called the Schottky barrier height 4>fl, which is given by 

4>b = - X = eV0 + (Ec - EFn) [5.641 

which is greater than eV0. 

Under open circuit conditions, there is no net current flowing through the 
metal-semiconductor junction. The number of electrons thermally emitted over the PE 

barrier <J> B from the metal to the semiconductor is equal to the number of electrons 
thermally emitted over eVa from the semiconductor to the metal. Emission probability 
depends on the PE barrier for emission through the Boltzmann factor. There are two 
current components due to electrons flowing through the junction. The current due to 
electrons being thermally emitted from the metal to the CB of the semiconductor is 

J\ = Ci exp(-^r) [5.65] 

where C\ is some constant, whereas the current due to electrons being thermally 
emitted from the CB of the semiconductor to the metal is 

h = C2 exp ( - 15.66] 

where C2 is some constant different than C\. 

In equilibrium, that is, open circuit conditions in the dark, the currents are equal 
but in the reverse directions: 

'open circuit = J2 - Jx = 0 

Schottky 

barrier 
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Under forward bias conditions, the semiconductor side is connected to the nega¬ 
tive terminal, as depicted schematically in Figure 5.40a. Since the depletion region W 
has a much larger resistance than the neutral n-region (outside W) and the metal side, 
nearly all the voltage drop is across the depletion region. The applied bias is in the 
opposite direction to the built-in voltage V0. Thus V0 is reduced to V0 — V. 4>fl remains 
unchanged. The semiconductor band diagram outside the depletion region has been 
effectively shifted up with respect to the metal side by an amount eV because 

PE= Charge x Voltage 

V 

!■ 

Metal n-type semiconductor 

(a) Forward-biased Schottky 
junction. Electrons in the CB of the 
semiconductor can easily overcome 
the small PE barrier to enter the 
metal. 

(b) Reverse-biased Schottky junction. 
Electrons in the metal cannot easily 
overcome the PE barrier Ob to enter the 
semiconductor. 

I 

(c) l-Vcharacteristics of a 
Schottky junction exhibits 
rectifying properties (negative 
current axis is in microamps). 

Figure 5.40 The Schottky junction. 
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The charge is negative but so is the voltage connected to the semiconductor, as shown 
in Figure 5.40a. 

The PE barrier for thermal emission of electrons from the semiconductor to the 
metal is now e(V0 — V). The electrons in the CB can now readily overcome the PE 
barrier to the metal. 

The current 72for> due to the electron emission from the semiconductor to the metal, 
is now 

/2for = C2 exp 
' e(Yo-Vy 

kT 

Since 4>B is the same, J\ remains unchanged. The net current is then 

J = jf - J, = C2 *xp[-e(V;;V)] - c2 exp(-^) 

or 

giving 

y = Cj“p(-ir)[“p®-1] 

J = J. [«p(£) - l] 

[5.67] 

[5.68] 
Schottky 

junction 

where J0 is a constant that depends on the material and surface properties of the 
two solids. In fact, examination of the above steps shows that J0 is also J\ in Equa¬ 
tion 5.65. 

When the Schottky junction is reverse biased, then the positive terminal is con¬ 
nected to the semiconductor, as illustrated in Figure 5.40b. The applied voltage Vr 
drops across the depletion region since this region has very few carriers and is highly 
resistive. The built-in voltage V0 thus increases to V0 + Vr. Effectively, the semicon¬ 
ductor band diagram is shifted down with respect to the metal side because the charge 
is negative but the voltage is positive and PE = Charge x Voltage. The PE barrier for 
thermal emission of electrons from the CB to the metal becomes e(V0 + Vr), which 
means that the corresponding current component becomes 

IT = C2 exp[-*<-^y--)j « J, [5.691 

Since generally V0 is typically a fraction of a volt and the reverse bias is more than 
a few volts, /2rev <£ J\ and the reverse bias current is essentially limited by J\ only and 
is very small. Thus, under reverse bias conditions, the current is primarily due to the 
thermal emission of electrons over the barrier <J> B from the metal to the CB of the 
semiconductor as determined by Equation 5.65. Figure 5.40c illustrates the I-V char¬ 
acteristics of a typical Schottky junction. The I-V characteristics exhibit rectifying 
properties, and the device is called a Schottky diode. 

Equation 5.68, which is derived for forward bias conditions, is also valid under 
reverse bias by making V negative, that is, V = — Vr. Furthermore, it turns out to be 
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Schottky 

junction 

forward bias 

applicable not only to Schottky-type metal-semiconductor junctions but also to junc¬ 
tions between a p-type and an n-type semiconductor, pn junctions, as we will show in 
Chapter 6. Under a forward bias V/, which is greater than 25 mV at room temperature, 
the forward current is simply 

(eVf\ kT 
Jf — J0 exp ^ ~jPr~ J > ^ [5.70] 

It should be mentioned that it is also possible to obtain a Schottky junction 
between a metal and a p-type semiconductor. This arises when 4>m < 4>p, where <J>P is 
the work function for the p-type semiconductor. 

5.9.2 Schottky Junction Solar Cell 

The built-in field in the depletion region of the Schottky junction allows this type of 
device to function as a photovoltaic device and also as a photodetector. We consider a 
Schottky device that has a thin metal film (usually Au) deposited onto an n-type semi¬ 
conductor. The energy band diagram is shown in Figure 5.41. The metal is sufficiently 
thin (~ 10 nm) to allow light to reach the semiconductor. 

For photon energies greater than Eg, EHPs are generated in the depletion region in 
the semiconductor, as indicated in Figure 5.41. The field in this region separates the 
EHPs and drifts the electrons toward the semiconductor and holes toward the metal. 
When an electron reaches the neutral n-region, there is now one extra electron there and 
therefore an additional negative charge. This end therefore becomes more negative with 
respect to the situation in the dark or the equilibrium situation. When a hole reaches the 
metal, it recombines with an electron and reduces the effective charge there by one elec¬ 
tron, thus making it more positive relative to its dark state. Under open circuit condi¬ 
tions, therefore, a voltage develops across the Schottky junction device with the metal 
end positive and semiconductor end negative. 

Figure 5.41 The principle of the Schottky junction solar cell. 
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The photovoltaic explanation in terms of the energy band diagram is simple. At the 
point of photogeneration, the electron finds itself at a PE slope as Ec is decreasing 
toward the semiconductor, as shown in Figure 5.41. It has no option but to roll down 
the slope just as a ball that is let go on a slope would roll down the slope to decrease its 
gravitational PE. Recall that there are many more empty states in the CB than elec¬ 
trons, so there is nothing to prevent the electron from rolling down the CB in search of 
lower energy. When the electron reaches the neutral region (flat Ec region), it upsets 
the equilibrium there. There is now an additional electron in the CB and this side ac¬ 
quires a negative charge. If we remember that hole energy increases downward on the 
energy band diagram, then similar arguments also apply to the photogenerated hole in 
the VB, which rolls down its own PE slope to reach the surface of the metal and re¬ 
combine with an electron there. 

If the device is connected to an external load, then the extra electron in the neutral 
n-region is conducted through the external leads, through the load, toward the metal 
side, where it replenishes the lost electron in the metal. As long as photons are gener¬ 
ating EHPs, the flow of electrons around the external circuit will continue and there 
will be photon energy to electrical energy conversion. Sometimes it is useful to think 
of the neutral n-type semiconductor region as a “conductor,” an extension of the 
external wire (except that the n-type semiconductor has a higher resistivity). As soon 
as the photogenerated electron crosses the depletion region, it reaches a conductor and 
is conducted around the external circuit to the metal side to replenish the lost electron 
there. 

For photon energies less than Eg, the device can still respond, providing that the 
hv can excite an electron from Efm in the metal over the PE barrier <t>B into the CB, 
from where the electron will roll down toward the neutral n-region. In this case, hv 
must only be greater than 4>s. 

If the Schottky junction diode is reverse-biased, as shown in Figure 5.42, then 
the reverse bias Vr increases the built-in potential V0 to V0 + Vr (Vr Vo). The in¬ 
ternal field increases to substantially high values. This has the advantage of increas¬ 
ing the drift velocity of the EHPs (vd = fid'E) in the depletion region and therefore 

hv>E V+V Figure 5.42 Reverse-biased 

Schottky photodiodes are 

frequently used as fast 

photodetectors. 
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EXAMPLE 5.19 

Reverse 

saturation 

current in 

Schottky 

junction 

shortening the transit time required to cross the depletion width. The device re¬ 
sponds faster and is useful as a fast photodetector. The photocurrent iPh0to in the ex¬ 
ternal circuit is due to the drift of photogenerated carriers in the depletion region and 
can be readily measured. 

THE SCHOTTKY DIODE The reverse saturation current JQ in the Schottky junction, as ex¬ 
pressed in Equation 5.68, is the same current that is given by the Richardson-Dushman 
equation for thermionic emission over a potential barrier 4>(= <t>fl) derived in Chapter 4. J0 is 
given by 

where Be is the effective Richardson constant that depends on the characteristics of the 
metal-semiconductor junction. Be for metal-semiconductor junctions, among other factors, de¬ 
pends on the density of states related effective mass of the thermally emitted carriers in the 
semiconductor. For example, for a metal to w-Si junction, Be is about 110 A cm-2 K-2, and for 
a metal to p-Si junction, which involves holes, Be is about 30 A cm-2 K-2. 

a. Consider a Schottky junction diode between W (tungsten) and n-Si, doped with 1016 
donors cm-3. The cross-sectional area is 1 mm2. Given that the electron affinity x of Si is 
4.01 eV and the work function of W is 4.55 eV, what is the theoretical barrier height 
from the metal to the semiconductor? 

b. What is the built-in voltage V0 with no applied bias? 

c. Given that the experimental barrier height <t>B is about 0.66 eV, what is the reverse satura¬ 
tion current and the current when there is a forward bias of 0.2 V across the diode? 

SOLUTION 

a. From Figure 5.39, it is clear that the barrier height 4>B is 

<t>B = <j>m - x = 4.55 eV - 4.01 eV = 0.54 eV 

The experimental value is around 0.66 eV, which is greater than the theoretical value due to 
various effects at the metal-semiconductor interface arising from dangling bonds, defects, 
and so forth. For example, dangling bonds give rise to what are called surface states within 
the bandgap of the semiconductor that can capture electrons and modify the Schottky energy 
band diagram. (The energy band diagram in Figure 5.39 represents an ideal junction with no 
surface states.) Further, in some cases, such as Pt on n-Si, the experimental value can be 
lower than the theoretical value. 

b. We can find Ec — EFn in Figure 5.39 from 

n = N1 = N'*x p(-£i^££i) 

1016 cm-3 = (2.8 x 1019cm-3)expf-£c~£F") 
F\ 0.026 eV/ 

which gives AE = Ec — EFn = 0.206eV. Thus, the built-in potential V0 can be found 
from 

<t>B 

e 

Ec ~ Efn 
e 

= 0.54 V - 0.206 V = 0.33 V 
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c. If A is the cross-sectional area, 0.01 cm2, taking Be to be 110 A K 2 cm-2, and using the 
experimental value for the barrier height , the saturation current is 

, / <tB\ , / 0.66 eV \ 

'• = AB-Texi-w) =(001)(110)(300 )ex»(-5^vJ 

= 9.36 x 10-7 A or 0.94 pA 

When the applied voltage is Vf, the forward current If is 

if = '*[«p(^) - >] = <o.94Ma)[«p(^) " *] =20 mA 

5.10 OHMIC CONTACTS AND 
THERMOELECTRIC COOLERS 

An ohmic contact is a junction between a metal and a semiconductor that does not 
limit the current flow. The current is essentially limited by the resistance of the semi¬ 
conductor outside the contact region rather than the thermal emission rate of carriers 
across a potential barrier at the contact. In the Schottky diode, the I-V characteristics 
were determined by the thermal emission rate of carriers across the contact. It should 
be mentioned that, contrary to intuition, when we talk about an ohmic contact, we do 
not generally infer a linear I-V characteristic for the ohmic contact itself. We only 
imply that the contact does not limit the current flow. 

Figure 5.43 shows the formation of an ohmic contact between a metal and an 
n-type semiconductor. The work function of the metal 4>m is smaller than the work 
function <t>„ of the semiconductor. There are more energetic electrons in the metal than 

Metal n-type semiconductor 

Accumulation region Bulk semiconductor 
ohmic contact ^ K I y 

Metal n-type semiconductor 

Before contact After contact 

Figure 5.43 When a metal with a smaller work function than an n-type semiconductor is put into contact 

with the n-type semiconductor, the resulting junction is an ohmic contact in the sense that it does not limit the 
current flow. 
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in the CB, which means that the electrons (around EFm) tunnel into the semiconductor 
in search of lower energy levels, which they find around Ec, as indicated in Fig¬ 
ure 5.43. Consequently, many electrons pile in the CB of the semiconductor near the 
junction. Equilibrium is reached when the accumulated electrons in the CB of the 
semiconductor prevent further electrons tunneling from the metal. Put more rigor¬ 
ously, equilibrium is reached when the Fermi level is uniform across the whole system 
from one end to the other. 

The semiconductor region near the junction in which there are excess electrons is 
called the accumulation region. To show the increase in n, we draw the semiconduc¬ 
tor energy bands bending downward to decrease Ec — EFn, which increases n. Going 
from the far end of the metal to the far end of the semiconductor, there are always con¬ 
duction electrons. In sharp contrast, the depletion region of the Schottky junction 
separates the conduction electrons in the metal from those in the semiconductor. It can 
be seen from the contact in Figure 5.43 that the conduction electrons immediately on 
either side of the junction (at EFm and Ec) have about the same energy and therefore 
there is no barrier involved when they cross the junction in either direction under the 
influence of an applied field. 

It is clear that the excess electrons in the accumulation region increase the 
conductivity of the semiconductor in this region. When a voltage is applied to the 
structure, the voltage drops across the higher resistance region, which is the bulk semi¬ 
conductor region. Both the metal and the accumulation region have comparatively 
high concentrations of electrons compared with the bulk of the semiconductor. The 
current is therefore determined by the resistance of the bulk region. The current den¬ 
sity is then simply J = a£ where a is the conductivity of the semiconductor in the 
bulk and £ is the applied field in this region. 

One of the interesting and important applications of semiconductors is in thermo¬ 
electric, or Peltier, devices, which enable small volumes to be cooled by direct 
currents. Whenever a dc current flows through a contact between two dissimilar materi¬ 
als, heat is either released or absorbed in the contact region, depending on the direction 
of the current. Suppose that there is a dc current flowing from an n-type semiconduc¬ 
tor to a metal through an ohmic contact, as depicted in Figure 5.44a. Then electrons are 
flowing from the metal to the CB of the semiconductor. We only consider the contact 
region where the Peltier effect occurs. Current is carried by electrons near the Fermi 
level EFm in the metal. These electrons then cross over into the CB of the semicon¬ 
ductor and when they reach the end of the contact region, their energy is Ec plus aver¬ 
age KE (which is \kT). There is therefore an increase in the average energy 
{PE + KE) per electron in the contact region. The electron must therefore absorb heat 
from the environment (lattice vibrations) to gain this energy as it drifts through the 
junction. Thus, the passage of an electron from the metal to the CB of an n-type semi¬ 
conductor involves the absorption of heat at the junction. 

When the current direction is from the metal to the n-type semiconductor, the elec¬ 
trons flow from the CB of the semiconductor to the Fermi level of the metal as they 
pass through the contact. Since EFm is lower than Ec, the passing electron has to lose 
energy, which it does to lattice vibrations as heat. Thus, the passage of a CB electron 
from the n-type semiconductor to the metal involves the release of heat at the junction, 
as indicated in Figure 5.44b. 
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i Ohmic contact 
i region 
i 

Metal1 n-type semiconductor 

j Ohmic contact 
[ region 

Metal • n-type semiconductor 

(a) lb) 

Figure 5.44 

(a) Current from an n-type semiconductor to the metal results in heat absorption at 

the junction. 

(b) Current from the metal to an n-type semiconductor results in heat release at the 

junction. 

It is apparent that depending on the direction of the current flow through a junc¬ 
tion between a metal and an n-type semiconductor, heat is either absorbed or released 
at the junction. Although we considered current flow between a metal and an n-type 
semiconductor through an ohmic contact, this thermoelectric effect is a general phe¬ 
nomenon that occurs at a junction between any two dissimilar materials. It is called the 
Peltier effect after its discoverer. In the case of metal-p-type semiconductor junctions, 
heat is absorbed for current flowing from the metal to the p-type semiconductor and 
heat is released in the other direction. Thermoelectric effects occurring at metal- 
semiconductor junctions are summarized in Figure 5.45. It is important not to confuse 
the Peltier effect with the Joule heating of the semiconductor and the metal. Joule heat¬ 
ing, which we simply call I2R (or J2p) heating, arises from the finite resistivity of the 
material. It is due to the conduction electrons losing their energy gained from the field 
to lattice vibrations when they become scattered by such vibrations, as discussed in 
Chapter 2. 

It is self-evident that when a current flows through a semiconductor sample with 
metal contacts at its ends, as depicted in Figure 5.45, one of the contacts will always 
absorb heat and the other will always release heat. The contact where heat is absorbed 
will be cooled and is called the cold junction, whereas the other contact, where heat is 
released, will warm up and is called the hot junction. One can use the cold junction to 
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Figure 5.45 When a dc current is passed through a semiconductor to which metal contacts have been 

made, one junction absorbs heat and cools (the cold junction) and the other releases heat and warms (the 

hot junction). 
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- /j-type semiconductor 

I Metal 

DC supply 

Figure 5.46 Cross section of a typical thermoelectric cooler. 

cool another body, providing that the heat generated at the hot junction can be removed 
from the semiconductor sufficiently quickly to reduce its conduction through the semi¬ 
conductor to the cold junction. Furthermore, there will always be the Joule heating 
(I2R) of the whole semiconductor sample since the bulk will always have a finite 
resistance. 

A simplified schematic diagram of a practical single-element thermoelectric 
cooling device is shown in Figure 5.46. It uses two semiconductors, one n-type and 
the other p-type, each with ohmic contacts. The current direction therefore has oppo¬ 
site thermoelectric effects. On one side, the semiconductors share the same metal 



s.io Ohmic Contacts and Thermoelectric Coolers 447 

Heat absorbed (cold side) 

Heat rejected (hot side) 

Figure 5.47 Typical structure of a commercial thermoelectric cooler. 

electrode. Effectively, the structure is an n-type and a p-type semiconductor con¬ 
nected in series through a common metal electrode. Typically, either Bi2Te3, Bi2Se3, 
or Sb2Te3 is used as the semiconductor material with copper usually as the metal 
electrode. 

The current flowing through the n-type semiconductor to the common metal elec¬ 
trode causes heat absorption, which cools this junction and hence the metal. The same 
current then enters the p-type semiconductor and causes heat absorption at this junc¬ 
tion, which cools the same metal electrode. Thus the common metal electrode is 
cooled at both ends. The other ends of the semiconductors are hot junctions. They are 
connected to a large heat sink to remove the heat and thus prevent heat conduction 
through the semiconductors toward the cold junctions. The other face of the common 
metal electrode is in contact, through a thin ceramic plate (electrical insulator but ther¬ 
mal conductor), with the body to be cooled. In commercial Peltier devices, many of 
these elements are connected in series, as illustrated in Figure 5.47, to increase the 
cooling efficiency. 

THE PELTIER COEFFICIENT Consider the motion of electrons across an ohmic contact between 
a. metal and an n-type semiconductor and hence show that the rate of heat generation Q' at the 
contact is approximately 

Q' = ±n/ 

EXAMPLE 5.20 

where fl, called the Peltier coefficient between the two materials, is given by 

n = - (Ec-EFn) + ^-kT 
e L 2 
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where Ec — EFn is the energy separation of Ec from the Fermi level in the n-type semiconduc¬ 
tor. The sign depends on the convention used for heat liberation or absorption. 

SOLUTION 

We consider Figure 5.44a, which shows only the ohmic contact region between a metal and an 
n-type semiconductor when a current is passing through it. The majority of the applied voltage 
drops across the bulk of the semiconductor because the contact region, or the accumulation re¬ 
gion, has an accumulation of electrons in the CB. The current is limited by the bulk resistance 
of the semiconductor. Thus, in the contact region we can take the Fermi level to be almost undis¬ 
turbed and hence uniform, EFm « EFn. In the bulk of the metal, a conduction electron is at 
around EFm (same as EFn), whereas just at the end of the contact region in the semiconductor 
it is at Ec plus an average KE of \kT. The energy difference is the heat absorbed per electron 
going through the contact region. Since 1 je is the rate at which electrons are flowing through 
the contact. 

Rate of energy absorption 
3 

+ 2kT 

or 

e 

so the Peltier coefficient is approximately given by the term in the square brackets. A more rig¬ 
orous analysis gives n as 

n = ~[(£c - EFh) + 2kT] 
e 

ADDITIONAL TOPICS 

5.11 DIRECT AND INDIRECT B ANDGAP 
SEMICONDUCTORS 

E—k Diagrams We know from quantum mechanics that when the electron is within 
a potential well of size L, its energy is quantized and given by 

j-, Wn)2 

n 2m e 

where the wavevector kn is essentially a quantum number determined by 

where n = 1, 2, 3,... The energy increases parabolically with the wavevector kn. 
We also know that the electron momentum is given by fikn. This description can be 
used to represent the behavior of electrons in a metal within which their average 
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potential energy can be taken to be roughly zero. In other words, we take V (x) = 0 
within the metal crystal and V (x) to be large [e.g., V (jc) = V0] outside so that the elec¬ 
tron is contained within the metal. This is the nearly free electron model of a metal 
that has been quite successful in interpreting many of the properties. Indeed, we were 
able to calculate the density of states g(E) based on the three-dimensional potential 
well problem. It is quite obvious that this model is too simple since it does not take into 
account the actual variation of the electron potential energy in the crystal. 

The potential energy of the electron depends on its location within the crystal and 
is periodic due to the regular arrangement of the atoms. How does a periodic potential 
energy affect the relationship between E and kP It will no longer simply be En = 
(hknr/2me. 

To find the energy of the electron in a crystal, we need to solve the Schrodinger 
equation for a periodic potential energy function in three dimensions. We first con¬ 
sider the hypothetical one-dimensional crystal shown in Figure 5.48. The electron 
potential energy functions for each atom add to give an overall potential energy 
function V(x), which is clearly periodic in x with the periodicity of the crystal a. 

^lus> Periodic 

V(x) = V(x + a) = V(x + 2a) = • • • [5.71] potential 
energy 

When N atoms are arranged to form the 
crystal then there is an overlap of individual 
electron PE functions. 

Figure 5.48 The electron potential energy (PE), V(x), inside the crystal is periodic with the same periodicity a as 

that of the crystal. Far away outside the crystal, by choice, V= 0 (the electron is free and PE = 0). 
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Schrodinger 

equation 

and so on. Our task is therefore to solve the Schrodinger equation 

d2\js 

dx2 
+ -S[E - V(x)]f = 0 

ft 
[5.72] 

Periodic 

potential 

Bloch 

wavefunction 

subject to the condition that the potential energy V (x) is periodic in a, that is, 

V (x) = V {x + ma) m = 1,2, 3,... [5.73] 

The solution of Equation 5.72 will give the electron wavefunction in the crystal 
and hence the electron energy. Since V(jt) is periodic, we should expect, by intuition 
at least, the solution tfr(x) to be periodic. It turns out that the solutions to Equa¬ 
tion 5.72, which are called Bloch wavefunctions, are of the form 

= Uk(x) exp(jkx) [5.74] 

where Uk(x) is a periodic function that depends on V 0) and has the same periodicity 
a as V(jc). The term exp (jkx), of course, represents a traveling wave. We should 
remember that we have to multiply this by exp{—jEt/fi), where E is the energy, to get 
the overall wavefunction t). Thus the electron wavefunction in the crystal is a 
traveling wave that is modulated by Uk(x). 

There are many such Bloch wavefunction solutions to the one-dimensional crys¬ 
tal, each identified with a particular k value, say kn, which acts as a kind of quantum 
number. Each irk(x) solution corresponds to a particular kn and represents a state with 
an energy Ek. The dependence of the energy Ek on the wavevector k is what we call 
the E-k diagram. Figure 5.49 shows a typical E-k diagram for the hypothetical one¬ 
dimensional solid for k values in the range —n/a to +n/a. Just as hk is the momen¬ 
tum of a free electron, hk for the Bloch electron is the momentum involved in its 
interaction with external fields, for example, those involved in the photon absorption 
process. Indeed, the rate of change of hk is the externally applied force Fext on the 
electron such as that due to an electric field (Fext = CE). Thus, for the electron within 

Figure 5.49 The E-k diagram of a direct 
bandgap semiconductor such as GaAs. 

The E-k curve consists of many discrete 
points, each corresponding to a possible 

state, wavefunction V^iM/ that is allowed to 
exist in the crystal. The points are so close 
that we normally draw the E-k relationship 
as a continuous curve. In the energy range 

Ev to Ec, there are no points [V^M 
solutions]. 

The E-k diagram The energy band 
diagram 
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the crystal, 

d(m _ „ 

dt 

and consequently we call tik the crystal momentum of the electron.7 
Inasmuch as the momentum of the electron in the x direction in the crystal is given 

by tik, the E-k diagram is an energy versus crystal momentum plot. The states 
ifk(x) in the lower E-k curve constitute the wavefunctions for the valence electrons 
and thus correspond to the states in the VB. Those in the upper E-k curve, on the other 
hand, correspond to the states in the conduction band (CB) since they have higher en¬ 
ergies. All the valence electrons at absolute zero of temperature therefore fill the states, 
particular k„ values, in the lower E-k diagram. 

It should be emphasized that an E-k curve consists of many discrete points, each 
corresponding to a possible state, wavefunction ^*0), that is allowed to exist in the 
crystal. The points are so close that we draw the E-k relationship as a continuous 
curve. It is clear from the E-k diagram that there is a range of energies, from Ev to Ec, 
for which there are no solutions to the Schrodinger equation and hence there are no 
irk(x) with energies in Ev to Ec. Furthermore, we also note that the E-k behavior is not 
a simple parabolic relationship except near the bottom of the CB and the top of the VB. 

Above absolute zero of temperature, due to thermal excitation, however, some of 
the electrons from the top of the valence band will be excited to the bottom of the con¬ 
duction band. According to the E-k diagram in Figure 5.49, when an electron and hole 
recombine, the electron simply drops from the bottom of the CB to the top of the VB 
without any change in its k value, so this transition is quite acceptable in terms of 
momentum conservation. We should recall that the momentum of the emitted photon 
is negligible compared with the momentum of the electron. The E-k diagram in Fig¬ 
ure 5.49 is therefore for a direct bandgap semiconductor. 

The simple E-k diagram sketched in Figure 5.49 is for the hypothetical one¬ 
dimensional crystal in which each atom simply bonds with two neighbors. In real 
crystals, we have a three-dimensional arrangement of atoms with V(x, y, z) showing 
periodicity in more than one direction. The E-k curves are then not as simple as that in 
Figure 5.49 and often show unusual features. The E-k diagram for GaAs, which is shown 
in Figure 5.50a, as it turns out, has main features that are quite similar to that sketched in 
Figure 5.49. GaAs is therefore a direct bandgap semiconductor in which electron-hole 
pairs can recombine directly and emit a photon. It is quite apparent that light emitting 
devices use direct bandgap semiconductors to make use of direct recombination. 

7 The actual momentum of the electron, however, is not tik because 

; 7^ Fexternal “t“ ^internal 
at 

where Fextemal + internal are all forces acting on the electron. The true momentum pe satisfies 

7~ = Fexternal + Finternal 

However, as we are interested in interactions with external forces such as an applied field, we treat ti k as if it were 
the momentum of the electron in the crystal and use the name crystal momentum. 
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E E 

Figure 5.50 

(a) In GaAs the minimum of the CB is 

directly above the maximum of the VB. 

GaAs is therefore a direct bandgap 
semiconductor. 

(b) In Si, the minimum of the CB is 

displaced from the maximum of the VB and 

Si is an indirect bandgap semiconductor. 

(c) Recombination of an electron and a 

hole in Si involves a recombination center. 

E 

(c) Si with a recombination center 

In the case of Si, the diamond crystal structure leads to an E-k diagram that has the 
essential features depicted in Figure 5.50b. We notice that the minimum of the CB is 
not directly above the maximum of the VB. An electron at the bottom of the CB there¬ 
fore cannot recombine directly with a hole at the top of the VB because, for the electron 
to fall down to the top of the VB, its momentum must change from kc\> to kvb, which is 
not allowed by the law of conservation of momentum. Thus direct electron-hole 
recombination does not take place in Si and Ge. The recombination process in these 
elemental semiconductors occurs via a recombination center at an energy level Er. 
The electron is captured by the defect at Er, from where it can fall down into the top of 
the VB. The indirect recombination process is illustrated in Figure 5.50c. The energy 
of the electron is lost by the emission of phonons, that is, lattice vibrations. The E-k 
diagram in Figure 5.50b for Si is an example of an indirect bandgap semiconductor. 

In some indirect bandgap semiconductors such as GaP, the recombination of the 
electron with a hole at certain recombination centers results in photon emission. The 
E-k diagram is similar to that shown in Figure 5.50c except that the recombination 
centers at Er are generated by the purposeful addition of nitrogen impurities to GaP. 
The electron transition from Er to Ev involves photon emission. 

Electron Motion and Drift We can understand the response of a conduction band 
electron to an applied external force, for example, an applied field, by examining the 
E-k diagram. Again, for simplicity, we consider the one-dimensional crystal. The 
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(a) (b) 

Figure 5.51 

(a) In the absence of a field, over a long time, the average of all k values is zero; there is no net 

momentum in any one particular direction. 

(b) In the presence of a field in the — x direction, the electron accelerates in the +x direction increasing 

its k value along x until it is scattered to a random k value. Over a long time, the average of all k values 

is along the +x direction. Thus the electron drifts along +x. 

electron is wandering around the crystal quite randomly due to scattering from lattice 
vibrations. Thus the electron moves with a certain k value in the +x direction, say k+, 
as illustrated in the E-k diagram of Figure 5.51a. When it is scattered by a lattice 
vibration, its k value changes, perhaps to which is also shown in Figure 5.51a. This 
process of k changing randomly from one scattering to another scattering process con¬ 
tinues all the time, so over a long time the average value of k is zero; that is, average 
k+ is the same as average k— 

When an electric field is applied, say in the — x direction, then the electron gains 
momentum in the -hr direction from the force of the field e*Ex. With time, while the 
electron is not scattered, it moves up in the E-k diagram from ki+ to &2+ to k$+ and so 
on until a lattice vibration randomly scatters the electron to say k\- (or to some other 
random k value) as shown in Figure 5.5 lb. Over a long time, the average of all k+ is no 
longer equal to the average of all k_ and there is a net momentum in the -hr direction, 
which is tantamount to a drift in the same direction. 

Effective Mass The usual definition of inertial mass of a particle in classical 
physics is based on 

Force = Mass x Acceleration 

F = ma 

When we treat the electron as a wave within the semiconductor crystal, we have to 
determine whether we can still, in some way, use the convenient classical F = ma 
relation to describe the motion of an electron under an applied force such as e*Ex and, 
if so, what the apparent mass of the electron in the crystal should be. 
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We will evaluate the velocity and acceleration of the electron in the CB in 
response to an electric field Xx along —x that imposes an external force Eext = eEx in 
the +x direction, as shown in Figure 5.51b. Our treatment will make use of the quan¬ 
tum mechanical E-k diagram. 

Since we are treating the electron as a wave, we have to evaluate the group veloc¬ 
ity vg, which, by definition, is vg = dcojdk. We know that the time dependence of the 
wavefunction is exp(—jEt/fi) where the energy E = tia> (to is an “angular frequency” 
associated with the wave motion of the electron). Both E and a> depend on k. Thus, the 
group velocity is 

vg = 
1 dE 

hdk 
[5.751 

Thus the group velocity is determined by the gradient of the E-k curve. In the 
presence of an electric field, the electron experiences a force Fext = eEx from which it 
gains energy and moves up in the E-k diagram until, later on, it collides with a lattice 
vibration, as shown in Figure 5.51b. During a small time interval St between colli¬ 
sions, the electron moves a distance vg St and hence gains energy SE, which is 

8E = Fextvg St [5.761 

To find the acceleration of the electron and the effective mass, we somehow have 
to put this equation into a form that looks like Fext = mea, where a is the acceleration. 
From Equation 5.76, the relationship between the external force and energy is 

1 dE dk 
Fex t =-= fl  

Vg dt dt 
[5.77] 

where we used Equation 5.75 for vg in Equation 5.76. Equation 5.77 is the reason for 
interpreting hk as the crystal momentum inasmuch as the rate of change of fik is the 
externally applied force. 

The acceleration a is defined as dvg/dt. We can use Equation 5.75, 

d\-—] 
dvg U dk] \d2Edk 

a = —- = —-- =-[5.78] 
dt dt ti dk2 dt 

From Equation 5.78, we can substitute for dk/dt in Equation 5.77, which is then 
a relationship between Fext and a of the form 

Esxt — [5.79] 

We know that the response of a free electron to the external force is Fext = mea, 
where me is its mass in vacuum. Therefore it is quite clear from Equation 5.79 that the 
effective mass of the electron in the crystal is 

m* = ti 2 ~d2El 1 

.He2. 
[5.80] 
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Thus, the electron responds to an external force and moves as if its mass were given 
by Equation 5.80. The effective mass obviously depends on the E-k relationship, which in 
turn depends on the crystal symmetry and the nature of bonding between the atoms. Its 
value is different for electrons in the CB and for those in the VB, and moreover, it depends 
on the energy of the electron since it is related to the curvature of the E-k behavior 
(d2E/dk2). Further, it is clear from Equation 5.80 that the effective mass is a quantum 
mechanical quantity inasmuch as the E-k behavior is a direct consequence of the applica¬ 
tion of quantum mechanics (the Schrodinger equation) to the electron in the crystal. 

It is interesting that, according to Equation 5.80, when the E-k curve is a down¬ 
ward concave as at the top of a band (e.g., Figure 5.49), the effective mass of an elec¬ 
tron at these energies in a band is then negative. What does a negative effective mass 
mean? When the electron moves up on the E-k curve by gaining energy from the field, 
it actually decelerates, that is, moves more slowly. Its acceleration is therefore in the 
opposite direction to an electron at the bottom of the band. Electrons in the CB are at 
the bottom of a band, so their effective masses are positive quantities. At the top of a 
valence band, however, we have plenty of electrons. These electrons have negative 
effective masses and under the action of a field, they decelerate. Put differently, they 
accelerate in the opposite direction to the applied external force Fen. It turns out that 
we can describe the collective motion of these electrons near the top of a band by con¬ 
sidering the motion of a few holes with positive masses. 

It should be mentioned that Equation 5.80 defines the meaning of the effective 
mass in quantum mechanical terms. Its usefulness as a concept lies in the fact that we 
can measure it experimentally, for example, by cyclotron resonance experiments, and 
have actual values for it. This means we can simply replace me by m* in equations that 
describe the effect of an external force on electron transport in semiconductors. 

Holes To understand the concept of a hole, we consider the E-k curve corresponding 
to energies in the VB, as shown in Figure 5.52a. If all the states are filled, then there 
are no empty states for the electrons to move into and consequently an electron cannot 
gain energy from the field. For each electron moving in the positive x direction with a 
momentum hk+, there is a corresponding electron with an equal and opposite momen¬ 
tum tik_, so there is no net motion. For example, the electron at b is moving toward the 

Figure 5.52 

(a) In a full valence band, there is no net contribution to the 
current. There are equal numbers of electrons (e.g., at b 
and b) with opposite momenta. 

(b) If there is an empty state (bole) at b at the top of the band, 

then the electron at b' contributes to the current. 

E 

E 
A 
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CURRENT DUE TO A MISSING ELECTRON IN THE VB First, let us consider a completely full va¬ 
lence band that contains, say, N electrons. N/2 of these are moving with momentum in the +x, 
and N/2 in the — x direction. Suppose that the crystal is unit volume. An electron with charge —e 
moving with a group velocity vgi contributes to the current by an amount —e\gi. We can deter¬ 
mine the current density Jw due to the motion of all the electrons (N of them) in the band, 

EXAMPLE 5.22 

N 

jN = ~eYl VS' = 0 
i=l 

Jat is zero because for each value of vgi, there is a corresponding velocity equal in magni¬ 
tude but opposite in direction (b and b' in Figure 5.52a). Our conclusion from this is that the 
contribution to the current density from a full valence band is nil, as we expect. 

Suppose now that the jth electron is missing (b in Figure 5.52b). The net current density is 
due to N — 1 electrons in the band, so 

N 

Jn-1 = ® Vgi [5.81] 

where the summation is for i = 1 to N and i =£ j (j th electron is missing). We can write the sum 
as summation to N including the j th electron and minus the missing j th electron contribution, 

N 

Jw-i = -e^Vgi - (-evgj) 
i=i 

that is, 

Jw-l = +£Vgy [5.82] 

where we used Jn = 0. We see that when there is a missing electron, there is a net current due 
to that empty state (yth). The current appears as the motion of a charge +e with a velocity vgj, 
where vgJ- is the group velocity of the missing electron. In other words, the current is due to the 
motion of a positive charge +e at the site of the missing electron at kj, which is what we call a 
hole. One should note that Equation 5.81 describes the current by considering the motions of all 
the N — 1 electrons, whereas Equation 5.82 describes the same current by simply considering 
the missing electron as if it were a positively charged particle (+e) moving with a velocity equal 
to that of the missing electron. Equation 5.82 is the convenient description universally adopted 
for a valence band containing missing electrons. 

5.12 INDIRECT RECOMBINATION 

We consider the recombination of minority carriers in an extrinsic indirect bandgap 
semiconductor such as Si or Ge. As an example, we consider the recombination of 
electrons in a p-type semiconductor. In an indirect bandgap semiconductor, the recom¬ 
bination mechanism involves a recombination center, a third body that may be a crys¬ 
tal defect or an impurity, in the recombination process to satisfy the requirements of 
conservation of momentum. We can view the recombination process as follows. Re¬ 
combination occurs when an electron is captured by the recombination center at the 
energy level Er. As soon as the electron is captured, it will recombine with a hole 
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because holes are abundant in a p-type semiconductor. In other words, since there are 
many majority carriers, the limitation on the rate of recombination is the actual capture 
of the minority carrier by the center. Thus, if ze is the electron recombination time, 
since the electrons will have to be captured by the centers, re is given by 

1 

SrNrv th 
15.83] 

where Sr is the capture (or recombination) cross section of the center, Nr is the con¬ 
centration of centers, and uth is the mean speed of the electron that you may take as its 
effective thermal velocity. 

Equation 5.83 is valid under small injection conditions, that is, ppo ]» np. There is 
a more general treatment of indirect recombination called the Shockley-Read statistics 
of indirect recombination and generation, which is treated in more advanced semicon¬ 
ductor physics textbooks. That theory eventually arrives at Equation 5.83 for low-level 
injection conditions. We derived Equation 5.83 from a purely physical reasoning. 

Gold is frequently added to silicon to aid recombination. It is found that the 
minority carrier recombination time is inversely proportional to the gold concentra¬ 
tion, following Equation 5.83. 

5.13 AMORPHOUS SEMICONDUCTORS 

Up to now we have been dealing with crystalline semiconductors, those crystals that 
have perfect periodicity and are practically flawless unless purposefully doped for use 
in device applications. They are used in numerous solid-state devices including large- 
area solar cells. Today’s microprocessor uses a single crystal of silicon that contains 
millions of transistors; indeed, we are heading for the 1-billion-transistor chip. There 
are, however, various applications in electronics that require inexpensive large-area 
devices to be fabricated and hence require a semiconductor material that can be pre¬ 
pared in a large area. In other applications, the semiconductor material is required to 
be deposited as a film on a flexible substrate for use as a sensor. Best known examples 
of large-area devices are flat panel displays based on thin-film transistors (TFTs), in¬ 
expensive solar cells, photoconductor drums (for printing and photocopying), image 
sensors, and newly developed X-ray image detectors. Many of these applications typ¬ 
ically use hydrogenated amorphous silicon, a-Si:H. 

A distinctive property of an electron in a crystalline solid is that its wavefunction 
is a traveling wave, a Bloch wave, fa, as in Equation 5.74. The Bloch wavefunction 
is a consequence of the periodicity of an electron’s potential energy PE, V(jc), within 
the crystal. One can view the electron’s motion as tunneling through the periodic po¬ 
tential energy hills. The wavefunctions i/a form extended states because they extend 
throughout the whole crystal. The electron belongs to the whole crystal, and there is an 
equal probability of finding an electron in any unit cell. The wavevector k in this trav¬ 
eling wave ifric acts as a quantum number. There are many discrete kn values, which 
form a nearly continuous set of k values (see Figure 5.49). We can describe the inter¬ 
action of the electron with an external force, or with photons and phonons, by assign¬ 
ing a momentum tik to the electron, which is called the electron’s crystal momentum. 
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The electron’s wavefunction is frequently scattered by lattice vibrations (or by de¬ 
fects or impurities) from one k-value to another, e.g., from ^ to irk>. The scattering of 
the wavefunction imposes a mean free path £ on the electron’s motion, that is, a mean 
distance over which a wave can travel without being scattering. Over the distance l, 
the wavefunction is coherent, that is, well defined and predictable as a traveling Bloch 
wave; t is also known as the coherence length of the wavefunction. The mobility is de¬ 
termined by the mean free path l, which at room temperature is typically of the order 
of several hundreds of mean interatomic separations. The crystal periodicity and the 
unit cell atomic structure control the types of Bloch wave solutions one can obtain to 
the Schrodinger equation. The solutions allow the electron energy E to be examined as 
a function of k (or momentum fik) and these E — k diagrams categorize crystalline 
semiconductors into two classes: direct bandgap (GaAs type) and indirect bandgap (Si 
type) semiconductors. 

Hydrogenated amorphous silicon (a-Si:H) is the noncrystalline form of silicon 
in which the structure has no long-range order but only short-range order; that is, we 
can only identify the nearest neighbors of a given atom. Each Si atom has four neigh¬ 
bors as in the crystal, but there is no periodicity or long-range order as illustrated in 
Figure 1.59. Without the hydrogen, pure a-Si would have dangling bonds. In such a 
structure sometimes a Si atom would not be able to find a fourth neighboring Si atom 
to bond with and will be left with a dangling bond as in Figure 1.59b. The hydrogen in 
the structure (~10 percent) passivates (i.e., neutralizes) the unsatisfied (“dangling”) 
bonds inherent in a noncrystalline structure and so reduces the density of dangling bonds 
or defects. a-Si:H belongs to a class of solids called amorphous semiconductors that 
do not follow typical crystalline concepts such as Bloch wavefunctions. First, due to 
the lack of periodicity, we cannot describe the electron as a Bloch wave. Consequently, 
we cannot use a wavevector k, and hence hk, to describe the electron’s motion. These 
semiconductors however do have a short-range order and also possess an energy 
bandgap that separates a conduction band and a valence band. A window glass has a 
noncrystalline structure but also has a bandgap, which makes it transparent. Photons 
with energies less than the bandgap energy can pass through the window glass. 

The examination of the structure of a-Si:H in Figure 1.59c should make it appar¬ 
ent that the potential energy V(x) of the electron in this noncrystalline structure fluc¬ 
tuates randomly from site to site. In some cases, the local changes in V(x) can be 
quite strong, forming effective local PE wells (obviously finite wells). Such fluctua¬ 
tions in the PE within the solid can capture or trap electrons, that is, localize elec¬ 
trons at certain spatial locations. A localized electron will have a wavefunction that 
resembles the wavefunction in the hydrogen atom, so the probability of finding the 
electron is localized to the site. Such locations that can trap electrons, give them 
localized wavefunctions, are called localized states. The amorphous structure also 
has electrons that possess extended wavefunctions; that is, they belong to the whole 
solid. These extended wavefunctions are distinctly different than those in the crystal 
because they have very short coherence lengths due to the random potential fluctua¬ 
tions; the electron is scattered from site to site and hence the mean free path is of the 
order of a few atomic spacings. The extended wavefunction has random phase fluc¬ 
tuations. Figure 5.53 compares localized and extended wavefunctions in an amor¬ 
phous semiconductor. 
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Figure 5.53 Schematic representation of the density of states g(E) versus energy E for an amorphous 

semiconductor and the associated electron wavefunctions for an electron in the extended and localized states. 

Electronic properties of all amorphous semiconductors can be explained in terms 
of the energy distribution of their density of states (DOS) function, g(E). The DOS 
function has well-defined energies Ev and Ec that separate extended states from local¬ 
ized states as in Figure 5.53. There is a distribution of localized states, called tail states 
below Ec and above Ev. The usual bandgap Ec—Ev is called the mobility gap. The 
reason is that there is a change in the character of charge transport, and hence in the 
carrier mobility, in going from extended states above Ec to localized states below Ec. 

Electron transport above Ec in the conduction band is dominated by scattering 
from random potential fluctuations arising from the disordered nature of the structure. 
The electrons are scattered so frequently that their effective mobility is much less than 
what it is in crystalline Si: pe in a-Si:H is typically 5-10 cm2 V-1 s-1 whereas it is 
1400 cm2 V-1 s-1 in a single crystal Si. Electron transport below Ec, on the other hand, 
requires an electron to jump, or hop, from one localized state to another, aided by 
thermal vibrations of the lattice, in an analogous way to the diffusion of an interstitial 
impurity in a crystal. We know from Chapter 1 that the jump or diffusion of the impu¬ 
rity is a thermally activated process because it relies on the thermal vibrations of all the 
crystal atoms to occasionally give the impurity enough energy to make that jump. The 
electron’s mobility associated with this type of hopping motion among localized states 
is thermally activated, and its value is small. Thus, there is a change in the electron 
mobility across Ec, which is called the conduction band mobility edge. 

The localized states (frequently simply called traps) between Ev and Ec have a pro¬ 
found effect on the overall electronic properties. The tail localized states are a direct 
result of the structural disorder that is inherent in noncrystalline solids, variations in the 
bond angles and length. Various prominent peaks and features in the DOS within the 
mobility gap have been associated with possible structural defects, such as under- and 
overcoordinated atoms in the structure, dangling bonds, and dopants. Electrons that 
drift in the conduction band can fall into localized states and become immobilized 
(trapped) for a while. Thus, electron transport in a-Si:H occurs by multiple trapping in 
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shallow localized states. The effective electron drift mobility in a-Si:H is therefore re¬ 
duced to ~1 cm2 V-1 s_1. Low drift mobilities obviously prevent the use of amorphous 
semiconductor materials in high-speed or high-gain electronic applications. Nonetheless, 
low-speed electronics is just as important as high-speed electronics in the electronics 
market in such applications as flat panel displays, solar cells, and image sensors. A low- 
speed flat panel display made from hydrogenated amorphous silicon (a-Si:H) TFTs costs 
very roughly the same as a high-speed crystalline Si microchip that runs the CPU. 

CD Selected Topics and Solved Problems 

Selected Topics ' 

Hall Effect in Semiconductors 
Transferred Electron Devices: Gunn Effect 
Elements of Photoconductivity 
Thermoelectric Effects in Semiconductors: 

Voltage Drift in Semiconductor Devices 
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Solved Problems 

Piezoresistance: Pressure Sensors and Strain Gauges 

Hall Effect 
Ionization Region in Doped Semiconductors 
Compensation Doping of Semiconductors 
Electron-Hole Recombination in Semiconductors and 

Photoconductivity 
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DEFINING TERMS 

Acceptor atoms are dopants that have one less valency 
than the host atom. They therefore accept electrons 
from the VB and thereby create holes in the VB, which 
leads to a p > n and hence to a p-type semiconductor. 

Average energy of an electron in the CB is \kT as if the 

electrons were obeying Maxwell-Boltzmann statistics. 
This is only true for a nondegenerate semiconductor. 

Bloch wave refers to an electron wavefunction of the 
form ifrk = Uk(x) exp(jkx), which is a traveling wave 

that is modulated by a function Uk(x) that has the peri¬ 
odicity of the crystal. The Bloch wavefunction is a 
consequence of the periodicity of an electron’s poten¬ 
tial energy within the crystal. 

Compensated semiconductor contains both donors 

and acceptors in the same crystal region that compen¬ 
sate for each other’s effects. For example, if there are 
more donors than acceptors, Nd > Na, then some of 
the electrons released by donors are captured by accep¬ 
tors and the net effect is that Nd — Na number of elec¬ 
trons per unit volume are left in the CB. 

Conduction band (CB) is a band of energies for the 
electron in a semiconductor where it can gain energy 

from an applied field and drift and thereby contribute to 
electrical conduction. The electron in the CB behaves 
as if it were a “free” particle with an effective mass m*. 

Degenerate semiconductor has so many dopants that 
the electron concentration in the CB, or hole concentra¬ 
tion in the VB, is comparable with the density of states 
in the band. Consequently, the Pauli exclusion princi¬ 

ple is significant and Fermi-Dirac statistics must be 
used. The Fermi level is either in the CB for a n+-type 
degenerate or in the VB for a p+-type degenerate semi¬ 
conductor. The superscript + indicates a heavily doped 
semiconductor. 

Diffusion is a random process by which particles move 
from high-concentration regions to low-concentration 

regions. 

Donor atoms are dopants that have a valency one more 
than the host atom. They therefore donate electrons to 
the CB and thereby create electrons in the CB, which 
leads to n > p and hence to an n-type semiconductor. 

Effective density of states (Nc) at the CB edge is a 
quantity that represents all the states in the CB per unit 
volume as if they were all at Ec. Similarly, Nv at the 
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VB edge is quantity that represents all the states in the 
VB per unit volume as if they were all at Ev. 

Effective mass (m*) of an electron is a quantum me¬ 
chanical quantity that behaves like the inertial mass in 
classical mechanics, F = ma, in that it measures the 
object’s inertial resistance to acceleration. It relates the 
acceleration a of an electron in a crystal to the applied 
external force Fext by Fext = m* a. The external force 
is most commonly the force of an electric field and 
excludes all internal forces within the crystal. 

Einstein relation relates the diffusion coefficient D 

and the drift mobility n of a given species of charge 
carriers through (D/fx) = (kT/e). 

Electron affinity (x) is the energy required to remove 
an electron from Ec to the vacuum level. 

Energy of the electron in the crystal, whether in the 
CB or VB, depends on its momentum tik through the 
E-k behavior determined by the Schrodinger equation. 
E-k behavior is most conveniently represented graphi¬ 
cally through E-k diagrams. For example, for an elec¬ 
tron at the bottom of the CB, E increases as (hk)2/m* 

where tik is the momentum and m* is the effective mass 
of the electron, which is determined from the E-k 

behavior. 

Excess carrier concentration is the excess concen¬ 
tration above the thermal equilibrium value. Excess 
carriers are generated by an external excitation such as 
photogeneration. 

Extended state refers to an electron wavefunction \jrk 

whose magnitude does not decay with distance; that is, 
it is extended in the crystal. An extended wavefunction 
of an electron in a crystal is a Bloch wave, that is, 
rfrk = Uk (x) exp(jkx), which is a traveling wave that is 
modulated by a function Uk(x) that has the periodicity 
of the crystal. There is an equal probability of finding 
an electron in any unit cell of the crystal. Scattering of 
an electron in the crystal by lattice vibrations or impu¬ 
rities, etc., corresponds to the electron being scattered 
from one xfrk to another \j/k>, i.e. a change in the 
wave vector from k to k'. Valence and conduction 
bands in a crystal have extended states. 

Extrinsic semiconductor is a semiconductor that has 
been doped so that the concentration of one type of 
charge carrier far exceeds that of the other. Adding 

donor impurities releases electrons into the CB and n 

far exceeds p\ thus, the semiconductor becomes n-type. 

Fermi energy or level (EF) may be defined in several 
equivalent ways. The Fermi level is the energy level cor¬ 
responding to the energy required to remove an electron 
from the semiconductor; there need not be any actual 
electrons at this energy level. The energy needed to re¬ 
move an electron defines the work function <t>. We can 
define the Fermi level to be C> below the vacuum level. 
EF can also be defined as that energy value below 
which all states are full and above which all states are 
empty at absolute zero of temperature. EF can also be 
defined through a difference. A difference in the Fermi 
energy A EF in a system is the external electrical work 
done per electron either on the system or by the system 
such as electrical work done when a charge e moves 
through an electrostatic PE difference is eA V. It can be 
viewed as a fundamental material property. 

Intrinsic carrier concentration («*) is the electron 
concentration in the CB of an intrinsic semiconductor. 
The hole concentration in the VB is equal to the electron 

concentration. 

Intrinsic semiconductor has an equal number of 
electrons and holes due to thermal generation across 
the bandgap Eg. It corresponds to a pure semiconduc¬ 
tor crystal in which there are no impurities or crystal 

defects. 

Ionization energy is the energy required to ionize an 
atom, for example, to remove an electron. 

Ionized impurity scattering limited mobility is the 
mobility of the electrons when their motion is limited 
by scattering from the ionized impurities in the semi¬ 
conductor (e.g., donors and acceptors). 

k is the wavevector of the electron’s wavefunction. In a 
crystal the electron wavefunction, ij/k U) is a modulated 

traveling wave of the form 

fk(x) = Uk(x) exp(jkx) 

where k is the wavevector and Uk(x) is a periodic func¬ 
tion that depends on the PE of interaction between the 
electron and the lattice atoms, k identifies all possible 
states ifrk(x) that are allowed to exist in the crystal, tik 

is called the crystal momentum of the electron as its 
rate of change is the externally applied force to the 
electron, d(hk)/dt = Fextemal. 
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Lattice-scattering-limited mobility is the mobility of 
the electrons when their motion is limited by scattering 

from thermal vibrations of the lattice atoms. 

Localized state refers to an electron wavefunction 

^localized whose magnitude, or the envelope of the 
wavefunction, decays with distance, which localizes 
the electron to a spatial region in the semiconductor. 
For example, a Is-type wavefunction of the form 

localized exp(—ar), where r is the distance measured 
from some center at r = 0, and a is a positive constant, 
would represent a localized state centered at r = 0. 

Majority carriers are electrons in an n-type and holes 
in a p-type semiconductor. 

Mass action law in semiconductor science refers to 
the law np = n], which is valid under thermal equilib¬ 
rium conditions and in the absence of external biases 
and illumination. 

Minority carrier diffusion length (L) is the mean 
distance a minority carrier diffuses before recombina¬ 
tion, L = VDr, where D is the diffusion coefficient 
and r is the minority carrier lifetime. 

Minority carrier lifetime (r) is the mean time for a 
minority carrier to disappear by recombination. 1 /r is 
the mean probability per unit time that a minority carrier 
recombines with a majority carrier. 

Minority carriers are electrons in a p-type and holes 
in an n-type semiconductor. 

Nondegenerate semiconductor has electrons in the 
CB and holes in the VB that obey Boltzmann statistics. 
Put differently, the electron concentration n in the CB 
is much less than the effective density of states Nc and 

! similarly p Nv. It refers to a semiconductor that has 
not been heavily doped so that these conditions are 
maintained; typically, doping concentrations are less 
than 1018 cm-3. 

Ohmic contact is a contact that can supply charge car¬ 
riers to a semiconductor at a rate determined by charge 
transport through the semiconductor and not by the 
contact properties itself. Thus the current is limited by 
the conductivity of the semiconductor and not by the 
contact. 

Peltier effect is the phenomenon of heat absorption or 
liberation at the contact between two dissimilar mate¬ 

rials as a result of a dc current passing through the 
junction. The rate of heat generation Q’ is proportional 
to the dc current I passing through the contact so that 
Q' = +n/, where n is called the Peltier coefficient 
and the sign depends on whether heat is absorbed or 
released. 

Phonon is a quantum of energy associated with the 
vibrations of the atoms in the crystal, analogous to 
the photon. A phonon has an energy fico where a> is the 

frequency of the lattice vibration. 

Photoconductivity is the change in the conductivity 
from dark to light, <7iight — . 

Photogeneration is the excitation of an electron into 
the CB by the absorption of a photon. If the photon is 
absorbed by an electron in the VB, then its excitation to 

the CB will generate an EHP. 

Photoinjection is the photogeneration of carriers in the 
semiconductor by illumination. Photogeneration may 
be VB to CB excitation, in which case electrons and 
holes are generated in pairs. 

Piezoresistivity is the change in the resistivity of a 
semiconductor due to an applied mechanical stress am. 
Elastoresistivity refers to the change in the resistivity 
due to an induced strain in the substance. Application of 
stress normally leads to strain, so piezoresistivity and 
elastoresistivity refer to the same phenomenon. In sim¬ 
ple terms, the change in the resistivity may be due to a 
change in the concentration of carriers or due to a 
change in the drift mobility of the carriers. The fractional 
change in the resistivity Sp/p is proportional to the ap¬ 
plied stress am, and the proportionality constant is called 

the piezoresistive coefficient n (1/Pa units), which is a 
tensor quantity because a stress in one direction in a 
crystal can alter the resistivity in another direction. 

Recombination of an electron-hole pair involves an 
electron in the CB falling down in energy into an 

empty state (hole) in the VB to occupy it. The result is 
the annihilation of an EHP. Recombination is direct 
when the electron falls directly down into an empty 
state in the VB as in GaAs. Recombination is indirect 
if the electron is first captured locally by a defect or an 
impurity, called a recombination center, and from there 
it falls down into an empty state (hole) in the VB as in 
Si and Ge. 
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Schottky junction is a contact between a metal and a 

semiconductor that has rectifying properties. For a 

metal/n-type semiconductor junction, electrons on the 

metal side have to overcome a potential energy barrier 

O B to enter the conduction band of the semiconductor, 

whereas the conduction electrons in the semiconductor 

have to overcome a smaller barrier e V0 to enter the metal. 

Forward bias decreases e V0 and thereby greatly encour¬ 

ages electron emissions over the barrier q(V0— V). 

Under reverse bias, electrons have to overcome O B and 

the current is very small. 

Thermal equilibrium carrier concentrations are 

those electron and hole concentrations that are solely 

determined by the statistics of the carriers and the den¬ 

sity of states in the band. Thermal equilibrium concen¬ 

trations obey the mass action law, np = n2. 

Thermal velocity fyth) of an electron in the CB is its 

mean (or effective) speed in the semiconductor as it 

moves around in the crystal. For a nondegenerate semi¬ 

conductor, it can be obtained simply from \m*ev\ = 

| kT 

Vacuum level is the energy level where the PE of the 

electron and the KE of the electron are both zero. It 

defines the energy level where the electron is just free 

from the solid. 

Valence band (VB) is a band of energies for the elec¬ 

trons in bonds in a semiconductor. The valence band is 

made of all those states (wavefunctions) that constitute 

the bonding between the atoms in the crystal. At ab¬ 

solute zero of temperature, the VB is full of all the bond¬ 

ing electrons of the atoms. When an electron is excited 

to the CB, this leaves behind an empty state, which is 

called a hole. It carries a positive charge and behaves as 

if it were a “free” positively charged entity with an ef¬ 

fective mass of nth • It moves around the VB by having a 

neighboring electron tunnel into the unoccupied state. 

Work function (<t>) is the energy required to remove 

an electron from the solid to the vacuum level. 

QUESTIONS AND PROBLEMS 
5.1 Bandgap and photodetection 

a. Determine the maximum value of the energy gap that a semiconductor, used as a photoconductor, 

can have if it is to be sensitive to yellow light (600 nm). 

b. A photodetector whose area is 5 x 10“2 cm2 is irradiated with yellow light whose intensity is 

2 mW cm-2. Assuming that each photon generates one electron-hole pair, calculate the number of 

pairs generated per second. 

a From the known energy gap of the semiconductor GaAs (Eg = 1.42 eV), calculate the primary 

wavelength of photons emitted from this crystal as a result of electron-hole recombination. 

d. Is the above wavelength visible? 

e. Will a silicon photodetector be sensitive to the radiation from a GaAs laser? Why? 

5.2 Intrinsic Ge Using the values of the density of states effective masses m* and m*h in Table 5.1, cal¬ 

culate the intrinsic concentration in Ge. What is if you use Nc and Nv from Table 5.1? Calculate the 

intrinsic resistivity of Ge at 300 K. 

5.3 Fermi level in intrinsic semiconductors Using the values of the density of states effective masses m* 

and ml in Table 5.1, find the position of the Fermi energy in intrinsic Si, Ge, and GaAs with respect to 

the middle of the bandgap (Eg/2). 

5.4 Extrinsic Si A Si crystal has been doped with P. The donor concentration is 1015 cm“3. Find the con¬ 

ductivity and resistivity of the crystal. 

5.5 Extrinsic Si Find the concentration of acceptors required for an n-Si crystal to have a resistivity of 

1 £2 cm. 

5.6 Minimum conductivity 

a. Consider the conductivity of a semiconductor, a = en/xe 4- epfih. Will doping always increase the 

conductivity? 
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b. Show that the minimum conductivity for Si is obtained when it is p-type doped such that the hole 
concentration is 

Pm = m 

and the corresponding minimum conductivity (maximum resistivity) is 

t^min = 2 etli aJ peP'h 

c. Calculate pm and amin f°r Si and compare with intrinsic values. 

5,7 Extrinsicp-Si A Si crystal is to be doped p-typt with B acceptors. The hole drift mobility ph depends 

on the total concentration of ionized dopants A^opant* in this case acceptors only, as 

Ph & 

i-3 

54.3 + 
407 

cm2 V-1 s-1 
1 + 3.745 X 10-18^dopant 

where Ndopant is in cm-3. Find the required concentration of B doping for the resistivity to be 0.1 £2 cm. 

5.8 Thermal velocity and mean free path in GaAs Given that the electron effective mass m* for the 
GaAs is 0.067m*,, calculate the thermal velocity of the conduction band (CB) electrons. The electron 

drift mobility pe depends on the mean free time ze between electron scattering events (between elec¬ 
trons and lattice vibrations). Given pe = ex<?/m*, and pe = 8500 cm2 V-1 s”1 for GaAs, calculate xe, 

and hence the mean free path t of CB electrons. How many unit cells is i if the lattice constant a of 

GaAs is 0.565 nm? Calculate the drift velocity Vj = pe*E of the CB electrons in an applied field £ of 

104 V m“!. What is your conclusion? 

5.9 Compensation doping in Si 

a. A Si wafer has been doped n-type with 1017 As atoms cm-3. 

1. Calculate the conductivity of the sample at 27 °C. 

2. Where is the Fermi level in this sample at 27 °C with respect to the Fermi level (£>,) in 

intrinsic Si? 

3. Calculate the conductivity of the sample at 127 °C. 

b. The above n-type Si sample is further doped with 9 x 1016 boron atoms (p-type dopant) per cen¬ 

timeter cubed. 

1. Calculate the conductivity of the sample at 27 °C. 

2. Where is the Fermi level in this sample with respect to the Fermi level in the sample in (a) at 

27 °C? Is this an /z-type or p-type Si? 

5.10 Temperature dependence of conductivity An n-type Si sample has been doped with 1015 phosphorus 

atoms cm-3. The donor energy level for P in Si is 0.045 eV below the conduction band edge energy. 

a. Calculate the room temperature conductivity of the sample. 

b. Estimate the temperature above which the sample behaves as if intrinsic. 

c. Estimate to within 20 percent the lowest temperature above which all the donors are ionized. 

d. Sketch schematically the dependence of the electron concentration in the conduction band on the 

temperature as log(/z) versus 1/7, and mark the various important regions and critical temperatures. 
For each region draw an energy band diagram that clearly shows from where the electrons are 

excited into the conduction band. 

e. Sketch schematically the dependence of the conductivity on the temperature as log(a) versus 1/7 
and mark the various critical temperatures and other relevant information. 

*5.11 Ionization at low temperatures in doped semiconductors Consider an n-type semiconductor. The 

probability that a donor level Ed is occupied by an electron is 

/rf = 
1 

, , 1 (Ed-EF 
1 + - exp(, kf * ) 

[5.84] 

Probability of 
donor 

occupancy 

r 
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Electron 

concentration 

in extrinsic 
semiconductors 

Electron drift 

mobility 

Hole drift 

mobility 

where k is the Boltzmann constant, T is the temperature, Ep is the Fermi energy, and g is a constant 

called the degeneracy factor; in Si, g = 2 for donors, and for the occupation statistics of acceptors 

g = 4. Show that 

n 2 + [5.85] 

where n is the electron concentration in the conduction band, Nc is the effective density of states at the 

conduction band edge, Nj is the donor concentration, and A 2s = Ec — Ed is the ionization energy of the 

donors. Show that Equation 5.85 at low temperatures is equivalent to Equation 5.19. Consider a p-type 

Si sample that has been doped with 1015 gallium (Ga) atoms cm-3. The acceptor energy level for Ga in 

Si is 0.065 eV above the valence band edge energy, Ev. Estimate the lowest temperature (°C) above 

which 90 percent of the acceptors are ionized by assuming that the acceptor degeneracy factor g = 4. 

5.12 Compensation doping in n-type Si An n-type Si sample has been doped with 1 x 1017 phosphorus (P) 

atoms cm-3. The drift mobilities of holes and electrons in Si at 300 K depend on the total concentration 

of dopants dopant (cm-3) as follows: 

5.13 

fxe ^ 88 + 
1252 

and 

\Xk ^ 54.3 + 

1 +6.984 X 10-l8Afdopant 

407 

cm2 V 1 s 1 

1 + 3.745 x 10-18Ardopant 
cm2 V"1 s"1 

a, . Calculate the room temperature conductivity of the sample. 

b. Calculate the necessary acceptor doping (i.e., Na) that is required to make this sample p-type with 

approximately the same conductivity. 

GaAs Ga has a valency of III and As has V. When Ga and As atoms are brought together to form the 

GaAs crystal, as depicted in Figure 5.54, the three valence electrons in each Ga and the five valence 

electrons in each As are all shared to form four covalent bonds per atom. In the GaAs crystal with some 

1023 or so equal numbers of Ga and As atoms, we have an average of four valence electrons per atom, 

whether Ga or As, so we would expect the bonding to be similar to that in the Si crystal: four bonds per 

atom. The crystal structure, however, is not that of diamond but rather that of zinc blende (Chapter 1). 

a. What is the average number of valence electrons per atom for a pair of Ga and As atoms and in the 

GaAs crystal? 

b. What will happen if Se or Te, from Group VI, are substituted for an As atom in the GaAs crystal? 

c. What will happen if Zn or Cd, from Group II, are substituted for a Ga atom in the GaAs crystal? 

d. What will happen if Si, from Group IV, is substituted for an As atom in the GaAs crystal? 

e. What will happen if Si, from Group IV, is substituted for a Ga atom in the GaAs crystal? What do 

you think amphoteric dopant means? 

/. Based on the discussion of GaAs, what do you think the crystal structures of the III-V compound 

semiconductors AlAs, GaP, InAs, InP, and InSb will be? 

Figure 5.54 The GaAs crystal 

structure in two dimensions. 

Average number of valence 
electrons per atom is four. Each 

Ga atom covalently bonds with 

four neighboring As atoms and 

vice versa. 

Ga atom (Valency III) 
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5.14 Doped GaAs Consider the GaAs crystal at 300 K. 

a. Calculate the intrinsic conductivity and resistivity. 

b. In a sample containing only 1015 cm-3 ionized donors, where is the Fermi level? What is the con¬ 

ductivity of the sample? 

c. In a sample containing 1015 cm-3 ionized donors and 9 x 1014 cm-3 ionized acceptors, what is the 

free hole concentration? 

5.15 Varshni equation and the change in the bandgap with temperature The Varshni equation de¬ 

scribes the change in the energy bandgap Ex 

E* 

where Ego is the bandgap at T = 0 K, and A and B are material-specific constants. For example, for 

GaAs, Eg0 = 1.519 eV, A = 5.405 x 10“4 eV K~\ B = 204 K, so that at T = 300 K, Eg = 1.42 eV. 

Show that 

of a semiconductor with temperature T in terms of 

dEg AT(T + 2B) (Eg0 - Eg) / T + IB \ 

dT ~ (B + T)2 T + 5 / 

What is dEg/dT for GaAs? The Varshni equation can be used to calculate the shift in the peak emission 

wavelength of a light emitting diode (LED) with temperature or the cutoff wavelength of a detector. If 

the emitted photon energy from an electron and hole recombination is hv & Eg + kTy find the shift in 

the emitted wavelength from 27 °C down to —30 °C from a GaAs LED. 

5.16 Degenerate semiconductor Consider the general exponential expression for the concentration of 

electrons in the CB, 

xr f (EC-EF) 1 "“"'“■’I.-—J 
and the mass action law, np = n2. What happens when the doping level is such that n approaches Nc and 

exceeds it? Can you still use the above expressions for n and pi 

Consider an rc-type Si that has been heavily doped and the electron concentration in the CB is 

1020 cm"3. Where is the Fermi level? Can you use np = n2 to find the hole concentration? What is its 

resistivity? How does this compare with a typical metal? What use is such a semiconductor? 

5.17 Photoconductivity and speed Consider two p-type Si samples both doped with 1015 B atoms cm-3. Both 

have identical dimensions of length L (1 mm), width W (1 mm), and depth (thickness) D (0.1 mm). One sam¬ 

ple, labeled A, has an electron lifetime of 1 ps whereas the other, labeled Bt has an electron lifetime of 5 ps. 

a. At time t = 0, a laser light of wavelength 750 nm is switched on to illuminate the surface (L x W) 

of both the samples. The incident laser light intensity on both samples is 10 mW cm"2. At time 

t — 50 ps, the laser is switched off. Sketch the time evolution of the minority carrier concentration 

for both samples on the same axes. 

b. What is the photocurrent (current due to illumination alone) if each sample is connected to a 1 V 

battery? 

*5.18 Hall effect in semiconductors The Hall effect in a semiconductor sample involves not only the elec¬ 

tron and hole concentrations n and p, respectively, but also the electron and hole drift mobilities pe and 

Ph. The Hall coefficient of a semiconductor is (see Chapter 2) 

Rh 
p — nb2 

e(p + nb)2 
[5.86] 

where b == pe/Ph • 

a. Given the mass action law np = «?, find n for maximum \Rp I (negative and positive /?//). Assume 

that the drift mobilities remain relatively unaffected as n changes (due to doping). Given the electron 

and hole drift mobilities pe = 1350 cm2 V"1 s"1 and ph = 450 cm2 V"1 s”1 for silicon, determine 

n for maximum \Rh I in terms of n 

Varshni 

equation 

Bandgap shift 

with temperature 

Hall coefficient 

of a semi¬ 

conductor 
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b. Taking b = 3, plot Rh as a function of electron concentration n/w,- from 0.01 to 10. 

c. Show that, when n , Rh = — l/en and when n <$C n,, Rh = +l/ep. 

5.19 Hall effect in semiconductors Most Hall-effect high-sensitivity sensors typically use III-V semicon¬ 

ductors, such as GaAs, InAs, InSb. Hall-effect integrated circuits with integrated amplifiers, on the other 
hand, use Si. Consider nearly intrinsic samples in which n ^ p & n,, and calculate Rh for each using 
the data in Table 5.4. What is your conclusion? Which sensor would exhibit the worst temperature drift? 

(Consider the bandgap, and drift in nt.) 

Table 5.4 Hall effect in selected semiconductors 

Eg(eV) «i(cm 3) He (cm2 V 1 s *) /XA(cm2V_1s *) b Rh (m3 A 1 s *) 

Si 1.10 1 X 1010 1,350 450 3 -312 

GaAs 1.42 2 x 106 8,500 400 ? ? 

InAs 0.36 1 x 1015 33,000 460 ? ? 

InSb 0.17 2 x 1016 78,000 850 ? ? 

*5.20 Compound semiconductor devices Silicon and germanium crystalline semiconductors are what 
are called elemental Group IV semiconductors. It is possible to have compound semiconductors 
from atoms in Groups III and V. For example, GaAs is a compound semiconductor that has Ga from 

Group III and As from Group V, so in the crystalline structure we have an “effective” or “mean” va¬ 
lency of IV per atom and the solid behaves like a semiconductor. Similarly GaSb (gallium anti- 

monide) would be a III-V type semiconductor. Provided we have a stoichiometric compound, the 

semiconductor will be ideally intrinsic. If, however, there is an excess of Sb atoms in the solid 
GaSb, then we will have nonstoichiometry and the semiconductor will be extrinsic. In this case, ex¬ 

cess Sb atoms will act as donors in the GaSb structure. There are many useful compound semicon¬ 
ductors, the most important of which is GaAs. Some can be doped both n- and p-type, but many are 

one type only. For example, ZnO is a II-VI compound semiconductor with a direct bandgap of 
3.2 eV, but unfortunately, due to the presence of excess Zn, it is naturally n-type and cannot be 

doped to p-type. 

a. GaSb (gallium antimonide) is an interesting direct bandgap semiconductor with an energy bandgap 
Eg = 0.67 eV, almost equal to that of germanium. It can be used as an light emitting diode (LED) 
or laser diode material. What would be the wavelength of emission from a GaSb LED? Will this be 

visible? 

b. Calculate the intrinsic conductivity of GaSb at 300 K taking Nc = 2.3 x 1019cm"3, Nv = 
6.1 x 1019 cm"3, pe = 5000 cm2 V"1 s"1, and ph — 1000 cm2 V"1 s"1. Compare with the 

intrinsic conductivity of Ge. 

c. Excess Sb atoms will make gallium antimonide nonstoichiometric, that is, GaSbi+$, which will 

result in an extrinsic semiconductor. Given that the density of GaSb is 5.4 gem-3, calculate 
8 (excess Sb) that will result in GaSb having a conductivity of 100 cm"1. Will this be an n- 

or p-type semiconductor? You may assume that the drift mobilities are relatively unaffected by the 

doping. 

5.21 Excess minority carrier concentration Consider an w-type semiconductor and weak injection condi¬ 

tions. Assume that the minority carrier recombination time ris constant (independent of injection— 
hence the weak injection assumption). The rate of change of the instantaneous hole concentration 

dpn/dt due to recombination is given by 

d£n 
dt 

Recombination 

rate 
Pn 

[5.87] 
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The net rate of increase (change) in pn is the sum of the total generation rate G and the rate of 
change due to recombination, that is, 

= G - — [5.88] 
dt xh 

By separating the generation term G into thermal generation G0 and photogeneration GPh and con¬ 
sidering the dark condition as one possible solution, show that 

Excess carries 

under uniform 

photo generation 

and recombi¬ 

nation 

dApn APn 
—J— = C/ph- 

dt v xh 
[5.89] 

How does your derivation compare with Equation 5.27? What are the assumptions inherent in 
Equation 5.89? 

*5.22 Direct recombination and GaAs Consider recombination in a direct bandgap p-type semiconductor, 
e.g., GaAs doped with an acceptor concentration Na. The recombination involves a direct meeting of an 
electron-hole pair as depicted in Figure 5.22. Suppose that excess electrons and holes have been injected 
(e.g., by photoexcitation), and that Anp is the excess electron concentration and App is the excess hole 
concentration. Assume Anp is controlled by recombination and thermal generation only; that is, recombi¬ 
nation is the equilibrium storing mechanism. The recombination rate will be proportional to nppp, and the 
thermal generation rate will be proportional to npoppo • In the dark, in equilibrium, thermal generation rate 
is equal to the recombination rate. The latter is proportional to nnoppo. The rate of change of Anp is 

3 A np 

St 
— —B[nppp — npopPo] [5.90] 

Recombination 

rate 

where B is a proportionality constant, called the direct recombination capture coefficient. The 
recombination lifetime xr is defined by 

3 A np A np 

St Xr 

a. Show that for low-level injection, npo <$C Anp <$C ppo, *r is constant and given by 

_ 1 _ 1 

BpPo BNa 

b. Show that under high-level injection, A np » Ppo, 

[5.91] 

[5.92] 

Definition of 

recombination 

lifetime 

Low injection 

recombination 

time 

3A np 

St 
ss —BApp Anp = —B(Anp)2 [5.93] High injection 

so that the recombination lifetime xr is now given by 

1 _ 1 

BApp BAnp 
[5.94] 

that is, the lifetime xr is inversely proportional to the injected carrier concentration, 

c. Consider what happens in the presence of photogeneration at a rate GPh (electron-hole pairs per 
unit volume per unit time). Steady state will be reached when the photogeneration rate and recom¬ 
bination rate become equal. That is, 

Gph — ( J — B[nppp — npoppo] 

A photoconductive film of «-type GaAs doped with 1013 cm”3 donors is 2 mm long (L), 1 mm 
wide (W), and 5 pm thick (D). The sample has electrodes attached to its ends (electrode area is 
therefore 1 mm x 5 pm) which are connected to a 1 V supply through an ammeter. The GaAs 
photoconductor isJuniformly illuminated over the surface area 2 mm x 1 mm with a 1 mW laser 

High-injection 

recombination 

time 

Steady-state 

photogeneration 

rate 
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Cantilever 

equations 

radiation of wavelength A = 840 nm (infrared). The recombination coefficient B for GaAs is 
7.21 x 10-16 m3 s-1. At A = 840 nm, the absorption coefficient is about 5 x 103 cm-1. Calculate 

the photocurrent /photo and the electrical power dissipated as Joule heating in the sample. What will 
be the power dissipated as heat in the sample in an open circuit, where 7=0? 

5.23 Piezoresistivity application to deflection and force measurement Consider the cantilever in Figure 
5.38c. Suppose we apply a force F to the free end, which results in a deflection h of the tip of the can¬ 

tilever from its horizontal equilibrium position. The maximum stress om is induced at the support end 
of the cantilever, at its surface where the piezoresistor is embedded to measure the stress. When the 

cantilever is bent, there is a tensile or longitudinal stress oi on the surface because the top surface is 

extended and the bottom surface is contracted. If L, W, and D are respectively the length, width, and 
thickness of the cantilever, then the relationships between the force F and deflection h, and the maxi¬ 

mum stress ol are 

07, (max) = 
3 YDh 

21? 
and F = 

wd3y 

4 L? 
h 

where Y is the elastic (Young’s) modulus. A particular Si cantilever has a length (L) of 500 pm, width 

(W) of 100 pm, and thickness (D) of 10 pm. Given Y = 170 GPa, and that the piezoresistor embedded 

in the cantilever is along the [ 110] direction with ttl ^ 72 x 10“11 Pa“1, find the percentage change in 
the resistance, AR/R, of the piezoresistor when the deflection is 0.1 pm. What is the force that would 

give this deflection? (Neglect the transverse stresses on the piezoresistor.) How does the design choice 
for the length L of the cantilever depend on whether one is interested in measuring the deflection h or 

the force F2 (Note: gl depends on the distance x from the support end; it decreases with x. Assume that 

the length of the piezoresistor is very short compared with L so that gi does not change significantly 

along its length.) 

5.24 Schottky junction 

a. Consider a Schottky junction diode between Au and n-Si, doped with 1016 donors cm-3. The cross- 

sectional area is 1 mm2. Given the work function of Au as 5.1 eV, what is the theoretical barrier 

height <t>s from the metal to the semiconductor? 

b. Given that the experimental barrier height <&b is about 0.8 eV, what is the reverse saturation cur¬ 

rent and the current when there is a forward bias of 0.3 V across the diode? (Use Equation 4.37.) 

5.25 Schottky junction Consider a Schottky junction diode between A1 and n-Si, doped with 5 x 1016 

donors cm-3. The cross-sectional area is 1 mm2. Given that the electron affinity x of Si is 4.01 eV and 
the work function of A1 is 4.28 eV, what is the theoretical barrier height 4>a from the metal to the semi¬ 

conductor? What is the built-in voltage? If the experimental barrier height 4># is about 0.6 eV, what is 

the reverse saturation current and the current when there is a forward bias of 0.2 V across the diode? 
Take Be = llOAcm”2 K~2. 

5.26 Schottky and ohmic contacts Consider an n-type Si sample doped with 1016 donors cm-3. The length 

L is 100 jim; the cross-sectional area A is 10 pm x 10 pm. The two ends of the sample are labeled as B 

and C. The electron affinity (x) of Si is 4.01 eV and the work functions of four potential metals for con¬ 

tacts at B and C are listed in Table 5.5. 

Table 5.5 Work functions in eV 

Cs Li Al Au 

1.8 2.5 4.25 5.0 

а. 

б. 

Ideally, which metals will result in a Schottky contact? 

Ideally, whicl metals will result in an ohmic contact? 
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c. Sketch the I-V characteristics when both B and C are ohmic contacts. What is the relationship be¬ 
tween/and VI 

d. Sketch the I-V characteristics when B is ohmic and C is a Schottky junction. What is the relation¬ 

ship between I and VI 

e. Sketch the I-V characteristics when both B and C are Schottky contacts. What is the relationship 

between I and VI 

5.27 Peltier effect and electrical contacts Consider the Schottky junction and the ohmic contact shown in 

Figures 5.39 and 5.43 between a metal and ra-type semiconductor. 

a. Is the Peltier effect similar in both contacts? 

b. Is the sign in Qf = ±UI the same for both contacts? 

c. Which junction would you choose for a thermoelectric cooler? Give reasons. 

*5.28 Peltier coolers and figure of merit (FOM) Consider the thermoelectric effect shown in Figure 5.45 

in which a semiconductor has two contacts at its ends and is conducting an electric current I. We assume 
that the cold junction is at a temperature Tc and the hot junction is at 7), and that there is a temperature 
difference of AT = Th — Tc between the two ends of the semiconductor. The current I flowing through 

the cold junction absorbs Peltier heat at a rate Q'p, given by 

Q'P = ni [5.95] 

where fl is the Peltier coefficient for the junction between the metal and semiconductor. The current I 

flowing through the semiconductor generates heat due to the Joule heating of the semiconductor. The 
rate of Joule heat generated through the bulk of the semiconductor is 

G'y = [5.96] 

We assume that half of this heat flows to the cold junction. 

In addition there is heat flow from the hot to the cold junction through the semiconductor, given by 
the thermal conduction equation 

Qtc = (t) at [5,97] 
The net rate of heat absorption (cooling rate) at the cold junction is then 

2 net cool = Q'p 2®'J ~~ Q'tc [5.98] 

By substituting from Equations 5.95 to 5.97 into Equation 5.98, obtain the net cooling rate in terms 
of the current /. Then by differentiating £^etcooI with respect to current, show that maximum cooling is 

A commercial thermoelectric cooler (by Melcor); an example of the Reltier effect. The 
device area is 5.5 cm x 5.5 cm (approximately 2.2 inches x 2.2 incnesfrlts maximum 
current is 14 A; maximum heat pump ability is 67 W; maximum temperature difference 
between the hot and cold surfaces is 67 °C. 
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Table 5.6 

Material n (V) p (£2 m) k (W FOM 

«-Bi2Te3 6.0 x 10~2 10~5 1.70 

p-Bi2 Te3 7.0 x 10~2 10~5 1.45 
Cu 5.5 x 10~4 1.7 x 10~8 390 
W 3.3 x 10~4 5.5 x 10~8 167 " 

obtained when the current is 

Maximum 

cooling rate 

Maximum 

temperature 

difference 

/« = (i)n<7 [5,991 

and the maximum cooling rate is 

OLkcooi = j [jn2<r -«-arj [5.100] 

Under steady-state operating conditions, the temperature difference A T reaches a steady-state value 

and the net cooling rate at the junction is then zero (AT is constant). From Equation 5.100 show that the 

maximum temperature difference achievable is 

A rmax = i— [5.101] 
2 K 

The quantity T12o/k is defined as the figure of merit (FOM) for the semiconductor as it deter¬ 

mines the maximum AT achievable. The same expression also applies to metals, though we will not de¬ 

rive it here. 
Use Table 5.6 to determine the FOM for various materials listed therein and discuss the significance 

of your calculations. Would you recommend a thermoelectric cooler based on a metal-to-metal junction? 

*5.29 Seebeck coefficient of semiconductors and thermal drift in semiconductor devices Consider an n-type 

semiconductor that has a temperature gradient across it. The right end is hot and the left end is cold, as de¬ 

picted in Figure 5.55. There are more energetic electrons in the hot region than in the cold region. Conse¬ 

quently, electron diffusion occurs from hot to cold regions, which immediately exposes negatively charged 
donors in the hot region and therefore builds up an internal field and a built-in voltage, as shown in Figure 

5.55. Eventually an equilibrium is reached when the diffusion of electrons is balanced by their drift driven by 

the built-in field. The net current must be zero. The Seebeck coefficient (or thermoelectric power) S measures 

Figure 5*55 In the presence of ◦ 
temperature gradient, there is an internal field 

and a voltage difference. 

The Seebeck coefficient is defined as dV/dT, 
the potential difference per unit temperature 

difference. 

Electron diffusion 

Electron drift 

Cold 

( 
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this effect in terms of the voltage developed as a result of an applied temperature gradient as 

[5.102] 

a. How is the Seebeck effect in a p-type semiconductor different than that for an n-type semiconduc¬ 

tor when both are placed in the same temperature gradient in Figure 5.55? Recall that the sign of 
the Seebeck coefficient is the polarity of the voltage at the cold end with respect to the hot end (see 

Section 4.8.2). 

b. Given that for an w-type semiconductor, 

s„-^[2+<i=M] [5.103] 

what are typical magnitudes for Sn in Si doped with 1014 and 1016 donors cm-3? What is the sig¬ 

nificance of Sn at the semiconductor device level? 

c. Consider a pn junction Si device that has the p-side doped with 1018 acceptors cm-3 and the n-side 

doped with 1014 donors cm“3. Suppose that this pn junction forms the input stage of an op amp 

with a large gain, say 100. What will be the output signal if a small thermal fluctuation gives rise to 
a 1 °C temperature difference across the pn junction? 

Seebeck 

coefficient 

n-type 

semiconductor 

5.30 Photogeneration and carrier kinetic energies Figure 5.35 shows what happens when a photon with 

energy hv > Eg is absorbed in GaAs to photogenerate an electron and a hole. The figure shows that the 
electron has a higher kinetic energy (KE), which is the excess energy above £c, than the hole, since the 

hole is almost at Ev. The reason is that the electron effective mass in GaAs is almost 10 times less than 

the hole effective mass, so the photogenerated electron has a much higher KE. When an electron and 
hole are photogenerated in a direct bandgap semiconductor, they have the same k vector. Energy con¬ 

servation requires that the photon energy hv divides according to 

, ,, (ft*)2 (ft*)2 
hv = Eg 4- —Photogeneration 

where k is the wavevector of the electron and hole and m* and are the effective masses of the elec¬ 

tron and hole, respectively. 

a. What is the ratio of the electron to hole KE s right after photogeneration? 

b. If the incoming photon has an energy of 2.0 eV, and Eg = 1.42 eV for GaAs, calculate the KEs of 

the electron and the hole in eV, and calculate to which energy levels they have been excited with re¬ 

spect to their band edges. 

c. Explain why the electron and hole wavevector k should be approximately the same right after pho¬ 

togeneration. Consider fcphoton for the photon, and the momentum conservation. 

William Shockley and his group celebrate Shockley's Nobel 
prize in 1956. First left, sitting, is G. E. Moore (chairman 
emeritus of Intel), standing fourth from right is R. N. Noyce, 
inventor of the integrated circuit, and standing at the 
extreme right is J. T. Last. 

SOURCE: P. K. Bondyopadhyay, "W = Shockley, the 
Transistor Pioneer—Portrait of an Inventive Genius," 
Proceedings IEEE, vol. 86, no. 1, January 1998, p. 202, 
figure 16 (Courtesy of IEEE.) 



The first monolithic integrated circuit, about the size of a fingertip, was documented and developed at Texas Instruments by Jack Kilby in 
1958; he won the 2000 Nobel prize in physics for his contribution to the development of the first integrated circuit. The 1C was a chip of a 
single Ge crystal containing one transistor, one capacitor, and one resistor. Left: Jack Kilby holding his 1C (photo, 1998). Right. The photo of 
the chip. 

I SOURCE: Courtesy of Texas Instruments. 

Robert Noyce and Jean Hoerni 
(a Swiss physicist) were 
responsible for the invention of 
the first planar 1C at Fairchild 
(1961). The planar fabrication 
process was the key to the 
success of their 1C. The 
photograph is that of the first 
logic chip at Fairchild. 

I SOURCE: Courtesy of Fairchild 
I Semiconductor. 

Left to right: Andrew Grove, Robert Noyce (1927-1990), and 
Gordon Moore, who founded Intel in 1968. Andrew Grove's 
book Physics and Technology of Semiconductor Devices (Wiley, 
1967) was one of the classic texts on devices in the sixties and 
seventies. "Moore's law" that started as a rough rule in 1965 
states that the number of transistors in a chip will double every 
18 months; Moore updated it in 1995 to every couple of years. 

I SOURCE: Courtesy of Intel. 



C H ARTE R 

Semiconductor Devices 

Most diodes are essentially pn junctions fabricated by forming a contact between a 
p-type and an n-type semiconductor. The junction possesses rectifying properties in 
that a current in one direction can flow quite easily whereas in the other direction it is 
limited by a leakage current that is generally very small. A transistor is a three-terminal 
solid-state device in which a current flowing between two electrodes is controlled by 
the voltage between the third and one of the other terminals. Transistors are capable of 
providing current and voltage gains thereby enabling weak signals to be amplified. 
Transistors can also be used as switches just like electromagnetic relays. Indeed, the 
whole microcomputer industry is based on transistor switches. The majority of the tran¬ 
sistors in microelectronics are of essentially two types: bipolar junction transistors 
(BJTs) and field effect transistors (FETs). The appreciation of the underlying princi¬ 
ples of the pn junction is essential to understanding the operation of not only the bipo¬ 
lar transistor but also a variety of related devices. The central fundamental concept is 
the minority carrier injection as purported by William Shockley in his explanations 
of the transistor operation. Field effect transistors operate on a totally different princi¬ 
ple than BJTs. Their characteristics arise from the effect of the applied field on a con¬ 
ducting channel between two terminals. The last two decades have seen enormous ad¬ 
vances and developments in optoelectronic and photonic devices which we now take 
for granted, the best examples being light emitting diodes (LEDs), semiconductor 
lasers, photodetectors, and solar cells. Nearly all these devices are based on pn junc¬ 
tion principles. The present chapter takes the semiconductor concepts developed in 
Chapter 5 to device level applications, from the basic pn junction to heterojunction 
laser diodes. 

475 
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6.1 IDEAL pn JUNCTION 

6.1.1 No Applied Bias: Open Circuit 

Consider what happens when one side of a sample of Si is doped n-type and the other 
p-type, as shown in Figure 6.1a. We assume that there is an abrupt discontinuity 
between the p- and n-regions, which we call the metallurgical junction and label as 
M in Figure 6.1a, where the fixed (immobile) ionized donors and the free electrons (in 
the conduction band, CB) in the n-region and fixed ionized acceptors and holes (in the 

valence band-, VB) in the /7-region are also shown. 
Due to the hole concentration gradient from the /7-side, where p = ppo, to the «-side, 

where p = pn0, holes diffuse toward the right. Similarly the electron concentration 

f 
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Figure 6*1 Properties of the pn junction. 
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gradient drives the electrons by diffusion toward the left. Holes diffusing and entering 
the n-side recombine with the electrons in the n-side near the junction. Similarly, elec¬ 
trons diffusing and entering the p-side recombine with holes in the p-side near the 
junction. The junction region consequently becomes depleted of free carriers in com¬ 
parison with the bulk p- and n-regions far away from the junction. Note that we must, 
under equilibrium conditions (e.g., no applied bias or photoexcitation), have pn = nj 

everywhere. Electrons leaving the n-side near the junction M leave behind exposed 
positively charged donor ions, say As+, of concentration Nd. Similarly, holes leaving 
the p-region near M expose negatively charged acceptor ions, say B-, of concentration 
Na. There is therefore a space charge layer (SCL) around M. Figure 6.1b shows the 
depletion region, or the space charge layer, around M, whereas Figure 6.1c illustrates 
the hole and electron concentration profiles in which the vertical concentration scale is 
logarithmic. The depletion region is also called the transition region. 

It is clear that there is an internal electric field lE0 from positive ions to negative 
ions, that is, in the — x direction, that tries to drift the holes back into the p-region and 
electrons back into the n-region. This field drives the holes in the opposite direction 
to their diffusion. As shown in Figure 6.1b, *E0 imposes a drift force on holes in the 
-x direction, whereas the hole diffusion flux is in the +x direction. A similar situa¬ 
tion also applies for electrons with the electric field attempting to drift the electrons 
against diffusion from the n-region to the p-region. It is apparent that as more and 
more holes diffuse toward the right, and electrons toward the left, the internal field 
around M will increase until eventually an “equilibrium” is reached when the rate of 
holes diffusing toward the right is just balanced by holes drifting back to the left, dri¬ 
ven by the field The electron diffusion and drift fluxes will also be balanced in 
equilibrium. 

For uniformly doped p- and n-regions, the net space charge density pnet(x) across 
the semiconductor will be as shown in Figure 6.Id. (Why are the edges rounded?) The 
net space charge density pnet is negative and equal to —eNa in the SCL from x = — Wp 

to x = 0 (where we take M to be) and then positive and equal to +eNd from x = 0 
to Wn. The total charge on the left-hand side must be equal to that on the right-hand 
side for overall charge neutrality, so 

NaWp = NdWn [6.1] 

In Figure 6.1, we arbitrarily assumed that the donor concentration is less than the 
acceptor concentration, Nd < Na. From Equation 6.1 this implies that Wn > Wp\ that 
is, the depletion region penetrates the n-side, the lightly doped side, more than the 
p-side, the heavily doped side. Indeed, if Na^> Nd, then the depletion region is almost 
entirely on the n-side. We generally indicate heavily doped regions with the plus sign 
as a superscript, that is, p+. 

The electric field ‘E(x) and the net space charge density pnetC*) at a point are 
related in electrostatics1 by 

dfc   Pnet CO 

dx s 

Depletion 

widths 

Field and net 

space charge 

density 

' This is called Gauss's law in point form and comes from Gauss's law in electrostatics. Gauss's law is discussed in 
Section 7.5. 
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Field in 
depletion 
region 

Built-in field 

where e = e0er is the permittivity of the medium and s0 and er are the absolute per¬ 
mittivity and relative permittivity of the semiconductor material. We can thus integrate 
Pnet(*) across the diode and thus determine the electric field £(x), that is, 

1 fx 
£(*) = - / PnetO) dx [6.2] 

sJ-w„ 

The variation of the electric field across the /w junction is shown in Figure 6. le. The 
negative field means that it is in the — x direction. Note that £(x) reaches a maximum 
value £0 at the metallurgical junction M. 

The potential V(x) at any point x can be found by integrating the electric field since 
by definition £ = —d V jdx. Taking the potential on thep-side far away from M as zero 
(we have no applied voltage), which is an arbitrary reference level, then V(jc) increases 
in the depletion region toward the M-side, as indicated in Figure 6.If. Its functional 
form can be determined by integrating Equation 6.2, which is, of course, a parabola. 
Notice that on the n-side the potential reaches V0, which is called the built-in 
potential. 

The fact that we are considering an abrupt pn junction means that pnet(*) can sim¬ 
ply be described by step functions, as displayed in Figure 6.Id. Using the step form of 
pnet(jc) in Figure 6. Id in the integration of Equation 6.2 gives the electric field at M as 

eNdWn 

e 

eNaWp 

e 
[6.3] 

Built-in 
voltage 

where s = e0er. We can integrate the expression for £(jc) in Figure 6.1e to evaluate 
the potential V(x) and thus find V0 by putting in jc = W„. The graphical representation 
of this integration is the step from Figure 6.1e to f. The result is 

V0 = 
1 
- •EoWo 

eNaNdWl 

2e(Na + Nd) 
[6.4] 

where Wa — Wn + Wp is the total width of the depletion region under a zero applied 
voltage. If we know W0, then Wn or Wp follows readily from Equation 6.1. Equation 6.4 
is a relationship between the built-in voltage V0 and the depletion region width W0. If 
we know V0, we can calculate W0. 

The simplest way to relate V0 to the doping parameters is to make use of the fact 
that in the system consisting of p- and n-type semiconductors joined together, in equi¬ 
librium, Boltzmann statistics2 demands that the concentrations n\ and n2 of carriers at 
potential energies E\ and E2 are related by 

«2 

rtl 

(E2-Exy 

kT 

where E = qV, where q is the charge of the carrier. Considering electrons (q = —e), 
we see from Figure 6.1g that E = 0 on the p-side far away from M where n = and 

2 We use Boltzmann statistics, that is, n(£) a exp(—E/kT), because the concentration of electrons in the conduction 
band, whether on the n-side or p-side, is never so large that the Pauli exclusion principle becomes important. As 
long as the carrier concentration in the conduction band is much smaller than Nc, we can use Boltzmann statistics. 
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E = —eV0 on the n-side away from M where n = nm. Thus 

ripo ( 
— = exp(^-—J [6.5a] 

This shows that V0 depends on nm and n^ and hence on Nj and Na. The corre¬ 
sponding equation for hole concentrations is clearly 

Pno 

Ppo = exp('S 
Thus, rearranging Equations 6.5a and b we obtain 

and y.-iljfe') 
\ftpo / & V Pno / 

[6.5b] 

kT , 
V0 = —In I 

We can now write and pm in terms of the dopant concentrations inasmuch as 
Ppo = Na and 

nl nl 
Pno — — M 

ft no Nd 

so V0 becomes 

Vo [6.6] 

Clearly V0 has been conveniently related to the dopant and material properties via 
Na, Na, and n?. The built-in voltage (V0) is the voltage across a pn junction, going 
from p- to n-type semiconductor, in an open circuit. It is not the voltage across the 
diode, which is made up of VQ as well as the contact potentials at the metal-to- 
semiconductor junctions at the electrodes. If we add V0 and the contact potentials at the 
electroded ends, we will find zero. 

Once we know the built-in potential from Equation 6.6, we can then calculate the 
width of the depletion region from Equation 6.4, namely 

2e(jy„ + Afrf)V0l'/2 

eNaNd J 
Notice that the depletion width W0 a V01/2. This results in the capacitance of the 

depletion region being voltage dependent, as we will see in Section 6.3. 

THE BUILT-IN POTENTIALS FOR Ge, Si, AND GaAs pn JUNCTIONS A pn junction diode has a 
concentration of 1016 acceptor atoms cm-3 on the p-side and a concentration of 1017 donor 
atoms cm-3 on the n-side. What will be the built-in potential for the semiconductor materials 
Ge, Si, and GaAs? 

SOLUTION 

The built-in potential is given by Equation 6.6, which requires the knowledge of the intrin¬ 
sic concentration for each semiconductor. From Chapter 5 we can tabulate the following 

Boltzmann 

statistics for 

electrons 

Built-in 

voltage 

Depletion 

region width 

EXAMPLE 6.1 
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at 300 K: 

Semiconductor Eg (eV) ft/(cm 3) V„(V) 

Ge 0.7 2.40 x 1013 0.37 

Si 1.1 1.0 x 1010 0.78 

GaAs 1.4 2.1 x 106 1.21 

Using 

for Si with Nd = 1017 cm 3 and Na = 1016 cm 3, kT/e = 0.0259 V at 300 K, and n,- = 1.0 x 
1010 cm-3, we obtain 

(10,7)(1016 

(1.0 x 1010 
V0 = (0.0259 V) In 11-0. )2J 

775 V 

The results for all three semiconductors are summarized in the last column of the table in 
this example. 

THE p+n JUNCTION Consider a p+n junction, which has a heavily doped p-side relative to the 
n-side, that is, Na Nd. Since the amount of charge Q on both sides of the metallurgical junc¬ 
tion must be the same (so that the junction is overall neutral) 

Q = eNa Wp = eNdWn 

it is clear that the depletion region essentially extends into the n-side. According to Equation 6.7, 
when Nd <JC Na, the width is 

/ _ r^r 
° eNd. 

What is the depletion width for a pn junction Si diode that has been doped with 1018 acceptor 
atoms cm-3 on the p-side and 1016 donor atoms cm-3 on the n-side? 

SOLUTION 

To apply the above equation for W0, we need the built-in potential, which is 

Then with Nd = 1016 cm-3, that is, 1022 m-3, Va = 0.835 V, and sr = 11.9 in the equation 
for Wa 

.835 V 

\2eV0V12 p(l 1.9)(8.85 x 10-12)(0.835)'T 

W°~[eNd\ ~ l (1.6 x 10-19) (1022) J 
= 3.32 x 10-7 m or 0.33 pm 

Nearly all of this region (99 percent of it) is on the n-side. 
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BUILT-IN VOLTAGE There is a rigorous derivation of the built-in voltage across a pn junction. 
Inasmuch as in equilibrium there is no net current through the pn junction, drift of holes due to 
the built-in field £(*) must be just balanced by their diffusion due to the concentration gradient 
dp/dx. We can thus set the total electron and hole current densities (drift + diffusion) through 
the depletion region to zero. Considering holes alone, from Equation 5.38, 

dp 
Aoie (*) = ep(x)fih'E(x) - eDh — = 0 

dx 

The electric field is defined by £ = —dV/dx, so substituting we find, 

—epfih dV — eDh dp = 0 

We can now use the Einstein relation Dh/^k = kT/e to get 

—epdV — kT dp = 0 

We can integrate this equation. According to Figure 6.1, in the p-side, p = ppo, V = 0, and in 

the n-side, p = pno, V = Vot thus, 

that is, 

fv° , kT fp"° dp n 
/ dV + — / — = 0 

JO f Jppo P 

kT 
V0 + —Un(p„o) - In(ppo)\ = 0 

e 

giving 

which is the same as Equation 6.5b and hence leads to Equation 6.6. 

6.1.2 Forward Bias: Diffusion Current 

Consider what happens when a battery is connected across a pn junction so that the 
positive terminal of the battery is attached to the p-side and the negative terminal to the 
n-side. Suppose that the applied voltage is V. It is apparent that the negative polarity of 
the supply will reduce the potential barrier V0 by V, as shown in Figure 6.2a. The rea¬ 
son for this is that the bulk regions outside the depletion width have high conductivities 
due to plenty of majority carriers in the bulk, in comparison with the depletion region 
in which there are mainly immobile ions. Thus, the applied voltage drops mostly 
across the depletion width W. Consequently, V directly opposes V0 and the potential 
barrier against diffusion is reduced to (V0 — V), as depicted in Figure 6.2b. This has 
drastic consequences because the probability that a hole will surmount this potential 
barrier and diffuse to the right now becomes proportional to exp[-c(V0 - V)/kT]. In 
other words, the applied voltage effectively reduces the built-in potential and hence the 
built-in field, which acts against diffusion. Consequently many holes can now diffuse 
across the depletion region and enter the n-side. This results in the injection of excess 
minority carriers, holes, into the n-region. Similarly, excess electrons can now 
diffuse toward the p-side and enter this region and thereby become injected minority 

carriers. 

EXAMPLE 6.3 

TT 
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Figure 6.2 Forward-biased pn junction and the injection of minority carriers. 

(a) Carrier concentration profiles across the device under forward bias. 

(b) The hole potential energy with and without an applied bias. W is the width of the SCL with forward bias. 

The hole concentration 

Law of the 

junction 

Pn( 0) = pn{x' = 0) 

just outside the depletion region at x' = 0 (V is measured from Wn) is due to the ex¬ 
cess of holes diffusing as a result of the reduction in the built-in potential barrier. This 
concentration pn(0) is determined by the probability of surmounting the new potential 
energy barrier e{VQ — V), 

T e(V0-V)~\ 
Pn (0) = Ppo exp -—-J [6.8] 

This follows directly from the Boltzmann equation, by virtue of the hole potential 
energy rising by e( V0 — V) from jc = —Wptox = Wn, as indicated in Figure 6.2b, and 
at the same time the hole concentration falling from to pn(0). By dividing Equa¬ 
tion 6.8 by Equation 6.5b, we obtain the effect of the applied voltage directly, which 
shows how the voltage V determines the amount of excess holes diffusing and arriving 
at the «-region. Equation 6.8 divided by Equation 6.5b is 

Pn(0) = Pm exp [6.9] 

which is called the law of the junction. Equation 6.9 is an important equation that we 
will use again in dealing with pn junction devices. It describes the effect of the applied 
voltage V on the injected minority carrier concentration just outside the depletion 
region p„(0). Obviously, with no applied voltage, V = 0 and p„(0) = pm, which is 
exactly what we expect. 
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Injected holes diffuse in the n-region and eventually recombine with electrons in 
this region as there are many electrons in the n-side. Those electrons lost by recombi¬ 
nation are readily replenished by the negative terminal of the battery connected to this 
side. The current due to holes diffusing in the n-region can be sustained because more 
holes can be supplied by the p-region, which itself can be replenished by the positive 
terminal of the battery. 

Electrons are similarly injected from the n-side to the p-side. The electron concen¬ 
tration np(0) just outside the depletion region at jc = — Wp is given by the equivalent 
of Equation 6.9 for electrons, that is. 

MO) — n po exp [6.10] 
Law of the 

junction 

In the p-region, the injected electrons diffuse toward the positive terminal looking 
to be collected. As they diffuse they recombine with some of the many holes in this re¬ 
gion. Those holes lost by recombination can be readily replenished by the positive ter¬ 
minal of the battery connected to this side. The current due to the diffusion of electrons 
in the p-side can be maintained by the supply of electrons from the n-side, which itself 
can be replenished by the negative terminal of the battery. It is apparent that an electric 
current can be maintained through a pn junction under forward bias, and that the cur¬ 
rent flow, surprisingly, seems to be due to the diffusion of minority carriers. There is, 
however, some drift of majority carriers as well. 

If the lengths of the p- and n-regions are longer than the minority carrier diffusion 
lengths, then we will be justified to expect the hole concentration pn (x') on the n-side 
to fall exponentially toward the thermal equilibrium value pm, that is, 

Ap„(*') = Ap„(0) exp^ —[6.11] 

where 

Apn(x') = p„(x') - Pno 

is the excess carrier distribution and L/, is the hole diffusion length, defined by 
Lh = \jDhXh in which r* is the mean hole recombination lifetime (minority carrier 
lifetime) in the n-region. We base Equation 6.11 on our experience with the minority 
carrier injection in Chapter 5.3 

The hole diffusion current density Jdmo\c is therefore 

Excess 

minority 

carrier 

profile 

Excess 

minority 

carrier 

concentration 

J D.hole — 
dPnix') 

dx' 
= -eDh 

dApn(x') 

dx' 

that is, 

J D.holc Ap„(0) exp ( 
x' 

Lh ) 

3 This is simply the solution of the continuity equation in the absence of an electric field, which is discussed in 
Chapter 5. Equation 6.11 is identical to Equation 5.48. 
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J 

Figure 6.3 The total current 

anywhere in the device is constant. 

Just outside the depletion region, it is 

due to the diffusion of minority 
carriers. 

Hole 

diffusion 

current 

in n-side 

Hole 

diffusion 

current 

in n-side 

Although this equation shows that the hole diffusion current depends on location, the 
total current at any location is the sum of hole and electron contributions, which is inde¬ 
pendent of x, as indicated in Figure 6.3. The decrease in the minority carrier diffusion 
current with x' is made up by the increase in the current due to the drift of the majority car¬ 
riers, as schematically shown in Figure 6.3. The field in the neutral region is not totally 
zero but a small value, just sufficient to drift the huge number of majority carriers there. 

At x' = 0, just outside the depletion region, the hole diffusion current is 

/©.hole = {^) APn(°) 
We can now use the law of the junction to substitute for Ap„(0) in terms of the 

applied voltage V. Writing 

Ap/t (0) — P«( 0) Pno — Pno 

and substituting in 70,hoie, we get 

'D.hole = - (rzr) K3 - 
Thermal equilibrium hole concentration pm is related to the donor concentration by 

»? n? 
Pno — ~ \r 

ft no Nd 

Thus, 

*•— (S)bSH 
There is a similar expression for the electron diffusion current density JD>eiec in the 

^-region. We will assume (quite reasonably) that the electron and hole currents do not 
change across the depletion region because, in general, the width of this region is narrow 
(reality is not quite like the schematic sketches in Figures 6.2 and 6.3). The electron 
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current at x = — Wp is the same as that at* = Wn. The total current density is then sim¬ 
ply given by 70,hoie + Jo.eiec, that is, 

j = (i£l + j^)„?Lxp(fn _ jl 
\LHNd L'NJ 1 V\kr) J 

or 

This is the familiar diode equation with 

IAua^/ 

[6.121 

It is frequently called the Shockley equation. The constant Jso depends not only on 
the doping, Nj and Na, but also on the material via n,, Dh, De, Lh, and Le. It is known 
as the reverse saturation current density, as explained below. Writing 

n] = (NCNV) exp^— 

where Vg = Eg/e is the bandgap energy expressed in volts, we can write Equa¬ 
tion 6.12 as 

-( 
eDh eD, 

LeN{ 
^)[(^A/„,exp(-^)][exp(^) - 1 

that is. 

or 

where 

J = ■,iexp(“^)[e’ip©_1. 

J = J\ expl"^-^1 for — » 1 
FL kT 

eV 

kT 

( eDh eDe \ 

[6.13] 

is a new constant. 
The significance of Equation 6.13 is that it reflects the dependence of I-V characteris¬ 

tics on the bandgap (via Vg), as displayed in Figure 6.4 for the three important semicon¬ 
ductors, Ge, Si, and GaAs. Notice that the voltage across the pn junction for an appreciable 
current of say ~ 0.1 mA is about 0.2 V for Ge, 0.6 V for Si, and 0.9 V for GaAs. 

The diode equation, Equation 6.12, was derived by assuming that the lengths of the 
p and n regions outside the depletion region are long in comparison with the diffusion 
lengths Lh and Le. Suppose that £p is the length of thep-side outside the depletion region 

Ideal diode 

(Shockley) 

equation 

Reverse 

saturation 

current 

Intrinsic 

concentration 

Diode current 

and bandgap 

energy 
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Current 

Minority Carrier 
Concentration *E -£ 

Figure 6.4 Schematic sketch of the l-V Figure 6.5 Minority carrier injection and 

characteristics of Ge, Si, and GaAs pn junctions. diffusion in a short diode. 

and in is that of the n-side outside the depletion region. If tp and ln are shorter than the 
diffusion lengths Le and Lh, respectively, then we have what is called a short diode and 
consequently the minority carrier distribution profiles fall almost linearly with distance 
from the depletion region, as depicted in Figure 6.5. This can be readily proved by solving 
the continuity equation, but an intuitive explanation makes it clear. At x' = 0, the minority 
carrier concentration is determined by the law of the junction, whereas at the battery termi¬ 
nal there can be no excess carriers as the battery will simply collect these. Since the length 
of the neutral region is shorter than the diffusion length, there are practically no holes lost 
by recombination, and therefore the hole flow is expected to be uniform across £„. This can 
be so only if the driving force for diffusion, the concentration gradient, is linear. 

The excess minority carrier gradient is 

dApn(x') _ [pn(0) - pno] 

dx’ ln 

The current density 7/>,hoie due to the injection and diffusion of holes in the n-region 
as a result of forward bias is 

JD.hole = ~eDh 
dApn(x') 

dx' 
= eDh 

[Pn(0) ~ Pno] 

In 

We can now use the law of the junction 

Pn(0) = Pno exp 

for pn(0) in the above equation and also obtain a similar equation for electrons diffus¬ 
ing in the p-region and then sum the two for the total current J, 

j = ( + 
UnNd ’ lpN, 

eDe\S (eV \ .1 
Short diode [6.14] 
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It is clear that this expression is identical to that of a long diode, that is, Equa¬ 
tion 6.12, if in the latter we replace the diffusion lengths Lh and Le by the lengths in and 
lp of the n- and p-regions outside the SCL. 

6.1.3 Forward Bias: Recombination and Total Current 

So far we have assumed that, under a forward bias, the minority carriers diffusing and 
recombining in the neutral regions are supplied by the external current. However, 
some of the minority carriers will recombine in the depletion region. The external cur¬ 
rent must therefore also supply the carriers lost in the recombination process in the 
SCL. Consider for simplicity a symmetrical pn junction as in Figure 6.6 under forward 
bias. At the metallurgical junction at the center C, the hole and electron concentrations 
are pm and nM and are equal. We can find the SCL recombination current by consider¬ 
ing electrons recombining in the p-side in Wp and holes recombining in the n-side in 
Wn as shown by the shaded areas ABC and BCD, respectively, in Figure 6.6. Suppose 
that the mean hole recombination time in Wn is xh and mean electron recom¬ 
bination time in Wp is xe. The rate at which the electrons in ABC are recombining is 
the area ABC (nearly all injected electrons) divided by xe. The electrons are replen¬ 
ished by the diode current. Similarly, the rate at which holes in BCD are recombining 
is the area BCD divided by xh. Thus, the recombination current density is 

eABC eBCD 
•Aecom — I" 

We can evaluate the areas ABC and BCD by taking them as triangles, ABC % 
\WpnM, etc., so that 

, _ e\WPnM , e\WnpM 
Jrecom ^ “I" 

e 

Under steady-state and equilibrium conditions, assuming a nondegenerate semi¬ 
conductor, we can use Boltzmann statistics to relate these concentrations to the potential 

Log (carrier concentration) Figure 6«6 Forward-biased pn 
junction and the injection of carriers 

and their recombination in SCL. 
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energy. At A, the potential is zero and at M it is \e{V0 — V), so 

Pm T e(Va-V)-\ 

^=expL-^H 
Since V0 depends on dopant concentrations and n, as in Equation 6.6 and further 

Ppo = Na, we can simplify this equation to 

Recombina¬ 

tion current 

pM = nt exp 

This means that the recombination current for V > kT/e is given by 

Jrecom — [6.15] 

Recombina¬ 

tion current 

Total diode 

current = 
diffusion + 

recombination 

From a better quantitative analysis, the expression for the recombination current 
can be shown to be4 

-/recom = Jro [exp(<?V/2kT) - 1] [6.16] 

where Jm is the preexponential constant in Equation 6.15. 
Equation 6.15 is the current that supplies the carriers that recombine in the deple¬ 

tion region. The total current into the diode will supply carriers for minority carrier dif¬ 
fusion in the neutral regions and recombination in the space charge layer, so it will be 
the sum of Equations 6.12 and 6.15. 

-I- Jro exp 
kT_ 

e ) 
This expression is often lumped into a single exponential as 

The diode 

equation 
[6.17] 

where J0 is a new constant and q is an ideality factor, which is 1 when the current is 
due to minority carrier diffusion in the neutral regions and 2 when it is due to recom¬ 
bination in the space charge layer. Figure 6.7 shows typical expected I-V characteris¬ 
tics of pn junction Ge, Si, and GaAs diodes. At the highest currents, invariably, the 
bulk resistances of the neutral regions limit the current (why?). For Ge diodes, typi¬ 
cally q = 1 and the overall I-V characteristics are due to minority carrier diffusion. In 
the case of GaAs, q & 2 and the current is limited by recombination in the space 
charge layer. For Si, typically, q changes from 2 to 1 as the current increases, indicat¬ 
ing that both processes play an important role. In the case of heavily doped Si diodes, 
heavy doping leads to short minority carrier recombination times and the current is 
controlled by recombination in the space charge layer so that the q = 2 region extends 
all the way to the onset of bulk resistance limitation. 

I 4This is generally proved in advanced texts. 
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Figure 6.7 Schematic sketch of 
typical l-V characteristics of Ge, Si, 
and GaAs pn junctions as log(/} 

versus V. 

The slope indicates e/[tjkT). 

Minority carrier 

concentration 

Figure 6.8 Reverse-biased pn junction. 

(a) Minority carrier profiles and the origin of the reverse current. 

(b) Hole PE across the junction under reverse bias. 

6.1.4 Reverse Bias 

When a pn junction is reverse-biased, as shown in Figure 6.8a, the applied voltage, as 
before, drops mainly across the depletion region, that is, the space charge layer (SCL), 
which becomes wider. The negative terminal will attract the holes in the p-side to 
move away from the SCL, which results in more exposed negative acceptor ions and 
thus a wider SCL. Similarly, the positive terminal will attract electrons away from the 
SCL, which exposes more positively charged donors. The depletion width on the n-side 
also widens. The movement of electrons in the n-region toward the positive battery 
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EHP thermal 
generation 
in SCL 

terminal cannot be sustained because there is no electron supply to this n-side. The 
p-side cannot supply electrons to the n-side because it has almost none. However, there 
is a small reverse current due to two causes. 

The applied voltage increases the built-in potential barrier, as depicted in Fig¬ 
ure 6.8b. The electric field in the SCL is larger than the built-in internal field £0. The 
small number of holes on the n-side near the SCL become extracted and swept by the 
field across the SCL over to the p-side. This small current can be maintained by the dif¬ 
fusion of holes from the n-side bulk to the SCL boundary. 

Assume that the reverse bias Vr > kT/e = 25 mV. The hole concentration 
pn(0) just outside the SCL is nearly zero by the law of the junction, Equation 6.9, 
whereas the hole concentration in the bulk (or near the negative terminal) is the 
equilibrium concentration pn0, which is small. There is therefore a small concen¬ 
tration gradient and hence a small hole diffusion current toward the SCL as shown 
in Figure 6.8a. Similarly, there is a small electron diffusion current from bulk p-side 
to the SCL. Within the SCL, these carriers are drifted by the field. This minority 
carrier diffusion current is essentially the Shockley model. The reverse current is 
given by Equation 6.12 with a negative voltage which leads to a diode current 
density of — Jso called the reverse saturation current density. The value of Jso 
depends only on the material via n, , p,/,, fie, dopant concentrations, but not on the 
voltage (Vr > kT/e). Furthermore, as Jso depends on n?, it is strongly temperature 
dependent. In some books it is stated that the causes of reverse current are the ther¬ 
mal generation of minority carriers in the neutral region within a diffusion length 
to the SCL, the diffusion of these carriers to the SCL, and their subsequent drift 
through the SCL. This description, in essence, is identical to the Shockley model 
we just described. 

The thermal generation of electron-hole pairs (EHPs) in the SCL, as shown in Fig¬ 
ure 6.8a, can also contribute to the observed reverse current since the internal field in 
this layer will separate the electron and hole and drift them toward the neutral regions. 
This drift will result in an external current in addition to the reverse current due to the 
diffusion of minority carriers. The theoretical evaluation of SCL generation current 
involves an in-depth knowledge of the charge carrier generation processes via recom¬ 
bination centers, which is discussed in advanced texts. Suppose that xg is the mean 
time to generate an electron-hole pair by virtue of the thermal vibrations of the lat¬ 
tice; rg is also called the mean thermal generation time. Given xg, the rate of thermal 
generation per unit volume must be n, / rg because it takes on average xg seconds to 
create n, number of EHPs per unit volume. Furthermore, since WA, where A is the 
cross-sectional area, is the volume of the depletion region, the rate of EHP, or charge 
carrier, generation is (AW n{)/xg. Both holes and electrons drift in the SCL each con¬ 
tributing equally to the current. The observed current density must be e(Wn{)f xg. 
Therefore the reverse current density component due to thermal generation of EHPs 
within the SCL should be given by 

Jgen — 

eWni 
[6.18] 

The reverse bias widens the width W of the depletion layer and hence increases 
7gen- The total reverse current density 7rev is the sum of the diffusion and generation 
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Reverse diode current (A) 

1/temperature (1/K) 

(a) (b) 

Figure 6.9 

(a) Forward and reverse l-V characteristics of a pn junction (the positive and negative current axes have different scales 
and hence the discontinuity at the origin). 

(b) Reverse diode current in a Ge pn junction as a function of temperature in a ln(/rev) versus 1/T plot. Above 238 K, 

/rev is controlled by n?, and below 238 K, it is controlled by n;. The vertical axis is a logarithmic scale with actual 
current values. 

I SOURCE: (b) From D. Scansen and S. O. Kasap, Cnd. J. Physics, 70, 1070, 1992. 

components, 

/ eDu eDe \ 9 eWn, 
-1-«• +- 

\LhNd LeNa) 1 to 
[6.19] 

Total reverse 

current 

which is shown schematically in Figure 6.9a. The thermal generation component Jgtn 
in Equation 6.18 increases with reverse bias Vr because the SCL width W increases 
with Vr. 

The terms in the reverse current in Equation 6.19 are predominantly controlled 
by nf and n,-. Their relative importance depends not only on the semiconductor prop¬ 
erties but also on the temperature since n, oc exp(—Eg/2kT). Figure 6.9b shows the re¬ 
verse current /rev in dark in a Ge pn junction (a photodiode) plotted as ln(/rev) versus 
1/T to highlight the two different processes in Equation 6.19. The measurements in 
Figure 6.9b show that above 238 K, /rev is controlled by nj because the slope of ln(/rev) 
versus 1 /T yields an Eg of approximately 0.63 eV, close to the expected Eg of about 
0.66 eV in Ge. Below 238 K, /rev is controlled by «, because the slope of ln(/rev) versus 
1/T is equivalent to Eg/2 of approximately 0.33 eV. In this range, the reverse current 
is due to EHP generation in the SCL via defects and impurities (recombination 
centers). 
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EXAMPLE 6.4 FORWARD- AND REVERSE-BIASED Si DIODE An abrupt Si p+n junction diode has a cross- 
sectional area of 1 mm2, an acceptor concentration of 5 x 1018 boron atoms cm-3 on the 
p-side, and a donor concentration of 1016 arsenic atoms cm-3 on the n-side. The lifetime of 
holes in the n-region is 417 ns, whereas that of electrons in the p-region is 5 ns due to a 
greater concentration of impurities (recombination centers) on that side. Mean thermal gen¬ 
eration lifetime (xg) is about 1 ps. The lengths of the p- and n-regions are 5 and 100 microns, 
respectively. 

a. Calculate the minority diffusion lengths and determine what type of a diode this is. 

b. What is the built-in potential across the junction? 

c. What is the current when there is a forward bias of 0.6 V across the diode at 27 °C? Assume 
that the current is by minority carrier diffusion. 

d. Estimate the forward current at 100 °C when the voltage across the diode remains at 0.6 V. 
Assume that the temperature dependence of n, dominates over those of D, L, and p. 

e. What is the reverse current when the diode is reverse-biased by a voltage Vr = 5 V? 

SOLUTION 

The general expression for the diffusion length is L = VDr where D is the diffusion coefficient 
and r is the carrier lifetime. D is related to the carrier mobility p via the Einstein relationship 
D/p, = kT/e. We therefore need to know p to calculate D and hence L. Electrons diffuse in the 
p-region and holes in the n-region, so we need pe in the presence of Na acceptors and pA in the 
presence of Nd donors. From the drift mobility, p versus dopant concentration in Figure 5.19, 
we have the following: 

With Na = 5 x 1018 cm"3 pe » 120 cm2 V"1 s-1 

With Nd = 1016 cm"3 pfc « 440 cm2 V“l s'1 

Thus 

De = 

Dh = 

kT pe 

e 

kT fih 

(0.0259 V)(120 cm2 V"1 s"1) = 3.10 cm2 s"1 

(0.0259 V)(440 cm2 V"1 s"1) =11.39 cm2 s"1 

Diffusion lengths are 

Le = y/Dexe = [(3.10 cm2 s-1)(5 x 10~9 s)] 

= 1.2 x 10"4 cm or 1.2 pm < 5 pm 

Lh = y/Dhxh = >/[(l 1.39 cm2 s-')(417 x 10"9s)] 

= 21.8 x 10“4 cm or 21.8 pm < 100 pm 

We therefore have a long diode. The built-in potential is 

= (^) m(^) = (0.0259 V) ln[(5(^:|X0,:r] = 0 877 V 

To calculate the forward current when V = 0.6 V, we need to evaluate both the diffusion 
and recombination components to the current. It is likely that the diffusion component will 
exceed the recombination component at this forward bias (this can be easily verified). Assuming 



6. i Ideal pn Junction 493 

that the forward current is due to minority carrier diffusion in neutral regions, 

/ = Iso [exp(^) - l] « Iso exp(^) for V » V <= 0 0259 v> 

where 

_'47"“Ae"'[(L,wJ + (i,A-J. 

AenfD/, 

LhNd 

as Na » Nd. In other words, the current is mainly due to the diffusion of holes in the n-region. 
Thus, 

/ - (°-01 cm2)(1.6 x 10~19 C)(1.0 x IQ10 cm~3)2(11.39 cn^s"1) 

50 (21.8 x 10-4 cm)(1016 cm-3) 

= 8.36 x 1(T14 A or 0.084 pA 

Then the diode current is 

I = (8.36 x 10“14 A) exp 
(0.6 V) - 

(0.0259 V). 

= 0.96 x 10-3 A or 0.96 mA 

We note that when a forward bias of 0.6 V is applied, the built-in potential is reduced from 
0.877 V to 0.256 V, which encourages minority carrier injection, that is, diffusion of holes from 
p- to n-side and electrons from n- to p-side. To find the current at 100 °C, first we assume that 
Iso oc n2. Then at T = 273 + 100 = 373 K,nt ^ 1.0 x 1012 cm-3 (approximately from n, ver¬ 
sus \/Tgraph in Figure 5.16), so 

f n, (373 K)l2 
4,(373 K) » 4,(300 K) —-i 

Lni(300 K)J 

.. / 1.0 x 1012 \2 10 
« (8.36 x 10“14) -- = 8.36 x 10~IOA or 0.836 nA 

\ 1.0x1010 / 

At 100 °C, the forward current with 0.6 V across the diode is 

I = Iso exp = (8.36 x 10“10 A) exp 
(0.6 V)(300 K) 

(0.0259 V)(373 K). 
= 0.10 A 

When a reverse bias of Vr is applied, the potential difference across the depletion region 
becomes V0 + Vr and the width W of the depletion region is 

W = 
'2g(Vo + Vr) ~|1/2 

. eNd 
21 - f2(n .9)(8.85 x 10"12)(0.877 + 5)' 

(1.6 x 10-'9)(1022) . 

1/2 

= 0.88 x 10-6 m or 0.88 pm 

The thermal generation current with Vr = 5 V is 

eAWrii (1.6 x 10"19 C)(0.01 cm2)(0.88 x 10-4cm)(1.0 x 10locm-3) 
I gen ~ 

= 1.41 x 10~9A or 

(10-6 s) 

1.4 nA 

This thermal generation current is much greater than the reverse saturation current 
4(= 0.084 pA). The reverse current is therefore dominated by /gen and it is 1.4 nA. 
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6.2 pn JUNCTION BAND DIAGRAM 

6.2.1 Open Circuit 

Figure 6.10a shows the energy band diagrams for a p-type and an n-type semicon¬ 
ductor of the same material (same Eg) when the semiconductors are isolated from each 
other. In the p-type material the Fermi level EFp is below the vacuum level and is 
close to Ev. In the n-type material the Fermi level EFn is d>„ below the vacuum level 
and is close to Ec. The separation Ec — EFn determines the electron concentration 
in the n-type and EFp — Ev determines the hole concentration p^, in the p-type semi¬ 
conductor under thermal equilibrium conditions. 

An important property of the Fermi energy EF is that in a system in equilibrium, 
the Fermi level must be spatially continuous. A difference in Fermi levels AEF is 
equivalent to electrical work eV, which is either done on the system or extracted from 
the system. When the two semiconductors are brought together, as in Figure 6.10b, the 
Fermi level must be uniform through the two materials and the junction at M, which 
marks the position of the metallurgical junction. Far away from M, in the bulk of the 
n-type semiconductor, we should still have an n-type semiconductor and Ec — EFn 
should be the same as before. Similarly, EFp — Ev far away from M inside the p-type 
material should also be the same as before. These features are sketched in Figure 
6.10b keeping EFp and EFn the same through the whole system and, of course, keeping 
the bandgap Ec — Ev the same. Clearly, to draw the energy band diagram, we have to 
bend the bands Ec and Ev around the junction at M because Ec on the n-side is close to 
EFn whereas on the p-side it is far away from EFp. How do bands bend and what does 
it mean? 

p-type semiconductor n-type semiconductor 

(a) 

Figure 6.10 
(a) Two isolated p- and n-type semiconductors (same material). 

(b) A pn junction band diagram when the two semiconductors are in contact. The Fermi level must be uniform in 

equilibrium. The metallurgical junction is at M. The region around M contains the space charge layer (SCL). On the 

n-side of M, SCL has the exposed positively charged donors, whereas on the p-side it has the exposed negatively 
charged acceptors. 
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As soon as the two semiconductors are brought together to form the junction, 
electrons diffuse from the n-side to the p-side and as they do so they deplete the n-side 
near the junction. Thus Ec must move away from EFn toward M, which is exactly what 
is sketched in Figure 6.10b. Holes diffuse from the p-side to the n-side and the loss of 
holes in the p-type material near the junction means that Ev moves away from EFp 
toward M, which is also in the figure. 

Furthermore, as electrons and holes diffuse toward each other, most of them 
recombine and disappear around M, which leads to the formation of a depletion region 
or the space charge layer, as we saw in Figure 6.1. The electrostatic potential energy 
(PE) of the electron decreases from 0 inside the p-region to —eV0 inside the n-region, 
as shown in Figure 6.1g. The total energy of the electron must therefore decrease going 
from the p- to the n-region by an amount eV0. In other words, the electron in the n-side 
at Ec must overcome a PE barrier to go over to Ec in the p-side. This PE barrier is eV0, 
where V0 is the built-in potential that we evaluated in Section 6.1. Band bending 
around M therefore accounts not only for the variation of electron and hole concentra¬ 
tions in this region but also for the effect of the built-in potential (and hence the built-in 
field as the two are related). 

In Figure 6.10b we have also schematically sketched in the positive donor (at Ed) 
and the negative acceptor (at Ea) charges in the SCL around M to emphasize that there 
are exposed charges near M. These charges are, of course, immobile and, generally, 
they are not shown in band diagrams. It should be noted that in the SCL region, marked 
as W0, the Fermi level is close to neither Ec nor Ev, compared with the bulk semicon¬ 
ductor regions. This means that both n and p in this zone are much less than their bulk 
values nm and ppo. The metallurgical junction zone has been depleted of carriers 
compared with the bulk. Any applied voltage must therefore drop across the SCL. 

6.2.2 Forward and Reverse Bias 

The energy band diagram of the pn junction under open circuit conditions is shown 
in Figure 6.11a. There is no net current, so the diffusion current of electrons from the 
n- to p-side is balanced by the electron drift current from the p- to n-side driven by the 
built-in field <E0. Similar arguments apply to holes. The probability that an electron dif¬ 
fuses from Ec in the n-side to Ec in the p-side determines the diffusion current density 
ydiff. The probability of overcoming the PE barrier is proportional to exp(—eV0/kT). 
Therefore, under zero bias, 

/diff(0) = B exp [6.20] 

•/net(O) = ydiff(0) + 7drift(0) = 0 [6.21] 

where B is a proportionality constant and ./drift (0) is the current due to the drift of 
electrons by Clearly 7drift (0) = — Jdiff(0); that is, drift is in the opposite direction to 
diffusion. 

When the pn junction is forward-biased, the majority of the applied voltage drops 
across the depletion region, so the applied voltage is in opposition to the built-in 
potential V0. Figure 6.11b shows the effect of forward bias, which is to reduce the PE 
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Figure 6.11 Energy band diagrams for a pn junction: (a) open circuit, (b) forward bias, (c) reverse bias 

conditions, (d) thermal generation of electron-hole pairs in the depletion region results in a small reverse 
current. 

barrier from eV0 to e(VQ — V). The electrons at Ec in the n-side can now readily 
overcome the PE barrier and diffuse to the p-side. The diffusing electrons from the 
n-side can be replenished easily by the negative terminal of the battery connected to 
this side. Similarly holes can now diffuse from the p- to n-side. The positive terminal 
of the battery can replenish those holes diffusing away from the p-side. There is there¬ 
fore a current flow through the junction and around the circuit. 

The probability that an electron at Ec in the n-side overcomes the new PE barrier 
and diffuses to Ec in thep-side is now proportional to txp[—e(V0 — V)/kT]. The latter 
increases enormously even for small forward voltages. The new diffusion current due 
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to electrons diffusing from the n- to p-side is 

= BexV)] 

There is still a drift current due to electrons being drifted by the new field £0 — £ 
(£ is the applied field) in the SCL. This drift current now has the value 7drift(V0- The 
net current is the diode current under forward bias 

J = + JdriitCV) 

•^drift(^) is difficult to evaluate. As a first approximation we can assume that 
although £0 has decreased to £0 — % there is, however, an increase in the electron con¬ 
centration in the SCL due to diffusion so that we can approximately take JdnftC1^) to re¬ 
main the same as Jdnft(O)- Thus 

J * JtmlV) + /drift(O) = Bexp[-e(V°~ V)1 - Bex 

Factoring leads to 

7«Bexp(-l^)[expg)-l] 

We should also add to this the hole contribution, which has a similar form with a 
different constant B. The diode current-voltage relationship then becomes the familiar 
diode equation, 

7 - y*[exp© " *] 
where J0 is a temperature-dependent constant.5 

When a reverse bias, V = — Vn is applied to the pn junction, the voltage again 
drops across the SCL. In this case, however, Vr adds to the built-in potential V0, so the 
PE barrier becomes e(V0 + Vr), as shown in Figure 6.11c. The field in the SCL at M 
increases to £0 + £, where £ is the applied field. 

The diffusion current due to electrons diffusing from Ec in the n-side to Ec in the 
p-side is now almost negligible because it is proportional to exp[—e(V0 + Vr)/kT], 
which rapidly becomes very small with Vr. There is, however, a small reverse current 
arising from the drift component. When an electron-hole pair (EHP) is thermally gen¬ 
erated in the SCL, as shown in Figure 6.lid, the field here separates the pair. The elec¬ 
tron falls down the PE hill, down to Ec, in the n-side to be collected by the battery. Sim¬ 
ilarly the hole falls down its own PE hill (energy increases downward for holes) to 
make it to the p-side. The process of falling down a PE hill is the same process as being 
driven by a field, in this case by £0 + £. Under reverse bias conditions, there is there¬ 
fore a small reverse current that depends on the rate of thermal generation of EHPs in 
the SCL. An electron in the p-side that is thermally generated within a diffusion length 

pn Junction 

I-V charac¬ 

teristics 

I 5 The derivation is similar to that for the Schottky diode, but there were more assumptions here. 
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EXAMPLE 6.S 

Built-in 
voltage 

Depletion 
region width 

Le to the SCL can diffuse to the SCL and consequently can become drifted by the field, 
that is, roll down the PE hill in Figure 6.lid. Such minority carrier thermal generation 
in neutral regions can also give rise to a small reverse current. 

THE BUILT-IN VOLTAGE V0 FROM THE ENERGY BAND DIAGRAM The energy band treatment 
allows a simple way to calculate V0. When the junction is formed in Figure 6.10 from a to b, EfP 
and Efn must shift and line up. Using the energy band diagrams in this figure and semiconduc¬ 
tor equations for n and p, derive an expression for the built-in voltage VQ in terms of the mate¬ 
rial and doping properties Nj, Na, and n,-. 

SOLUTION 

The shift in Epp and Epn to line up is clearly <f>p — <!>„, the work function difference. Thus the 
PE barrier eVa is <t>p — <t>„. From Figure 6.10, we have 

eVQ = <1>p — <t>n = (Ec — Epp) — (Ec — Ep„) 

But on the p- and n-sides, the electron concentrations in thermal equilibrium are given by 

r (ec~eFp) i 
npo = Nc expl-—-I 

f (Ec-EFn) 1 

B~= w'expL—w~\ 
From these equations, we can now substitute for (Ec — Epp) and (Ec — Ep„) in the expres¬ 

sion for eV0. The Nc cancel and we obtain 

eV0 = kTln(~) 
\npo/ 

Since npo = n]/Na and nno = Nj, we readily obtain the built-in potential V0, 

6.3 DEPLETION LAYER CAPACITANCE 
OF THE pn JUNCTION 

It is apparent that the depletion region of a pn junction has positive and negative 
charges separated over a distance W similar to a parallel plate capacitor. The stored 
charge in the depletion region, however, unlike the case of a parallel plate capacitor, 
does not depend linearly on the voltage. It is useful to define an incremental capaci¬ 
tance that relates the incremental charge stored to an incremental voltage change 
across the pn junction. 

The width of the depletion region is given by 

^ = I4 22] 
L eNaNd J 

where, for forward bias, V is positive, which reduces V0, and, for reverse bias, V is 
negative, so VQ is increased. We are interested in obtaining the capacitance of the 
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(a) (b) 

Figure 6.12 The depletion region behaves like a capacitor. 

(a) The charge in the depletion region depends on the applied voltage just as in a capacitor. A reverse bias example 
is shown. 

(b) The incremental capacitance of the depletion region increases with forward bias and decreases with reverse bias. Its 

value is typically in the range of picofarads per mm2 of device area. 

depletion region under dynamic conditions, that is, when V is a function of time. When 
the applied voltage V changes by dV, to V dV, then W also changes via Equa¬ 
tion 6.22, and as a result, the amount of charge in the depletion region becomes 
Q + dQ, as shown in Figure 6.12a for the reverse bias case, that is, V = —Vr and 
dV = —dVr. The depletion layer capacitance Cdep is defined by 

Cdep — 
dQ 

dV 
[6.231 

where the amount of charge (on any one side of the depletion layer) is 

Definition of 

depletion 

layer 

capacitance 

\Q\ = eNdWnA = eNaWpA 

and W = Wn + Wp. We can therefore substitute for W in Equation 6.22 in terms of Q and 
then differentiate it to obtain dQ/dV. The final result for the depletion capacitance is 

^ eA A I" ee(NaNd) "]1//2 Depletion 

Cdep = ~W = (V0 - V),/2 |_2(/vfl + A^)J 6,24 capacitance 

We should note that Cdep is given by the same expression as that for the parallel 
plate capacitor, sA/W, but with W being voltage dependent by virtue of Equation 6.22. 
The Cdep — V behavior is sketched in Figure 6.12b. Notice that Cdep decreases with in¬ 
creasing reverse bias, which is expected since the separation of the charges increases 
via W oc (V0+ Vr)1/2. The capacitance Cdep is present under both forward and reverse 
bias conditions. 

The voltage dependence of the depletion capacitance is utilized in varactor 
diodes (varicaps), which are employed as voltage-dependent capacitors in tuning cir¬ 
cuits. A varactor diode is reverse biased to prevent conduction, and its depletion 
capacitance is varied by the magnitude of the reverse bias. 
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6.4 DIFFUSION (STORAGE) CAPACITANCE 
AND DYNAMIC RESISTANCE 

The diffusion or storage capacitance arises under forward bias only. As shown in 
Figure 6.2a, when the p+n junction is forward biased, we have stored a positive 
charge on the n-side by the continuous injection and diffusion of minority carriers. 
Similarly, a negative charge has been stored on the p+-side by electron injection, but 
the magnitude of this negative charge is small for the p+n junction. When the 
applied voltage is increased from Vto V + dV, as shown in Figure 6.13, then p„(0) 
changes from p„(0) to p'n(0). If dQ is the additional minority carrier charge injected 
into the n-side, as a result of a small increase dV in V, then the incremental storage 
or diffusion capacitance Cdifr is defined as Cdwr = dQ/dV. At voltage V, the in¬ 
jected positive charge Q on the n-side is disappearing by recombination at a rate 
Q/rh, where rh is the minority carrier lifetime. The diode current / is therefore Q/Th, 
from which 

Q = xhI = rhI0 

Thus, 

dQ xhel _ Tj,/(mA) 

diff “ dV ~ kT 25 

[6.25] 

[6.26] 

where we used ejkT % 1/0.025 at room temperature. Generally the value of the dif¬ 
fusion capacitance, typically in the nanofarads range, far exceeds that of the depletion 
layer capacitance. 

Suppose that the voltage V across the diode is increased by an infinitesimally small f 
amount dV, as shown in an exaggerated way in Figure 6.14. This gives rise to a small j 
increase d I in the diode current. We define the dynamic or incremental resistance rd \ 
of the diode as dV/d /, so 

dV _ kT _ 25 
~dl ~ ~el ~ 7(mA) 

[6.27] 

Figure 6.13 Consider the injection of holes into the 
rr-side during forward bias. 

Storage or diffusion capacitance arises because when the 
diode voltage increases from V to V + dV, more minority 

carriers are injected and more minority carrier charge is 

stored in the n-region. 

SCL Neutral n-region --2- 
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Figure 6.14 The dynamic resistance of the 

diode is defined as dV/dl, which is the inverse of 
the tangent at /. 

The dynamic resistance is therefore the inverse of the slope of the I-V characteris¬ 
tics at a point and hence depends on the current I. It relates the changes in the diode 
current and voltage arising from the diode action alone, by which we mean the mod¬ 
ulation of the rate of minority carrier diffusion by the diode voltage. We could have 
equivalently defined a dynamic conductance by 

Dynamic 

conductance 

From Equations 6.26 and 6.27 we have 

rd Cdiff = rii [6.28] 

The dynamic resistance rd and diffusion capacitance of a diode determine 
its response to small ac signals under forward bias conditions. By small we usually 
mean voltages smaller than the thermal voltage kT je or 25 mV at room temperature. 
For small ac signals we can simply represent a forward-biased diode as a resistance rd 
in parallel with a capacitance Cdiff. 

9d = 
dl 

dV 

1 

rd 

INCREMENTAL RESISTANCE AND CAPACITANCE An abrupt Si p+n junction diode of cross- 
sectional area (A) 1 mm2 with an acceptor concentration of 5 x 1018 boron atoms cm-3 on the 
p-side and a donor concentration of 1016 arsenic atoms cm-3 on the n-side is forward-biased to 
carry a current of 5 mA. The lifetime of holes in the n-region is 417 ns, whereas that of electrons 
in the p-region is 5 ns. What are the small-signal ac resistance, incremental storage, and deple¬ 
tion capacitances of the diode? 

EXAMPLE 6.6 

SOLUTION 

This is the same diode we considered in Example 6.4 for which the built-in potential was 
0.877 V and Iso = 0.0836 pA. The current through the diode is 5 mA. Thus 

/eV\ (kT\ ( I \ ( 5 x 10"3 \ 
/ = Iso expl — J or V = ( — ) ln( — ) = (0.0259) In I-— ) = 0. 

V\kTj \e ) \IS0) V0.0836 x 10~n) 
643 V 
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The dynamic diode resistance is given by 

25 25 c ^ rd = -= — = 5 £2 
/(mA) 5 

The depletion capacitance per unit area with Na » Nd is 

„ _ A ee(NaNd) ]1/2 ^ , f eeNd ]1/2 

dCP L2(iVa + Nd)(V0 - V) J ~ 12(V0 - V)\ 

AtV = 0.643 V, with V0 = 0.877 V, Nd = 1022 m“3, sr = 11.9, and A = 10~6 m\ the 
above equation gives 

10_,9)(11.9)(8.85 x 10“12)(102 
Cdep = 10 -6 (1.6 x -1 2(0.877 - 0.643) 

= 6.0 x 10“10 F or 600 pF 

The incremental diffusion capacitance Cdiff due to holes injected and stored in the n-region is 

r*/(mA) (417 x 10~9)(5) 
Cdiff = 

25 25 
= 8.3 x 10-8 F or 83 nF 

Clearly the diffusion capacitance (83 nF) that arises during forward bias completely over¬ 
whelms the depletion capacitance (600 pF). 

We note that there is also a diffusion capacitance due to electrons injected and stored in the 
p-region. However, electron lifetime in the p-region is very short (here 5 ns), so the value of 
this capacitance is much smaller than that due to holes in the n-region. In calculating the diffu¬ 
sion capacitance, we normally consider the minority carriers that have the longest recombina¬ 
tion lifetime, here xh. These are the carriers that take a long time to disappear by recombination 
when the bias is suddenly switched off. 

6.5 REVERSE BREAKDOWN: AVALANCHE 
AND ZENER BREAKDOWN 

The reverse voltage across a pn junction cannot be increased without limit. Eventually 
the pn junction breaks down either by the Avalanche or Zener breakdown mechanisms, 
which lead to large reverse currents, as shown in Figure 6.15. In the V = — V\>T region, 
the reverse current increases dramatically with the reverse bias. If unlimited, the large 

br 

■> V 

Figure 6.15 Reverse l-V, characteristics of 
a pn junction. 

I 
A 
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reverse current will increase the power dissipated, which in turn raises the temperature 
of the device, which leads to a further increase in the reverse current and so on. If the 
temperature does not bum out the device, for example, by melting the contacts, then 
the breakdown is recoverable. If the current is limited by an external resistance to a 
value within the power dissipation specifications, then there is no reason why the 
device cannot operate under breakdown conditions. 

6.5.1 Avalanche Breakdown 

As the reverse bias increases, the field in the SCL can become so large that an electron 
drifting in this region can gain sufficient kinetic energy to impact on a Si atom and ion¬ 
ize it, or break a Si-Si bond. The phenomenon by which a drifting electron gains suf¬ 
ficient energy from the field to ionize a host crystal atom by bombardment is termed 
impact ionization. The accelerated electron must gain at least an energy equal to Eg 
as impact ionization breaks a Si-Si bond, which is tantamount to exciting an electron 
from the valence band to the conduction band. Thus an additional electron-hole pair is 
created by this process. 

Consider what happens when a thermally generated electron just inside the SCL in 
the p-side is accelerated by the field. The electron accelerates and gains sufficient 
energy to collide with a host Si atom and release an EHP by impact ionization, as 
depicted in Figure 6.16. It will lose at least Eg amount of energy, but it can accelerate 
and head for another ionizing collision further along the depletion region until it 
reaches the neutral n-region. The EHPs generated by impact ionization themselves can 
now be accelerated by the field and will themselves give rise to further EHPs by ion¬ 
izing collisions and so on, leading to an avalanche effect. One initial carrier can thus 
create many carriers in the SCL through an avalanche of impact ionizations. 

If the reverse current in the SCL in the absence of impact ionization is I0, then due 
to the avalanche of ionizing collisions in the SCL, the reverse current becomes 
MI0 where M is the multiplication. It is the net number of carriers generated by 
the avalanche effect per carrier in the SCL. Impact ionization depends strongly on the 
electric field. Small increases in the reverse bias can lead to dramatic increases in the 

Figure 6.16 Avalanche breakdown 
by impact ionization. 
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multiplication process. Typically 

where Vr is the reverse bias, Vbr is the breakdown voltage, and n is an index in the 
range 3 to 5. It is clear that the reverse current MI0 increases sharply with Vr near Vbr, 
as depicted in Figure 6.15. Indeed, the voltage across a diode under reverse breakdown 
remains around Vbr for very large current variations (several orders of magnitude). If 
the reverse current under breakdown is limited by an appropriate external resistor R, as 
shown in Figure 6.17, to prevent destructive power dissipation in the diode, then the 
voltage across the diode remains approximately at Vbr. Thus, as long as Vr > Vbr, the 
diode clamps the voltage between A and B to approximately Vbr. The reverse current in 
the circuit is then (Vr - Vbt)/R. 

Since the electric field in the SCL depends on the width of the depletion region IV, 
which in turn depends on the doping parameters, Vbr also depends on the doping, as 
discussed in Example 6.7. 

6.5.2 Zener Breakdown 

Heavily doped junctions have narrow depletion widths, which lead to large electric 
fields within this region. When a reverse bias is applied to a pn junction, the energy 
band diagram of the n-side can be viewed as being lowered with respect to the p-side, 
as depicted in Figure 6.18. For a sufficient reverse bias (typically less than 10 V), Ec 

Figure 6.17 If the reverse breakdown current when 

V > Vbr is limited by an external resistance R to prevent 
destructive power dissipation, then the diode can be used 

to clamp the voltage between A and B to remain 

approximately Vbr. 

Figure 6.18 Zener breakdown involves electrons 

tunneling from the VB of p-side to the CB of n-side when 

the reverse bias reduces Ec to line up with Ev. 
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Figure 6.19 The breakdown field !Ebr in the 

depletion layer for the onset of reverse breakdown 

versus doping concentration Nd in the lightly doped 

region in a one-sided (p+n or pn+) abrupt pn 
junction. 

Avalanche and tunneling mechanisms are 

separated by the arrow. 
I SOURCE: Data extracted from M. Sze and G. Gibbons, 
I Solid State Electronics, 9, no. 831, 1966. 

on the n-side may be lowered to be below Ev on the /7-side. This means that electrons 
at the top of the VB in the /7-side are now at the same energy level as the empty states 
in the CB in the n-side. As the separation between the VB and CB narrows, shown as 
a (< W), the electrons easily tunnel from the VB in the /7-side to the CB in the n-side, 
which leads to a current. This process is called the Zener effect. As there are many 
electrons in the VB and many empty states in the CB, the tunneling current can be sub¬ 
stantial. The reverse voltage Vr, which starts the tunneling current and hence the Zener 
breakdown, is clearly that which lowers Ec on the n-side to be below Ev on the /7-side 
and thereby gives a separation that encourages tunneling. In nonquantum mechanical 
terms, one may intuitively view the Zener effect as the strong electric field in the 
depletion region ripping out some of those electrons in the Si-Si bonds and thereby 
releasing them for conduction. 

Figure 6.19 shows the dependence of the breakdown field £br in the depletion 
region for the onset of avalanche or Zener breakdown in a one-sided (p+n or pn+) 
abrupt junction on the dopant concentration Nd in the lightly doped side. At high 
fields, the tunneling becomes the dominant reverse breakdown mechanism. 

AVALANCHE BREAKDOWN 
reverse biased by V = —Vr. 

Consider a uniformly doped abrupt p+n junction (Na ;» Nd) EXAMPLE 6.7 

a. What is the relationship between the depletion width W and the potential difference 
(V0 + Vr) across W1 

b. If avalanche breakdown occurs when the maximum field in the depletion region “E„ reaches 
the breakdown field £br, show that the breakdown voltage Vbr (» V0) is then given by 

Vbr = 
2 
br 

2eNd 

c. An abrupt Si p+n junction has boron doping of 1019 cm-3 on the p-side and phosphorus 
doping of 1016 cm-3 on the n-side. The dependence of the avalanche breakdown field on 
the impurity concentration is shown in Figure 6.19. 
1. What is the reverse breakdown voltage of this Si diode? 
2. Calculate the reverse breakdown voltage when the phosphorus doping is increased to 

1017 cm-3. 
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SOLUTION 

One can assume that all the applied reverse bias drops across the depletion layer so that the 
new voltage across W is now V0 + Vr. We have to integrate d'E/dx — />„«/£ as before across 
W to find the maximum field. The most important fact to remember here is that the pn junc¬ 
tion equations relating W, £0,Vo, N0, Nd, and so on remain the same but with V0 replaced 
with V0 + Vr since the applied reverse bias of Vr increases V0 to VD + Vr. Then from Equa¬ 
tion 6.4, 

w2 = 2g(V0 + yf)(iy-' + Ndl) ^ 2e(V0 + Vr) 

e eNd 

since Na » Nd. The maximum field that corresponds to the breakdown field £br is given by 

2 (Vo + Vf) 

Thus, from these two equations we can eliminate W and obtain Vbr = Vr as 

Vbr = 
eE 2 

br 
2eNd 

Given Na » Nd we have a p+n junction with Nd = 1016 cm-3. The depletion region 
extends into the n-region, so the maximum field actually occurs in the n-region. Here the 
breakdown field £br depends on the doping level as given in the graph of the critical field 
at breakdown £br versus doping concentration Nd in Figure 6.19. Taking £br 40 V/pm 
or 4.0 x 105 V cm-1 at Nd = 1016 cm-3 and using the above equation for Vb{, we get 
Vbr = 53 V. 

When Nd = 1017 cm-3, lEb( from the graph is about 6 x 10s V cm-1, which leads to 
Vbr = 11.8 V. 

6.6 BIPOLAR TRANSISTOR (BJT) 

6.6.1 Common Base (CB) dc Characteristics 

As an example, we will consider the pnp bipolar junction transistor (BJT) whose basic 
structure is shown in Figure 6.20a. The pnp transistor has three differently doped 
semiconductor regions. These regions of different doping occur within the same single 
crystal by the variation of acceptor and donor concentrations resulting from the fabri¬ 
cation process. The most heavily doped ^-region (p+) is called the emitter. In contact 
with this region is the lightly doped n-region, which is called the base. The next region 
is the p-type doped collector. The base region has the most narrow width for reasons 
discussed below. Although the three regions in Figure 6.20a have identical cross- 
sectional areas, in practice, due to the fabrication process, the cross-sectional area 
increases from the emitter to the collector and the collector region has an extended 
width. For simplicity, we will assume that the cross-sectional area is uniform, as in 
Figure 6.20a. 

The pnp BJT connected as shown in Figure 6.20b is said to be operating under 
normal and active conditions, which means that the base-emitter (BE) junction is for¬ 
ward biased and the base-collector (BC) junction is reverse biased. The circuit in 
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lb) (d) 

Figure 6.20 
(a) A schematic illustration of the pnp bipolar transistor with three differently doped regions. 

(b) The pnp bipolar operated under normal and active conditions. 

(c) The CB configuration with input and output circuits identified. 

(d) The illustration of various current components under normal and active conditions. 

Figure 6.20b, in which the base is common to both the collector and emitter bias volt¬ 
ages, is known as the common base (CB) configuration.6 Figure 6.20c shows the CB 
transistor circuit with the BJT represented by its circuit symbol. The arrow identifies 
the emitter junction and points in the direction of current flow when the EB junction 
is forward biased. Figure 6.20c also identifies the emitter circuit, where VEb is con¬ 
nected, as the input circuit. The collector circuit, where VCb is connected, is the out¬ 
put circuit. 

The base-emitter junction is simply called the emitter junction and the base- 
collector junction is called the collector junction. As the emitter is heavily doped, the 
base-emitter depletion region Web extends almost entirely into the base. Generally, the 
base and collector regions have comparable doping, so the base-collector depletion 
region Wbc extends to both sides. The width of the neutral base region outside the 
depletion regions is labeled as Wg. All these parameters are shown and defined in 
Figure 6.20b. 

I 6 CB should not be confused with the conduction band abbreviation. 
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We should note that all the applied voltages drop across the depletion widths. The 
applied collector-base voltage VCB reverse biases the BC junction and hence increases 
the field in the depletion region at the collector junction. 

Since the EB junction is forward-biased, minority carriers are then injected into 
the emitter and base exactly as they are in the forward-biased diode. Holes are injected 
into the base and electrons into the emitter, as depicted in Figure 6.20d. Hole injection 
into the base, however, far exceeds the electron injection into the emitter because the 
emitter is heavily doped. We can then assume that the emitter current is almost entirely 
due to holes injected from the emitter into the base. Thus, when forward biased, the 
emitter “emits,” that is, injects holes into the base. 

Injected holes into the base must diffuse toward the collector junction because 
there is a hole concentration gradient in the base. Hole concentration pn(WB) just out¬ 
side the depletion region at the collector junction is negligibly small because the in¬ 
creased field sweeps nearly all the holes here across the junction into the collector (the 
collector junction is reverse biased). 

The hole concentration pn(0) in the base just outside the emitter junction de¬ 
pletion region is given by the law of the junction. Measuring jc from this point (Fig¬ 
ure 6.20b), 

(eVEB \ 
Pn (0) — Pno 6Xp ( J [6.30] 

whereas at the collector end, x = WB, p„(WB) & 0. 
If no holes are lost by recombination in the base, then all the injected holes diffuse 

to the collector junction. There is no field in the base to drift the holes. Their motion is 
by diffusion. When they reach the collector junction, they are quickly swept across into 
the collector by the internal field £ in WBC. It is apparent that all the injected holes 
from the emitter become collected by the collector. The collector current is then the 
same as the emitter current. The only difference is that the emitter current flows across 
a smaller voltage difference VEB, whereas the collector current flows through a larger 
voltage difference VCB. This means a net gain in power from the emitter circuit to the 
collector circuit. 

Since the current in the base is by diffusion, to evaluate the emitter and collec¬ 
tor currents we must know the hole concentration gradient at x = 0 and x = WB 
and therefore we must know the hole concentration profile p„(x) across the base.7 
In the first instance, we can approximate the p„(x) profile in the base as a straight 
line from pn(0) to p„(WB) = 0, as shown in Figure 6.20b. This is only true in the 
absence of any recombination in the base as in the short diode case. The emitter cur¬ 
rent is then 

h = -eADh(^j^\ = eADh 
\ dx /x=0 

Pn( 0) 
WB 

7 The actual concentration profile can be calculated by solving the steady-state continuity equation, which can be 
found in more advanced texts. 



6.6 Bipolar Transistor (BJT) 509 

We can substitute for pn{0) from Equation 6.30 to obtain 

eADhpno (eVEB\ 
Ie —-expl -I 6.31] 

WB *\ kT ) 

It is apparent that IE is determined by VEB, the forward bias applied across the EB 
junction, and the base width WB. In the absence of recombination, the collector current 
is the same as the emitter current, Ic = Ie- The control of the collector current Ic in 
the output (collector) circuit by VEB in the input (emitter) circuit is what constitutes the 
transistor action. The common base circuit has a power gain because Ic in the out¬ 
put in Figure 6.20c flows around a larger voltage difference Vcb compared with IE in 
the input, which flows across VEB (about 0.6 V). 

TTie ratio of the collector current Ic to the emitter current IE is defined as the CB 
current gain or current transfer ratio a of the transistor, 

a 
[c 

Ie 
[6.32] 

Typically, a is less than unity, in the range 0.99-0.999, due to two reasons. First is 
the limitation due to the emitter injection efficiency. When the BE junction is forward- 
biased, holes are injected from the emitter into the base, giving an emitter current 
1E(hole), and electrons are injected from the base into the emitter, giving an emitter cur¬ 
rent (electron)* The total emitter current is, therefore, 

Ie = Ie( hole) + IE (electron) 

Only the holes injected into the base are useful in giving a collector current because 
only they can reach the collector. The emitter injection efficiency is defined as 

Y = 
_^E(hole)_ 

^E(hole) “b Ie (electron) 

1 

1 + 
IE (electron) 

IE (hole) 

[6.33] 

Consequently, the collector current, which depends on /£(hoie) only, is less than the 
emitter current. We would like y to be as close to unity as possible; /^(hoie) ^ ^(electron)* 
y can be readily calculated for the forward-biased pn junction current equations as 
shown in Example 6.9. 

Secondly, a small number of the diffusing holes in the narrow base inevitably be¬ 
come lost by recombination with the large number of electrons present in this region 
as depicted in Figure 6.20d. Thus, a fraction of /£(hoie) is lost in the base due to recom¬ 
bination, which further reduces the collector current. We define the base transport 
factor aT as 

Ic _ fc 

lEQiole) Y Ie 
[6.34] 

If the emitter were a perfect injector, IE = /£(hoie)> then the current gain a would 
be ar* If Th is the hole (minority carrier) lifetime in the base, then 1/r/, is the proba¬ 
bility per unit time that a hole will recombine and disappear. We also know that in 

Emitter 

current 

Definition of 

CB current 

gain 

Total emitter 

current 

Emitter 

injection 

efficiency 

Base 

transport 

factor 
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time t, a particle diffuses a distance x, given by x = -JlDt where D is the diffusion 
coefficient. The time x, it takes for a hole to diffuse across WB is then given by 

*t 
n 

2 Dh 
[6.35] 

This diffusion time is called the transit time of the minority carriers across the base. 
The probability of recombination in time x, is then r,/rThe probability of not 

recombining and therefore diffusing across is (1 — xt/xh). Since /£(hoie) represents the 
holes entering the base per unit time, /£(hoie)(l — xthh) represents the number of 
holes leaving the base per unit time (without recombining) which is the collector 
current 7C. Substituting for Ic and /£(hoie) in Equation 6.34 gives the base transport 
factor ar. 

Ic TV 
aT = -— = 1-- [6.36] 

7£(hole) rh 

Using Equations 6.32, 6.34, and 6.36 we can find the total CB current gain a: 

a = otjY — -Y [6.37] 

Base current 

Base-to- 

collector 

current gain 

The recombination of holes with electrons in the base means that the base must be 
replenished with electrons, which are supplied by the external battery in the form of a 
small base current IB, as shown in Figure 6.20d. In addition, the base current also has 
to supply the electrons injected from the base into the emitter, that is, /£(electron), and 
shown as electron diffusion in the emitter in Figure 6.20d. The number of holes enter¬ 
ing the base per unit time is represented by /£(hoie), and the number recombining per 
unit time is then /£(hoie)U//r/i). Thus, IB is 

(Xt \ T, 
— I 7£(hole) + I £ (electron) = Y — Ie + (I — Y)Ie [6.38] 
xh/ xh 

which further simplifies to /£ — /c; the difference between the emitter current and the 
collector current is the base current. (This is exactly what we expect from Kirchoff’s 
current law.) 

The ratio of the collector current to the base current is defined as the current gain 
P of the transistor.8 By using Equations 6.32, 6.37, and 6.38, we can relate p to or. 

IB 1 - a rt 
[6.39] 

The base-collector junction in Figure 6.20b is reverse biased, which leads to a leak¬ 
age current into the collector terminal even in the absence of an emitter current. This 
leakage current is due to thermally generated electron-hole pairs in the depletion region 
WBC being drifted by the internal field, as schematically illustrated in Figure 6.20d. 

Is a useful parameter when the transistor is used in what is called the common emitter (CE) configuration, in 
which the input current is made to flow into the base of the transistor, and the collector current is made to flow in 
the output circuit. 
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/c(mA) 

Figure 6.21 DC l-V 
characteristics of the pnp bipolar 
transistor (exaggerated to 
highlight various effects). 

Suppose that we open circuit the emitter (/E = 0). Then the collector current is simply 
the leakage current, denoted by ICbo- The base current is then -ICbo (flowing out from 
the base terminal). In the presence of an emitter current IE, we have 

lc = ocIe + Jcbo [6.40] 

ffi = (1 — ot)IE — Jcbo [6.41] 

Equations 6.40 and 6.41 give the collector and base currents in terms of the input 
current IE, which in turn depends on VEB. They only hold when the collector junction 
is reverse biased and the emitter junction is forward biased, which is defined as the 
active region of the BJT. It should be emphasized that what constitutes the transistor 
action is the control of IE, and hence Ic, by VEB. 

The dc characteristics of the CB-connected BJT as in Figure 6.20b are normally 
represented by plotting the collector current Ic as a function of VCB for various fixed 
values of the emitter current. A typical example of such dc characteristics for a pnp 
transistor is illustrated in Figure 6.21. The following characteristics are apparent. The 
collector cuiient when IE = 0 is the CD junction leakage current typically a frac¬ 

tion of a microampere. As long as the collector is negatively biased with respect to the 
base, the CB junction is reverse biased and the collector current is given by 
lc = aIE + Icbo, which is close to the emitter current when IE ;» Icbo• When the 
polarity of Vcb is changed, the CB junction becomes forward biased. The collector 
junction is then like a forward biased diode and the collector current is the difference 
between the forward biased CB junction current and the forward biased EB junction 
current. As they are in opposite directions, they subtract. 

We note that 7C increases slightly with the magnitude of Vcb even when IE is 
constant. In our treatment Ic did not directly depend on VCB, which simply reverse biased 
the collector junction to collect the diffusing holes. In our discussions we assumed that 
the base width WB does not depend on the applied voltages. This is only approximately 
true. Suppose that we increase the reverse bias VCB (for example, from —5 to —10 V). 
Then the base-collector depletion width WBc also increases, as schematically depicted 
in Figure 6.22. Consequently the base width WB gets slightly narrower, which leads to a 
slightly shorter base transit time r,. The base transport factor aT in Equation 6.36 and 

Active region 

collector 

current 

Active region 

base current 
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Figure 6.22 The Early effect. 

When the BC reverse bias increases, the 

depletion width Wbc increases to W'bc, 
which reduces the base width Wb to Wg. 

As p„(0) is constant (constant Veb), the 
minority carrier concentration gradient 

becomes steeper and the collector current, 

Ic increases. 

Pn(x) 

hence a are then slightly larger, which leads to a small increase in Ic- The modulation 
of the base width WB by Vcb is not very strong, which means that the slopes of the 
Ic — VCb lines at a fixed are very small in Figure 6.21. The base width modulation 
by Vcb is called the Early effect. 

EXAMPLE 6.8 A pnp TRANSISTOR Consider a pnp Si BJT that has the following properties. The emitter re¬ 
gion mean acceptor doping is 2 x 1018 cm-3, the base region mean donor doping is 
1 x 1016 cm-3, and the collector region mean acceptor doping is 1 x 1016 cm-3. The hole 
drift mobility in the base is 400 cm2 V-1 s-1, and the electron drift mobility in the emitter is 
200 cm2 V-1 s-1. The transistor emitter and base neutral region widths are about 2 pm each 
when the transistor is under normal operating conditions, that is, when the EB junction is 
forward-biased and the BC junction is reverse-biased. The effective cross-sectional area of the 
device is 0.02 mm2. The hole lifetime in the base is approximately 400 ns. Assume that the 
emitter has 100 percent injection efficiency, y = 1. Calculate the CB current transfer ratio a 
and the current gain fi. What is the emitter-base voltage if the emitter current is 1 mA? 

SOLUTION 

The hole drift mobility p.h = 400 cm2 V 1 s 1 (minority carriers in the base). From the Einstein 
relationship we can easily find the diffusion coefficient of holes, 

Dh = ph = (0.0259 V)(400 cm2 V"1 s_1) = 10.36 

The minority carrier transit time r, across the base is 

rr „ yt. ^ id-4 ''m'‘2 
T, = 

W* (2 X 10~4 cm)1 „ 
—2- =  -—1- = 1.93 x 10~9 
2Dh 2(10.36 cm2 s-1) 

The base transport factor and hence the CB current gain is 

a = yaB = 1-= 1 
rh 

1.93 x 10“9 s 

or 

-1 cm s 

1.93 ns 

400 x 10-9 s 
= 0.99517 
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The current gain fi of the transistor is 

a 0.99517 
fi = -= -= 206. 

1 - a 1 - 0.99517 

The emitter current is due to holes diffusing in the base (y = 1), 

1e ~ Ieo 

where 

eADhPno _ eADhn? 
WB ~ NdWB 

_ (1.6 x 10~19 C)(0.02 x 10~2 cm2)(10.36 cm s-')(1.0 x IQ10 cm"3)2 

(1 x 1016 cm_3)(2 x 10-4 cm) 
= 1.66 x 10~14 A 

Thus, 

Veb = (0.0259 V) In ( 
1 x 10~3 A \ 

1.66 x 10-14 A/ 
0.64 V 

The major assumption is y = 1, which is generally not true, as shown in Example 6.9. The 
actual a and hence fi will be smaller due to less than 100 percent emitter injection. Note also 
that WB is the neutral region width, that is, the region of base outside the depletion regions. It is 
not difficult to calculate the depletion layer widths within the base, which are about 0.2 pm on 
the emitter side and roughly about 0.7 pm on the collector side, so that the total base width junc¬ 
tion to junction is 2 + 0.2 4- 0.7 = 2.9 pm. 

The transit time of minority carriers across the base is x,. If the input signal changes be¬ 
fore the minority carriers have diffused across the base, then the collector current cannot re¬ 
spond to the changes in the input. Thus, if the frequency of the input signal is greater than 
1/r,, the minority carriers will not have time to transit the base and the collector current will 
remain unmodulated by the input signal. One can set the upper frequency limit at ~l/r, 
which is 518 MHz. 

EMITTER INJECTION EFFICIENCY y EXAMPLE 6.9 

a. Consider a pnp transistor with the parameters as defined in Figure 6.20. Show that the 
injection efficiency of the emitter, defined as 

Emitter current due to minority carriers injected into the base 
y = - 

Total emitter current 

is given by 

_ 1 

j Nd Wb /^('(emitter) 

Aa 1Vf fX f, (base) 

b. How would you modify the CB current gain a to include the emitter injection efficiency? 

c. Calculate the emitter injection efficiency for the pnp transistor in Example 6.8, which has 
an acceptor doping of 2 x 1018 cm-3 in the emitter, donor doping of 1 x 1016 cm-3 in the 
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base, emitter and base neutral region widths of 2 pm, and a minority carrier lifetime of 
400 ns in the base. What are its a and fi taking into account the emitter injection efficiency? 

SOLUTION 

When the BE junction is forward biased, holes are injected into the base, giving an emitter cur¬ 

rent /£(hoie) » and electrons are injected into the emitter, giving an emitter current /^electron) - The 
total emitter current is therefore 

Emitter 
injection 
efficiency 
definition 

Emitter 
injection 
efficiency 

Emitter-to- 
collector 

current 
transfer ratio 

Ie — Ie (hole) + Ie (electron) 

Only the holes injected into the base are useful in giving a collector current because only 
they can reach the collector. Injection efficiency is defined as 

IE (hole) 1 
Y = 

iE (hole) "I" Ie (electron) 
1 + 

i E (electron) 

IE (hole) 

But, provided that WE and WB are shorter than minority carrier diffusion lengths, 

1E (hole) 
€ AD h (base) ft i 

exp Or) and * E (electron) 
^-4 (emitter) 

NdWB \ kT / --- NaWE 

When we substitute into the definition of y and use D = nkT/e, we obtain 

exp (?f) 

_1_ 

j Nd Wg (emitter) 

Na Wf;/ift(base) 

The hole component of the emitter current is given as yIE. Of this, a fraction aT = 
(1 — x,/xh) will give a collector current. Thus, the emitter-to-collector current transfer ratio a, 
taking into account the emitter injection efficiency, is 

(. xt a = aTy11- 
V xh 

In the emitter, Na(emitter) = 2 x 1018 cm-3 and Remitter) = 200 cm2 V-1 s-1, and in the 
base, A^d(base) = 1 x 1016 cm-3 and Hh(base) = 400 cm2 V-1 s-1. The emitter injection effi¬ 
ciency is 

1 
y = ---= 0.99751 

(lx 1016)(2)(200) 

+ (2 x 1018)(2)(400) 

The transit time x, = Wl/2Dh — 1.93 x 10-9 s (as before), so the overall a is 

( 1.93 x 10-9\ 
a = 0.99751 1 -- = 0.99269 V 400 x lO"9 ) 

and the overall fi is 

(6 = 

a 

(1 - a) 
135.8 

The same transistor with 100 percent emitter injection in Example 6.8 had a fi of 206. It 
is clear that the emitter injection efficiency y and the base transport factor aT have compara¬ 

ble impacts in controlling the overall gain in the example. We neglected the recombination of 
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electrons and holes in the EB depletion region. In fact, if we were to also consider this recom¬ 
bination component of the emitter current, /£(h0ie) would have to be even smaller compared with 
the total 1e , which would make y and hence fi even lower. 

6.6.2 Common Base Amplifier 

According to Equation 6.31 the emitter current depends exponentially on VEB, 

h = ho exp(“^?) 16.42] 

It is therefore apparent that small changes in VEb lead to large changes in IE. Since 
Ic % h, we see that small variations in VEB cause large changes in Ic in the collector 
circuit. This can be fruitfully used to obtain voltage amplification as shown in Fig¬ 
ure 6.23. The battery VCc, through Rc, provides a reverse bias for the base-collector 
junction. The dc voltage VEE forward biases the EB junction, which means that it pro¬ 
vides a dc current IE. The input signal is the ac voltage veb applied in series with the dc 
bias voltage VEE to the EB junction. The applied signal veb modulates the total voltage 
Veb across the EB junction and hence, by virtue of Equation 6.30, modulates the 
injected hole concentration p„(0) up and down about the dc value determined by VEE 
as depicted in Figure 6.23. This variation in pn(0) alters the concentration gradient and 
therefore gives rise to a change in IE, and hence a nearly identical change in /c. The 
change in the collector current can be converted to a voltage change by using a resistor 
Rc in the collector circuit as shown in Figure 6.23. However, the output is commonly 
taken between the collector, and the base and this voltage Vcb is 

Vcb — ~ Vcc + RcIc 

E B C 

Figure 6.23 A pnp transistor operated in the active region in the common base 

amplifier configuration. 

The applied (input) signal veb modulates the dc voltage across the EB junction and 
hence modulates the injected hole concentration up and down about the dc value 

p„(0). The solid line shows p„(x) when only the dc bias Vee is present. The dashed lines 

show how p„(x) is modulated up and down by the signal vgb superimposed on Vee- 
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Input 

resistance 

CB voltage 

gain 

Increasing the emitter-base voltage VEB (by increasing veb) increases Ic, which 
increases Vcb- Since we are interested in ac signals, that voltage variation across CB is 
tapped out through a dc blocking capacitor in Figure 6.23. 

For simplicity we will assume that changes 8VEB and 81E in the dc values of VEB 
and IE are small, which means that 8 VEB and 81E can be related by differentiating 
Equation 6.42. We are hence tacitly assuming an operation under small signals. Further, 
we will take the changes to represent the ac signal magnitudes, veb = SVEE, ie = 8IE, 
ic = 8Iq % 81E % ie, vcb = 8Vcb- 

The output signal voltage vcb corresponds to the change in Vcb, 

vcb — $VcB — RC Me = Rc SIE 

The variation in the emitter current 81E depends on the variation 8VEB in VEB, 
which can be determined by differentiating Equation 6.42, 

S Ie_i 

8V7b ~ kT E 

By definition, 8 VEb is the input signal veb- The change 81E in IE is the input signal 
current (ie) flowing into the emitter as a result of 8VEB. Therefore the quantity 
8VEB/8IE represents an input resistance re seen by the source veb. 

8Veb kT 25 
re = —— =-= - [6.43] 

SIE eIE IE( mA) 

The output signal is then 

Vcb — Rc SIE = Rc 
Veb 

re 

so the voltage amplification is 

Av 
Vcb 

Veb 

Rc 

re 
[6.44] 

To obtain a voltage gain we obviously need Rc > re, which is invariably the case by the 
appropriate choice of IE, hence re, and Rc. For example, when the BJT is biased so 
that IE is 10 mA and re is 2.5 Q, and if Rc is chosen to be'50 £2, then the gain is 20. 

EXAMPLE 6.10 A COMMON BASE AMPLIFIER Consider apnp Si BJT that has been connected as in Figure 6.23. 
The BJT has a fi = 135 and has been biased to operate with a 5 mA collector current. What is the 
small-signal input resistance? What is the required Rc that will provide a voltage gain of 20? What 
is the base current? What should be the Vcc in Figure 6.23? Suppose Vcc = — 6 V, what is the 
largest swing in the output voltage Vcb in Figure 6.23 as the input signal is increased and de¬ 
creased about the bias point VEE, taken as 0.65 V? 

SOLUTION 

The emitter and collector currents are approximately the same. From Equation 6.43, 

re 
25 

IE (mA) 
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The voltage gain A v from Equation 6.44 is 

* 

Av = — or 
re 

20 = 
Rc_ 

5 £2 

so a gain of 20 requires Rc = 100 £2. 

Base current IB = — 
P 

5 mA 

135 
= 0.037 mA or 37 (jA 

There is a dc voltage across Rc given by IcRc = (0.005 A)(100 £2) = 0.5 V. VCc has to 
provide the latter voltage across Rc and also a sufficient voltage to keep the BC junction reverse 
biased at all times under normal operation. Let us set VCc = -6 V. Thus, in the absence of any 
input signal veb, VCb is set to —6 V + 0.5 V = —5.5 V. As we increase the signal veb, VEB and 
hence /c increase until the point C becomes nearly zero,9 that is, VCB = 0, which occurs when 
lc is maximum at /Cmax = I Vcc I / Rc or 60 mA. As veb decreases, so does VEB and hence 7C. 
Eventually Ic will simply become zero, and point C will be at —6 V, so VEB = Vcc- Thus, VCB 
can only swing from —5.5 V to 0 V (for increasing input until lc = /cmaxX or from —5.5 to —6 
V (for decreasing input until lc = 0). 

6.6.3 Common Emitter (CE) dc Characteristics 

An npn bipolar transistor when connected in the common emitter (CE) configuration 
has the emitter common to both the input and output circuits, as shown in Figure 6.24a. 
The dc voltage VBE forward biases the BE junction and thereby injects electrons as 
minority carriers into the base. These electrons diffuse to the collector junction where 
the field £ sweeps them into the collector to constitute the collector current lc- Vbe 

controls the current IE and hence IB and Ic. The advantage of the CE configuration is 
that the input current is the current flowing between the ac source and the base, which 
is the base current IB. This current is much smaller than the emitter current by about a 
factor of p. The output current is the current flowing between VCe and the collector, 
which is Ic. In the CE configuration, the dc voltage VCE must be greater than VBE to 
reverse bias the collector junction and collect the diffusing electrons in the base. 

The dc characteristics of the BJT in the CE configuration are normally given as Ic 
versus VCe for various values of fixed base currents IB, as shown in Figure 6.24b. The 
characteristics can be readily understood by Equations 6.40 and 6.41. We should 
note that, in practice, we are essentially adjusting VBE to obtain the desired lB because, 
by Equation 6.41, 

/g = (1 — ot)IE — Icbo 

and IE depends on VBE via Equation 6.42. 
Increasing IB requires increasing VBE, which increases Ic- Using Equations 6.40 

and 6.41, we can obtain Ic in terms of IB alone, 

1 
Ic = PIb + —--Icbo 

(1 - a) 

I 9 Various saturation effects are ignored in this approximate discussion. 
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/c(mA) 

Figure 6.24 

(a) An npn transistor operated in the active region in the common emitter configuration. The input current is the current that 

flows between Vbe and the base which is k- 
(b) DC l-V characteristics of the npn bipolar transistor in the CE configuration. (Exaggerated to highlight various effects.) 

Active region 

collector 

current 

or 

where 

Ic = Ph + Iceo [6.45] 

lCEO = —-7 ^ filcBO 
(1 - a) 

is the leakage current into the collector when the base is open circuited. This is much 
larger in the CE circuit than in the CB configuration. 

Even when IB is kept constant, Ic still exhibits a small increase with Vce, which, 
according to Equation 6.45, indicates an increase in the current gain ft with VCe- This 
is due to the Early effect or modulation of the base width by VCB, shown in Figure 6.22. 
Increasing VCe increases VCB, which increases WBC, reduces WB, and hence shortens 
r,. The resulting effect is a larger /J (% rh/rt). 

When Vce is less than VBB, the collector junction becomes forward biased and 
Equation 6.45 is not valid. The collector current is then the difference between forward 
currents of emitter and collector junctions. The transistor operating in this region is 
said to be saturated. 

6.6.4 Low-Frequency Small-Signal Model 

The npn bipolar transistor in the CE (common emitter) amplifier configuration is 
shown in Figure 6.25. The input circuit has a dc bias VBB to forward bias the 
base-emitter (BE) junction and the output circuit has a dc voltage VCc (larger than 
VBB) to reverse bias the base-collector (BC) junction through a collector resistor Re- 
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Figure 6.25 An npn transistor operated 
in the active region in the common emitter 

amplifier configuration. 

The applied signal vbe modulates the 

dc voltage across the BE junction and hence 

modulates the injected electron concentration 

up and down about the dc value np(0). The 

solid line shows np(x) when only the dc bias Vbb 

is present. The dashed line shows how np(x) is 

modulated up by a positive small signal vbe 

superimposed on Vbb- 

The actual reverse bias voltage across the BC junction is VCe — Vbe, where Vce is 

Vce = Vce — IcRc 

An input signal in the form of a small ac signal vbe is applied in series with the bias 
voltage VBb and modulates the voltage VBe across the BE junction about its dc value 
Vbb• The varying voltage across the BE modulates np(0) up and down about its dc 
value, which leads to a varying emitter current and hence to an almost identically vary¬ 
ing collector current in the output circuit. The variation in the collector current is con¬ 
verted to an output voltage signal by the collector resistance Re - Note that increasing 
Vbe increases Ic, which leads to a decrease in Vce ■ Thus, the output voltage is 180° out 
of phase with the input voltage. 

Since the BE junction is forward-biased, the relationship between Ie and Vbe is 
exponential, 

Ie — Ieo exp [6.46] 

where Ieo is a constant. We can differentiate this expression to relate small variations 
in IE and VBe as in the presence of small signals superimposed on dc values. For small 
signals, we have vbe = 8VBE, h = 8IB, ie = 8IE, ic = 81c- Then from Equation 6.45 
we see that 8IC = P 8IB, so ic = pib. Since a « l,/e% ic. 

What is the advantage of the CE circuit over the common base (CB) configuration? 
First, the input current is the base current, which is about a factor of ft smaller than the 
emitter current. The ac input resistance of the CE circuit is therefore a factor of p 

higher than that of the CB circuit. This means that the amplifier does not load the ac 
source; the input resistance of the amplifier is much greater than the internal (or output) 
resistance of the ac source at the input. The small-signal input resistance rbe is 

Wbb^JVbe PkT P25 
rbe = — = -~ p-= -% - 6.47 

ib SIB 8Ie eIE 7c(mA) 

where we differentiated Equation 6.46. 

Emitter 

current and 

Vbe 

Input 

resistance 
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Voltage gain 

Transconduc¬ 

tance 

Voltage gain 

The output ac signal uce develops across the CE and is tapped out through a ca¬ 
pacitor. Since VCe = Vcc — IcRc, as Ic increases, VCe decreases. Thus, 

Vce = 8Vce — —Rc = —Rcic 

The voltage amplification is 

vce —Rcic ~RcP _ fic/c(mA) 
Ay = - = -;- = - %-[6.48] 

^be fbeib fbe 25 

which is the same as that in the CB configuration. However, in the CE configuration 
the output to input current ratio ic/ ib = P, whereas this is almost unity in the CB con¬ 
figuration. Consequently, the CE configuration provides a greater power amplifica¬ 
tion, which is the second advantage of the CE circuit. 

The input signal vbe gives rise to an output current ic. This input voltage to out¬ 
put current conversion is defined in a parameter called the mutual conductance, or 
transconductance, gm. 

9m = — 
^be & Vfl 

/g(mA) _ 

25 re 
[6.49] 

The voltage amplification of the CE amplifier is then 

Av = -gmRc [6.50] 

We generally find it convenient to use a small-signal equivalent circuit for the 
low-frequency behavior of a BJT in the CE configuration. Between the base and 
emitter, the applied ac source voltage vs sees only an input resistance of rbe, as 
shown in Figure 6.26. To underline the importance of the transistor input resistance, 
the output (or the internal) resistance Rs of the ac source is also shown. In the out¬ 
put circuit there is a voltage-controlled current source ic which generates a current 
of 9m vbe. The current ic passes through the load (or collector) resistance Rc across 
which the voltage signal develops. As we are only interested in ac signals, the bat¬ 
teries are taken as a short-circuit path for the ac current, which means that the in¬ 
ternal resistances of the batteries are taken as zero. This model, of course, is valid 
only under normal and active operating conditions and small signals about dc val¬ 
ues, and at low frequencies. 

Figure 6.26 Low-frequency small-signal 
simplified equivalent circuit of the bipolar transistor 

in the CE configuration with a load resistor Rc in 

the collector circuit. 
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Left: The first commercial Si transistor from Texas Instruments (1954). Right: The first transistor pocket radio (1954). 
It had four Ge npn transistors. 

I SOURCE: Courtesy of Texas Instruments. 

The bipolar transistor general dc current equation Ic = fth, where ft % xh/xt is a 
material-dependent constant, implies that the ac small-signal collector current is 

8Ic = ft8IB or ic = ftib 

Thus the CE dc and ac small-signal current gains are the same. This is a reason¬ 
able approximation in the low-frequency range, typically at frequencies below 1/r*. It 
is useful to have a relationship between ft, gm, and rbe- Using Equations 6.47 and 6.49, 
we have 

ft = 9mrbe [6.51] 

In transistor data books, the dc current gain lc/ h is denoted as hFE whereas the 
small-signal ac current gain ic/ib is denoted as hfe. Except at high frequencies, 
hfe ^ hpE- 

ft at low 

frequencies 

CE LOW-FREQUENCY SMALL-SIGNAL EQUIVALENT CIRCUIT Consider a BJT with a ft of 100, 
used in a CE amplifier in which the collector current is 2.5 mA and Rc is 1 k£2. If the ac source 
has an rms voltage of 1 mV and an output resistance Rs of 50 J2, what is the rms output voltage? 
What is the input and output power and the overall power amplification? 

EXAMPLE 6.11 

SOLUTION 

As the collector current is 2.5 mA, the input resistance and the transconductance are 

and 

ft 25 
rhg = - 

7c (mA) 

(100X25) 

2.5 
= 1000 Q 

9m 
7c(mA) 

25 

2.5 

25 
= 0.1 AN 
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The magnitude of the voltage gain of the BJT small-signal equivalent circuit is 

Av = — = gmRc = (0.1X1000) = 100 
Vbe 

When the ac source is connected to the B and E terminals (Figure 6.26), the input resistance 
rhe of the BJT loads the ac source, so i>&. across BE is 

Vbe = IV 
rbe 

= (1 mV)- 
1000 ft 

(The + RS) (1000 ft + 50 ft) 

The output voltage (rms) is, therefore, 

vCe = Av Vbe = 100(0.952 mV) = 95.2 mV 

= 0.952 mV 

The loading effect makes the output less than 100 mV. To reduce the loading of the ac 
source, we need to increase i.e., reduce the collector current, but that also reduces the gain. So 
to keep the gain the same, we need to reduce Ic and increase Re- However, Rc cannot be increased 
indefinitely because Rc itself is loaded by the input of the next stage and, in addition, there is an 
incremental resistance between the collector and emitter terminals (typically ~100 kft) that 
shunts Rc (not shown in Figure 6.26). 

The power amplification of the CE BJT itself is 

AP = ^2. _ pAv = (100)000) = 10,000 
ibVbe 

The input power into the BE terminals is 

vh (0.952 x 10"3 V)2 ,0 
Pin = Vbeib = — = --— = 9.06 x 10~10 W or 0.906 nW 

rbe 1000 ft 

The output power is 

Pout = PmAp = (9.06 x 1(T10)( 10,000) = 9.06 x XT6 W or 9.06/xW 

6.7 JUNCTION FIELD EFFECT TRANSISTOR (JFET) 

6.7.1 General Principles 

The basic structure of the junction field effect transistor (JFET) with an n-type channel 
(n-channel) is depicted in Figure 6.27a. An n-type semiconductor slab is provided with 
contacts at its ends to pass current through it. These terminals are called source (5) 
and drain (D). Two of the opposite faces of the n-type semiconductor are heavily 
p-type doped to some small depth so that an n-type channel is formed between the 
source and drain terminals, as shown in Figure 6.27a. The two p+ regions are normally 
electrically connected and are called the gate (G). As the gate is heavily doped, the de¬ 
pletion layers extend almost entirely into the n-channel, as shown in Figure 6.27. For 
simplicity we will assume that the two gate regions are identical (both p+ type) and that 
the doping in the n-type semiconductor is uniform. We will define the n-channel to be 
the region of conducting n-type material contained between the two depletion layers. 

The basic and idealized symmetric structure in Figure 6.27a is useful in 
explaining the principle of operation as discussed later but does not truly represent 
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Gate 

o Drain 

Circuit symbol 
for n-channel FET 

? I 1 0 Figure 6.27 

S D 1°) The basic structure of the junction field effect transistor (JFET) with an 
n-channel. The two p+ regions are electrically connected and form the gate, 

(a) (b) A simplified sketch of the cross section of a more practical n-channel JFET. 

the structure of a typical practical device. A simplified schematic sketch of the cross 
section of a more practical device (as, for example, fabricated by the planar technol¬ 
ogy) is shown in Figure 6.27b where it is apparent that the two gate regions do not 
have identical doping and that, except for one of the gates, all contacts are on one 
surface. 

We first consider the behavior of the JFET with the gate and source shorted 
(Vgs = 0), as shown in Figure 6.28a. The resistance between S and D is essentially 
the resistance of the conducting n-channel between A and B, Rab• When a positive 
voltage is applied to D with respect to S (Vds > 0), then a current flows from D to 
5, which is called the drain current Id. There is a voltage drop along the channel, 
between A and 5, as indicated in Figure 6.28a. The voltage in the n-channel is zero 
at A and Vos at B. As the voltage along the n-channel is positive, the p+n junctions 
between the gates and the n-channel become progressively more reverse-biased 
from A to B. Consequently the depletion layers extend more into the channel and 
thereby decrease the thickness of the conducting channel from A to B. 

Increasing Vos increases the widths of the depletion layers, which penetrate more 
into the channel and hence result in more channel narrowing toward the drain. The re¬ 
sistance of the n-channel Rab therefore increases with Vqs- The drain current therefore 
does not increase linearly with Vos but falls below it because 



524 chapter 6 • Semiconductor Devices 

+ 

DS = Vp = 5 V 

Figure 6.28 

(a) The gate and source are shorted (Vgs = 0) and Vos is small. 

(b) Vos has increased to a value that allows the two depletion layers to just touch, when Vos = Vp(= 5 V) and 

the p+n junction voltage at the drain end, Vgd = — Vos = - Vp = —5 V. 

(c) Vos is large (Vos > Vp), so a short length of the channel is pinched off. 

Figure 6.29 Typical Id versus 

Vos characteristics of a JFET for 

various fixed gate voltages Vgs- 

and Rab increases with Vos- Thus Id versus Vos exhibits a sublinear behavior, as shown 
in the VDs < 5 V region in Figure 6.29. 

As VDs increases further, the depletion layers extend more into the channel and 
eventually, when Vos = Vp (= 5 V), the two depletion layers around B meet at point P 
at the drain end of the channel, as depicted in Figure 6.28b. The channel is then said to 
be “pinched off’ by the two depletion layers. The voltage Vp is called the pinch-off 
voltage. It is equal to the magnitude of reverse bias needed across the p+n junctions to 
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G 
Pinched-off channel 

—| I- Figure 6.30 The pinched-off 
■ channel and conduction for 

vds>5W Vds > Vjp (= 5 V). 

make them just touch at the drain end. Since the actual bias voltage across the p+n 
junctions at the drain end (B) is Vqd, the pinch-off occurs whenever 

Vgd = —Vp [6.52] 

In the present case, gate to source is shorted, Vgs = 0, so Vgd = — Vds and pinch- 
off occurs when Vds = Vp (5 V). The drain current from pinch-off onwards, as shown 
in Figure 6.29, does not increase significantly with Vds for reasons given below. 
Beyond Vds = Vp, there is a short pinched-off channel of length £po. 

The pinched-off channel is a reverse-biased depletion region that separates the 
drain from the n-channel, as depicted in Figure 6.30. There is a very strong electric 
field £ in this pinched-off region in the D to S direction. This field is the vector sum of 
the fields from positive donors to negative acceptors in the depletion regions of the 
channel and the gate on the drain side. Electrons in the n-channel drift toward P, and 
when they arrive at P, they are swept across the pinched-off channel by £. This process 
is similar to minority carriers in the base of a BJT reaching the collector junction de¬ 
pletion region, where the internal field there sweeps them across the depletion layer 
into the collector. Consequently the drain current is actually determined by the resis¬ 
tance of the conducting n-channel over Lch from A to P in Figure 6.30 and not by the 
pinched-off channel. 

As Vds increases, most of the additional voltage simply drops across tpo as this 
region is depleted of carriers and hence highly resistive. Point P, where the depletion 
layers first meet, moves slightly toward A, thereby slightly reducing the channel length 
Lch. Point P must still be at a potential VP because it is this potential that just makes 
the depletion layers touch. Thus the voltage drop across LCh remains as Vp. Beyond 
pinch-off then 

Pinch-off 

condition 

Id = (VDS > VP) 
Pap 

Since Rap is determinedly LCh, winch decreases siightiy with Vds* Id increases 
slightly with VDs. In many cases, ID is conveniently taken to be saturated at a value Idss 

for Vds > VP. Typical Id versus VDs behavior is shown in Figure 6.29. 
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Figure 6.31 

(a) The JFET with a negative Vgs 

voltage has a narrower n-channel 
at the start. 

(b) Compared to the Vgs = 0 case, 
the same Vos gives less Iq as the 
channel is narrower. 

(c) The channel is pinched off at 

Vos = 3 V sooner than the Vgs = 0 
case, where it was Vds = 5 V. 

15 

Vz>s = 3V 
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Pinched 
off 
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Pinch-off 

condition 

We now consider what happens when a negative voltage, say Vgs = —2 V, is ap¬ 
plied to the gate with respect to the source, as shown in Figure 6.31a with VDS = 0. The 
p+n junctions are now reverse-biased from the start, the channel is narrower, and the 
channel resistance is now larger than in the Vgs = 0 case. The drain current that flows 
when a small VDs is applied, as in Figure 6.31b, is now smaller than in the Vgs = 0 case 
as apparent in Figure 6.29. The p+n junctions are now progressively more reverse- 
biased from Vqs at the source end to Vqd — Vgs — Vos at the drain end. We therefore 
need a smaller Vos (= 3 V) to pinch off the channel, as shown in Figure 6.31c. When 
Vos = 3 V, the G to D voltage Vgd across the p+n junctions at the drain end is —5 V, 
which is —Vp, so the channel becomes pinched off. Beyond pinch-off. Id is nearly sat¬ 
urated just as in the Vgs = 0 case, but its magnitude is obviously smaller as the thick¬ 
ness of the channel at A is smaller; compare Figures 6.28 and 6.31. In the presence of 
Vgs, the pinch-off occurs at = Vos(sat> and from Equation 6.52. 

14>s(sat) = Vp + Vgs [6-53] 

where Vgs is a negative voltage (reducing Vp). Beyond pinch-off when VDS > VAS(sa,), 
the point P where the channel is just pinched still remains at potential VDs(sai), given 
by Equation 6.53. 

For VDs > VDs(sat), Id becomes nearly saturated at a value denoted as Ids, which is 
indicated in Figure 6.29. When G and S are shorted (Vgs = 0), Ids is called loss (which 
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stands for Ids with shorted gate to source). Beyond pinch-off, with negative Vgs, Ids is 

V DS(,sat) Vp -V- Vgs 
Id ^ Ids 

Rap (Vgs) Rap (Vgs) 
Vds> V DS (sat) V6.54\ 

where RAP (Vgs) is the effective resistance of the conducting n-channel from A to P 
(Figure 6.31b), which depends on the channel thickness and hence on Vos- The resis¬ 
tance increases with more negative gate voltage as this increases the reverse bias 
across the p+n junctions, which leads to the narrowing of the channel. For example, 
when Vcs = —4 V, the channel thickness at A becomes narrower than in the case with 
Vcs= —2 V, thereby increasing the resistance, RAP, of the conducting channel and 
therefore decreasing Ids- Further, there is also a reduction in the drain current by virtue 
of VDs(sat) decreasing with negative Vgs, as apparent in Equation 6.54. Figure 6.29 
shows the effect of the gate voltage on the Id versus Vds behavior. The two effects, that 
from Vos(sat) and that from RAP (Vgs) in Equation 6.54, lead to Ids almost decreasing 
parabolically with — Vgs- 

When the gate voltage is such that Vgs = —VP (= —5 V) with the source and drain 
shorted (Vds = 0), then the two depletion layers touch over the entire channel length 
and the whole channel is closed, as illustrated in Figure 6.32. The channel is said to be 
off. The only drain current that flows when a Vds is applied is due to the thermally gen¬ 
erated carriers in the depletion layers. This current is very small. 

Figure 6.29 summarizes the full Id versus Vds characteristics of the n-channel 
JFET at various gate voltages Vgs- It is apparent that Ids is relatively independent of 
Vds and that it is controlled by the gate voltage Vgs, as expected by Equation 6.54. 
This is analogous to the BJT in which the collector current Ic is controlled by the 
base-emitter bias voltage VPe- Figure 6.33a shows the dependence of Ids on the gate 
voltage Vgs- The transistor action is the control of the drain current Ids, in the 
drain-source (output) circuit by the voltage Vgs in the gate-source (input circuit), as 
shown in Figure 6.33b. This control is only possible if Vds > Vds(sat)- When Vgs = 
the drain current is nearly zero because the channel has been totally pinched off. This 
gate-source voltage is denoted by Vcs(off) as the drain current has been switched off. 
Furthermore, we should note that as Vcs reverse biases the p+n junction, the current 
into the gate Ic is the reverse leakage current of these junctions. It is usually very small. 
In some JFETs, Ic is as low as a fraction of a nanoampere. We should also note that the 
circuit symbol for the JFET, as shown in Figure 6.27a, has an arrow to identify the gate 
and the pn junction direction. 

Figure 6.32 When Vgs = —5 V, the depletion layers 
close the whole channel from the start, at Vds = 0. 

As Vds is increased, there is a very small drain current, 
which is the small reverse leakage current due to thermal 

generation of carriers in the depletion layers. 
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Figure 6.33 

(a) Typical Ids versus Vq$ characteristics of a 
JFET. 

(b) The dc circuit where V$$ in the gate-source 

circuit (input) controls the drain current Ids in 

the drain-source (output) circuit in which Vds is 

kept constant and large (Vds > Vp). 
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Is there a convenient relationship between Ids and Vgs? If we calculate the effec¬ 
tive resistance RAp of the n-channel between A and P, we can obtain its dependence on 
the channel thickness, and thus on the widths of the depletion layers and hence on Vgs. 
We can then find Ids from Equation 6.54. It turns out that a simple parabolic depen¬ 
dence seems to represent the data reasonably well, 

/»-/l»[l-(^)] [6.551 

where loss is the drain current when Vgs = 0 (Figure 6.33) and Vescoff) is defined as 
—Vp, that is, that gate-source voltage that just pinches off the channel. The pinch-off 
voltage Vp here is a positive quantity because it was introduced through 14>S(sat)- Vcs(off) 

however is negative, —Vp. We should note two important facts about the JFET. Its 
name originates from the effect that modulating the electric field in the reverse-biased 
depletion layers (by changing Vgs) varies the depletion layer penetration into the chan¬ 
nel and hence the resistance of the channel. The transistor action hence can be thought 
of as being based on a field effect. Since there is a p+n junction between the gate and 
the channel, the name has become JFET. This junction in reverse bias provides the iso¬ 
lation between the gate and channel. 

Secondly, the region beyond pinch-off, where Equations 6.54 and 6.55 hold, is 
commonly called the current saturation region, as well as constant current region 
and pentode region. The term saturation should not be confused with similar terms 
used for saturation effects in bipolar transistors. A saturated BJT cannot be used as an 
amplifier, but JFETs are invariably used as amplifiers in the saturated current region. 

6.7.2 JFET Amplifier 

The transistor action in the JFET is the control of Ids by Vgs, as shown in Figure 6.33. 
The input circuit is therefore the gate-source circuit containing Vgs and the output cir¬ 
cuit is the drain-source circuit in which the drain current Ids flows. The JFET is almost 
never used with the/w junction between the gate and channel forward-biased (Vgs > 0) 
as this would lead to a very large gate current and near shorting of the gate to source 
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lDS (mA) 

Time 

(b) 

Figure 6.34 

(a) Common source (CS) ac amplifier using a JFET. 

(b) Explanation of how Id is modulated by the signal vgs in series with the dc bias voltage Vgg- 

voltage. With Vgs limited to negative voltages, the maximum current in the output cir¬ 
cuit can only be loss, as shown in Figure 6.33a. The maximum input voltage Vgs should 
therefore give an I os less than loss- 

Figure 6.34a shows a simplified illustration of a typical JFET voltage amplifier. As 
the source is common to both the input and output circuits, this is called a common 
source (CS) amplifier. The input signal is the ac source vgs connected in series with a 
negative dc bias voltage Vgg of — 1.5 V in the GS circuit. First we will find out what 
happens when there is no ac signal in the circuit (vgs = 0). The dc supply (—1.5 V) in 
the input provides a negative dc voltage to the gate and therefore gives a dc current IDs 
in the output circuit (less than Idss)- Figure 6.34b shows that when Vgs = —1.5 V, point 
Q on the Ids versus Vgs characteristics gives Ids = 4.9 mA. Point Q, which determines 
the dc operation, is called the quiescent point. 

The ac source vgs is connected in series with the negative dc bias voltage Vgs• 
It therefore modulates Vgs up and down about —1.5V with time, as shown in Fig¬ 
ure 6.34b. Suppose that vgs varies sinusoidally between —0.5 V and +0.5 V. Then, as 
shown in Figure 6.34b when vgs is —0.5 V (point A), Vgs = —2.0 V and the drain cur¬ 
rent is given by point A on the Ids-Vgs curve and is about 3.6 mA. When vgs is +0.5 V 
(point B), then Vgs = — 1.0 V and the drain current is given by point B on the Ids-Vgs 
curve and is about 6.4 mA. The input variation from —0.5 V to +0.5 V has thus been 
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Table 6.1 Voltage and current in the common source amplifier of Figure 6.34a 

VgS 

(V) 
Vgs 
(V) 

Ids 
(mA) 

id 
(mA) Vds = Vdd — IdsRd 

Vds 
(V) 

Voltage 
Gain Comment 

0 -1.5 4.9 0 8.2 0 dc conditions, point Q 

-0.5 -2.0 3.6 -1.3 10.8 +2.6 -5.2 Points 

+0.5 -1.0 6.4 + 1.5 5.2 -3.0 -6 Point B 

I NOTE: Vdd = 18 V and RD = 2000 n. 

converted to a drain current variation from 3.6 mA to 6.4 mA as indicated in Fig¬ 
ure 6.34b. We could have just as easily calculated the drain current from Equation 6.55. 
Table 6.1 summarizes what happens to the drain current as the ac input voltage is var¬ 
ied about zero. 

The change in the drain current with respect to its dc value is the output signal cur¬ 
rent denoted as Thus at A, 

id = 3.6 — 4.9 = —1.3 mA 

and at B, 

id = 6.4 - 4.9 = 1.5 mA 

The variation in the output current is not quite symmetric as that in the input signal vgs 
because the Ids~Vgs relationship, Equation 6.55, is not linear. 

The drain current variations in the DS circuit are converted to voltage variations 
by the resistance RD. The voltage across DS is 

Vqs = Vqd ~ Ids Rd [6.56] 

where Vdd is the bias battery voltage in the DS circuit. Thus, variations in Ids result in 
variations in Vds that are in the opposite direction or 180° out of phase. The ac output volt¬ 
age between D and S is tapped out through a capacitor C, as shown in Figure 6.34a. The 
capacitor C simply blocks the dc. Suppose that RD = 2000 Q and VDd = 18 V, then using 
Equation 6.56 we can calculate the dc value of Vds and also the minimum and maximum 
values of Vds, as shown in Table 6.1. 

It is apparent that as vgs varies from —0.5 V, at A, to +0.5 V, at B, Vds varies from 
10.8 V to 5.2 V, respectively. The change in Vds with respect to dc is what constitutes 
the output signal vds, as only the ac is tapped out. From Equation 6.56, the change in 
VDs is related to the change in Ids by 

Vds = —Roid [6.57] 

Thus the output, VdS, changes from —3.0 V to 2.6 V. The peak-to-peak voltage ampli¬ 
fication is 

A v (pk-pk) 
A VDS 

A VGS 

T’rfs(pk-pk) 

Vgs (pk-pk) 

-3 V - (2.6 V) 

0.5 V - (-0.5 V) 
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The negative sign represents the fact that the output and input voltages are out of 
phase by 180°. This can also be seen from Table 6.1 where a negative vgs results in a 
positive Vfc. Even though the ac input signal vgs is symmetric about zero, ±0.5 V, the 
ac output signal vds is not symmetric, which is due to the Ids versus VGS curve being 
nonlinear, and thus varies between —3.0 V and 2.6 V. If we were to calculate the volt¬ 
age amplification for the most negative input signal, we would find —5.2, whereas for 
the most positive input signal, it would be —6. The peak-to-peak voltage amplification, 
which was —5.6, represents a mean gain taking both negative and positive input sig¬ 
nals into account. 

The amplification can of course be increased by increasing RD, but we must main¬ 
tain Vds at all times above Vds(sat) (beyond pinch-off) to ensure that the drain current 
Ids in the output circuit is only controlled by VGs in the input circuit. 

When the signals are small about dc values, we can use differentials to repre¬ 
sent small signals. For example, vgs = SVGs, id = 8 IDs, vds = <5 VDs, and so on. The 
variation SIDs due to SVGS about the dc value may be used to define a mutual 
transconductance gm (sometimes denoted as gfs) for the JFET, 

_ dips ~ Sips _ jd_ 

9m ~ dVGS ~ 8Vgs ~ vgs 

This transconductance can be found by differentiating Equation 6.55, 

Definition of 

JFET trans¬ 

conductance 

_ dips 
9m ~ dVGS 

2Ipss j _ / Vgs \ _ ^UdssIdsY/2 

VGs(oft) L V Vas(off) /J Vc,y(0ff) 
[6.58] 

JFET trans¬ 

conductance 

The output signal current is 

id — 9mvgs 

so using Equation 6.57, the small-signal voltage amplification is 

Ay 
Vds_ 

vgs 

-RD(9mVgs) 
= 9m R-P 

Jgs 
[6.59] 

Small-signal 

voltage gain 

Equation 6.59 is only valid under small-signal conditions in which the variations 
about the dc values are small compared with the dc values themselves. The negative 
sign indicates that vds and vgs are 180° out of phase. 

THE JFET AMPLIFIER Consider the n-channel JFET common source amplifier shown in Fig¬ 
ure 6.34a. The JFET has an Ipss of 10 mA and a pinch-off voltage Vp of 5 V as in Figure 6.34b. 
Suppose that the gate dc bias voltage supply VGG = —1.5 V, the drain circuit supply VDd = 18 V, 
and Rp = 2000 £2. What is the voltage amplification for small signals? How does this compare 
with the peak-to-peak amplification of —5.6 found for an input signal that had a peak-to-peak 
value of 1 V ? 

EXAMPLE 6.12 

SOLUTION 

We first calculate the operating conditions at the bias point with no ac signals. This corresponds 
to point Q in Figure 6.34b. The dc bias voltage VGs across the gate to source is —1.5 V. The 



532 chapter 6 • Semiconductor Devices 

resulting dc drain current Ids can be calculated from Equation 6.55 with Vos(off) = — V/>= —5 V: 

'« -[' - (^)f - 00 “4 - (^r)]2 -4-9 
The transconductance at this dc current (at Q) is given by Equation 6.58, 

2(IdssIds)1/2 2[(10 x 10_3)(4.9 x lO"3)]^2 „ o irt_3 A 
9m =-7}-=-1-= 2.8 x 10 A/V 

VGS (off) ~ 

The voltage amplification of small signals about point Q is 

Ay = -gmRD = -(2.8 X 10“3)(2000) = -5.6 

This turns out to be the same as the peak-to-peak voltage amplification we calculated in 
Table 6.1. When the input ac signal vgs varies between —0.5 and +0.5 V, as in Table 6.1, the out¬ 
put signal is not symmetric. It varies between —3 V and 2.8 V, so the voltage gain depends on 
the input signal. The amplifier is then said to exhibit nonlinearity. 

6.8 METAL-OXIDE-SEMICONDUCTOR FIELD EFFECT 
TRANSISTOR (MOSFET) 

6.8.1 Field Effect and Inversion 

The metal-oxide-semiconductor field effect transistor is based on the effect of a field 
penetrating into a semiconductor. Its operation can be understood by first considering 
a parallel plate capacitor with metal electrodes and a vacuum as insulation in between, 
as shown in Figure 6.35a. When a voltage V is applied between the plates, charges +Q 
and —Q (where Q = CV) appear on the plates and there is an electric field given by 
£ = V/L. The origins of these charges are the conduction electrons for —Q and 
exposed positively charged metal ions for +Q. Metallic bonding is based on all the 
valence electrons forming a sea of conduction electrons and permeating the space 
between metal ions that are fixed at crystal lattice sites. Since the electrons are mobile, 
they are readily displaced by the field. Thus in the lower plate £ displaces some of the 
conduction electrons to the surface to form —Q. In the top plate £ displaces some 
electrons from the surface into the bulk to expose positively charged metal ions to 
form +Q. 

Suppose that the plate area is 1 cm2 and spacing is 0.1 lira and that we apply 2 V 
across it. The capacitance C is 8.85 nF and the magnitude of charge Q on each plate 
is 1.77 x 10-8 C, which corresponds to 1.1 x 1011 electrons. A typical metal such as 
copper has something like 1.9 x 1015 atoms per cm2 on the surface. Thus, there will 
be that number of positive metal ions and electrons on the surface (assuming one 
conduction electron per atom). The charges +Q and —Q can therefore be generated by 
the electrons and metal ions at the surface alone. For example, if one in every 1.7 x 
104 electrons on the surface moves one atomic spacing (~0.3 nm) into the bulk, then 
the surface will have a charge of+Q due to exposed positive metal ions. It is clear that, 
for all practical purposes, the electric field does not penetrate into the metal and termi¬ 
nates at the metal surface. 
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Figure 6.35 The field effect. 

(a) In a metal-aif-metal capacitor, all the charges reside on the surface. 

(b) Illustration of field penetration into a p-type semiconductor. 

(c) As the field increases, eventually when V > tyh, an inversion layer is created near the 
surface in which there are conduction electrons. 
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The same is not true when one of the electrodes is a semiconductor, as shown in 
Figure 6.35b where the structure now is of the metal-insulator-semiconductor type. 
Suppose that we replace the lower metal in Figure 6.35a with a p-type semiconductor 
with an acceptor concentration of 1015 cm-3. The number of acceptor atoms on the sur¬ 
face10 is 1 x 1010 cm-2. We may assume that at room temperature all the acceptors are 
ionized and thus negatively charged. It is immediately apparent that we do not have 
a sufficient number of negative acceptors at the surface to generate the charge — Q. 
We must therefore also expose negative acceptors in the bulk, which means that 
the field must penetrate into the semiconductor. Holes in the surface region of the 
semiconductor become repelled toward the bulk and thereby expose more negative 
acceptors. We can estimate the width W into which the field penetrates since the total 
negative charge exposed eA WNa must be Q. We find that W is of the order of 1 (im, 
which is something like 4000 atomic layers. Our conclusion is that the field penetrates 
into a semiconductor by an amount that depends on the doping concentration. 

The penetrating field into the semiconductor drifts away most of the holes in this 
region and thereby exposes negatively charged acceptors to make up the charge — Q. 
The region into which the field penetrates has lost holes and is therefore depleted of 
its equilibrium concentration of holes. We refer to this region as a depletion layer. As 
long as p > n even though p Na, this still has p-type characteristics as holes are in 
the majority. 

If the voltage increases further, — Q also increases, as the field becomes stronger 
and penetrates more into the semiconductor but eventually it becomes more difficult to 
make up the charge — Q by simply extending the depletion layer width W into the bulk. 
It becomes possible (and more favorable) to attract conduction electrons into the de¬ 
pletion layer and form a thin electron layer of width Wn near the surface. The charge 
—Q is now made up of the fixed negative charge of acceptors in Wa and of conduction 
electrons in Wn, as shown in Figure 6.35c. Further increases in the voltage do not 
change the width Wa of the depletion layer but simply increase the electron concentra¬ 
tion in Wn. Where do these electrons come from as the semiconductor is doped p-type? 
Some are attracted into the depletion layer from the bulk, where they were minority 
carriers. But most are thermally generated by the breaking of Si-Si bonds (i.e., across 
the bandgap) in the depleted layer. Thermal generation in the depletion layer generates 
electron-hole pairs that become separated by the field. The holes are then drifted by 
the field into the bulk and the electrons toward the surface. Recombination of the ther¬ 
mally generated electrons and holes with other carriers is greatly reduced because the 
depletion layer has so few carriers. Since the electron concentration in the electron 
layer exceeds the hole concentration and this layer is within a normally p-type semi¬ 
conductor, we call this an inversion layer. 

It is now apparent that increasing the field in the metal-insulator-semiconductor de¬ 
vice first creates a depletion layer and then an inversion layer at the surface when the 
voltage exceeds some threshold value V* . This is the basic principle of the field effect 
device. As long as V > Vth, any increase in the field and hence —Q leads to more electrons 
in the inversion layer, whereas the width of the depletion layer Wa and hence the quantity 

I 10 Surface concentration of atoms (atoms per unit area) can be found from nsuri & (nbulk). 
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of fixed negative charge remain constant. The insulator between the metal and the semi¬ 
conductor, that is, a vacuum in Figure 6.35, is typically SiC>2 in many devices. 

6.8.2 Enhancement MOSFET 

Figure 6.36 shows the basic structure of an enhancement n-channel MOSFET device 
(NMOSFET). A metal-insulator-semiconductor structure is formed between a p-type 
Si substrate and an aluminum electrode, which is called the gate (G). The insulator is 
the Si02 oxide grown during fabrication. There are two n+ doped regions at the ends 
of the MOS device that form the source (S) and drain (D). A metal contact is also made 
to the p-type Si substrate (or the bulk), which in many devices is connected to the 
source terminal as shown in Figure 6.36. Further, many MOSFETs have a degenerately 
doped polycrystalline Si material as the gate that serves the same function as the metal 
electrode. 

With no voltage applied to the gate, S to D is an n+pn+ structure that is always 
reverse-biased whatever the polarity of the source to drain voltage. However, if the 
substrate (bulk) is connected to the source, a negative Vos will forward bias the n+p 
junction between the drain and the substrate. As the n-channel MOSFET device is not 
normally used with a negative VDS, we will not consider this polarity. 

When a positive voltage less than Vth is applied to the gate, Vqs < Vth , as shown 
in Figure 6.37a, the p-type semiconductor under the gate develops a depletion layer as 
a result of the expulsion of holes into the bulk, just as in Figure 6.35b. Since S and D 
are isolated by a low-conductivity p-doped region that has a depletion layer from S to 
D, no current can flow for any positive Vds- 

With Vds = 0, as soon as Vqs is increased beyond the threshold voltage Vth, an 
n-channel inversion layer is formed within the depletion layer under the gate and im¬ 
mediately below the surface, as shown in Figure 6.37b. This n-channel links the two 
n+ regions of source and drain. We then have a continuous n-type material with elec¬ 
trons as mobile carriers between the source and drain. When a small Vds is applied, a 
drain current Id flows that is limited by the resistance of the n-channel Pn-Ch: 

r Vds 

Thus, Id initially increases with Vds almost linearly, as shown in Figure 6.37b. 

[6.60] 
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Figure 6.37 The MOSFET Id versus Vos characteristics. 
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The voltage variation along the channel is from zero at A (source end) to Vds at B 
(drain end). The gate to the n-channel voltage is then Vos at A and Vgd = Vgs — Vds at B. 
Thus point A depends only on Vgs and remains undisturbed by Vds- As Vos increases, the 
voltage at B (Vgd ) decreases and thereby causes less inversion. This means that the chan¬ 
nel gets narrower from A to B and its resistance increases with Vos- Id versus Vos 
then falls increasingly below the Id oc Vds line. Eventually when the gate to n-channel 
voltage at B decreases to just below V*, the inversion layer at B disappears and a deple¬ 
tion layer is exposed, as illustrated in Figure 6.37c. The n-channel becomes pinched off at 
this point P. This occurs when Vds = Vds(sat), satisfying 

Vgd = Vqs — Vqs( sat) = Vth [6.61] 

It is apparent that the whole process of the narrowing of the n-channel and its 
eventual pinch-off is similar to the operation of the n-channel JFET. When the drift¬ 
ing electrons in the n-channel reach P, the large electric field within the very nar¬ 
row depletion layer at P sweeps the electrons across into the n+ drain. The current 
is limited by the supply of electrons from the n-channel to the depletion layer at P, 
which means that it is limited by the effective resistance of the n-channel between 
A and P. 

When Vds exceeds Vds(s&t), the additional VDs drops mainly across the highly 
resistive depletion layer at P, which extends slightly to F toward A, as shown in 
Figure 6.37d. At P', the gate to channel voltage must still be just V* as this is the volt¬ 
age required to just pinch off the channel and just eliminate inversion. The widening of 
the depletion layer (from B to F) at the drain end with Vds, however, is small com¬ 
pared with the channel length AB. The resistance of the channel from A to F does not 
change significantly with increasing Vds, which means that the drain current is then 
nearly saturated at Ids, 

Id « Ids * VDS > VDS(sat) [6.62] 

As Vos(sat) depends on Vgs, so does Ids- The overall Ids versus Vds characteristics 
for various fixed gate voltages Vqs of a typical enhancement MOSFET is shown in 
Figure 6.38a. It can be seen that there is only a slight increase in Ids with Vds beyond 
VftS(sat). The Ids versus Vgs when VDs > Vos(sat) characteristics are shown in Fig¬ 
ure 6.38b. It is apparent that as long as VDs > Vds(sat> the saturated drain current Ids in 
the source-drain (or output) circuit is almost totally controlled by the gate voltage VGs 
in the source-gate (or input) circuit. This is what constitutes the MOSFET action. Vari¬ 
ations in Vgs then lead to variations in the drain current Ids (just as in the JFET), which 
forms the basis of the MOSFET amplifier. The term enhancement refers to the fact that 
a gate voltage exceeding V* is required to enhance a conducting channel between the 
source and drain. This contrasts with the JFET where the gate voltage depletes the 
channel and decreases the drain current. 

The experimental relationship between Ids and Vgs (when Vds > VD5(sat)) has been 
found to be best described by a parabolic equation similar to that for the JFET, except 
that now Vgs enhances the channel when Vgs > V± so Ids exists only when Vgs > V*, 

Ids = K(Vgs- Va)2 [6.63] 

Enhancement 

NMOSFET 
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Figure 6.38 
(a) Typical /©versus Vds characteristics 

of an enhancement MOSFET (\4 = 4 V) 

for various fixed gate voltages Vgs- 

(b) Dependence of Ids on Vgs a/ a 

given Vbs (> Vbs (sot))- 
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where K is a constant. For an ideal MOSFET, it can be expressed as 

K _ Zfxee 

2Ltox 

where iie is the electron drift mobility in the channel, L and Z are the length and width 
of the gate controlling the channel, and e and tQX are the permittivity (srs0) and thick¬ 
ness of the oxide insulation under the gate. According to Equation 6.63, Ids is 
independent of Vos- The shallow slopes of the Id versus Vds lines beyond Vos(sat) in 
Figure 6.38a can be accounted for by writing Equation 6.63 as 

IDS = K(Vgs - Vth)2(l + Wds) 16.641 

where A is a constant that is typically 0.01 V-1. If we extend the Ids versus VDs lines, 
they intersect the — Vasaxis at 1/A, which is called the Early voltage. It should be 
apparent that loss, which is Ids with the gate and source shorted (Vgs = 0), is zero and 
is not a useful quantity in describing the behavior of the enhancement MOSFET. 

EXAMPLE 6.13 THE ENHANCEMENT NMOSFET A particular enhancement NMOS transistor has a gate with a 
width (Z) of 50 /xm, length (L) of 10 /xm, and Si02 thickness of 450 A. The relative permittiv¬ 
ity of Si02 is 3.9. The p-type bulk is doped with 1016 acceptors cm-3. Its threshold voltage is 
4 V. Estimate the drain current when Vos = 8 V and VDS = 20 V, given A = 0.01. Due to the 
strong scattering of electrons near the crystal surface assume that the electron drift mobility fie 

in the channel is half the drift mobility in the bulk. 

SOLUTION 

Since VDS > V*. we can assume that the drain current is saturated and we can use the Ids versus 
Vqs relationship in Equation 6.64, 

Ids — K(Vgs — V*)2(l +A Vds) 

Zfxee 

2-Ltox 

where 
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The electron mobility in the bulk when Na = 1016 cm 3 is 1300 cm2 V 1 s 1 (Chapter 5). 
Thus 

ZfleSr Sq 

2 Ltm 

(50 x 10~6) (J x 1300 x 10"4) (3.9 x 8.85 x 10“12) 

2(10 x 10~6)(450 x lO"10) 
0.000125 

When Vqs = 8 V and Vos — 20 V, with k = 0.01, we have 

IDS = 0.000125(8 - 4)2 [1 + (0.01)(20)] = 0.0024 A or 2.4 mA 

6.8.3 Threshold Voltage 

The threshold voltage is an important parameter in MOSFET devices. Its control in 
device fabrication is therefore essential. Figure 6.39a shows an idealized MOS struc¬ 
ture where all the electric field lines from the metal pass through the oxide and pene¬ 
trate the p-type semiconductor. The charge —Q is made up of fixed negative acceptors 
in a surface region of Wa and of conduction electrons in the inversion layer at the sur¬ 
face, as shown in Figure 6.39a. The voltage drop across the MOS structure, however, 

Figure 6.39 
(a) The threshold voltage and the ideal MOS structure. 

(b) In practice, there are several charges in the oxide and at the 

oxide-semiconductor interface that affect the threshold voltage: 

Qmj = mobile ionic charge (e.g., Na+), Q0t = trapped oxide 
charge, Qf= fixed oxide charge, and = charge trapped at 

the interface. 
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is not uniform. As the field penetrates the semiconductor, there is a voltage drop Vsc 
across the field penetration region of the semiconductor by virtue of £ = — dV/dx, as 
shown in Figure 6.39a. The field terminates on both electrons in the inversion layer and 
acceptors in Wa, so within the semiconductor £ is not uniform and therefore the volt¬ 
age drop is not constant. But the field in the oxide is uniform, as we assumed there were 
no charges inside the oxide. The voltage drop across the oxide is constant and is Vox, as 
shown in Figure 6.39a. As the applied voltage is Vi, we must have Vsc + Vox = V\. The 
actual voltage drop Vsc across the semiconductor determines the condition for inver¬ 
sion. We can show this as follows. If the acceptor doping concentration is 1016 cm-3, 
then the Fermi level Ep in the bulk of the p-type semiconductor must be 0.347 eV 
below EFi in intrinsic Si. To make the surface n-type we need to shift Ep at the surface 
to go just above EFi. Thus we need to shift Ep from bulk to surface by at least 0.347 eV. 
We have to bend the energy band by 0.347 eV at the surface. Since the voltage drop 
across the semiconductor is Vsc and the corresponding electrostatic PE change is eVsc, 
this must be 0.347 eV or Vsc = 0.347 V. The gate voltage for the start of inversion will 
then be Vox + 0.347 V. By inversion, however, we generally infer that the electron con¬ 
centration at the surface is comparable to the hole concentration in the bulk. This 
means that we actually have to shift Ep above £>,• by another 0.347 eV, so the gate 
threshold voltage V* must be Vox + 0.694 V. 

In practice there are a number of other important effects that must be considered in 
evaluating the threshold voltage. Invariably there are charges both within the oxide and at 
the oxide-semiconductor interface that alter the field penetration into the semiconductor 
and hence the threshold voltage needed at the gate to cause inversion. Some of these are 
depicted in Figure 6.39b and can be qualitatively summarized as follows. 

There may be some mobile ions within the SiC>2, such as alkaline ions (Na+, K+), 
which are denoted as Qmi in Figure 6.39b. These may be introduced unintentionally, for 
example, during cleaning and etching processes in the fabrication. In addition there 
may be various trapped (immobile) charges within the oxide Qot due to structural 
defects, for example, an interstitial Si+. Frequently these oxide trapped charges are cre¬ 
ated as a result of radiation damage (irradiation by X-rays or other high-energy beams). 
They can be reduced by annealing the device. 

A significant number of fixed positive charges (Qf) exist in the oxide region close 
to the interface. They are believed to originate from the nonstoichiometry of the oxide 
near the oxide-semiconductor interface. They are generally attributed to positively 
charged Si+ ions. During the oxidation process, a Si atom is removed from the Si sur¬ 
face to react with the oxygen diffusing in through the oxide. When the oxidation 
process is stopped suddenly, there are unfulfilled Si ions in this region. Qf depends on 
the crystal orientation and on the oxidation and annealing processes. The semiconduc¬ 
tor to oxide interface itself is a sudden change in the structure from crystalline Si to 
amorphous oxide. The semiconductor surface itself will have various defects, as dis¬ 
cussed in Chapter 1. There is some inevitable mismatch between the two structures at 
the interface, and consequently there are broken bonds, dangling bonds, point defects 
such as vacancies and Si+, and other defects at this interface that trap charges (e.g., 
holes). All these interface charges are represented as Qlt in Figure 6.39b. <2it depends 
not only on the crystal orientation but also on the chemical composition of the inter¬ 
face. Both Qf and Qlt overall represent a positive charge that effectively reduces the 
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gate voltage needed for inversion. They are smaller for the (100) surface than the (111) 
surface, so (100) is the preferred surface for the Si MOS device. 

In addition to various charges in the oxide and at the interface shown in Figure 6.39b, 
there will also be a voltage difference, denoted as Vfb, between the semiconductor 
surface and the metal surface, even in the absence of an applied voltage. Vfb arises 
from the work function difference between the metal and the p-type semiconductor, as 
discussed in Chapter 4. The metal work function is generally smaller than the semi¬ 
conductor work function, which means that the semiconductor surface will have an ac¬ 
cumulation of electrons and the metal surface will have positive charges (exposed 
metal ions). The gate voltage needed for inversion will therefore also depend on Vfb- 

Since Vfb is normally positive and Qt and Qlt are also positive, there may already be 
an inversion layer formed at the semiconductor surface even without a positive gate 
voltage. The fabrication of an enhancement MOSFET then requires special fabrication 
procedures, such as ion implantation, to obtain a positive and predictable V*- 

The simplest way to control the threshold gate voltage is to provide a separate 
electrode to the bulk of an enhancement MOSFET, as shown in Figure 6.36, and to 
apply a bias voltage to the bulk with respect to the source to obtain the desired V* 
between the gate and source. This technique has the disadvantage of requiring an ad¬ 
ditional bias supply for the bulk and also adjusting the bulk to source voltage almost 
individually for each MOSFET. 

6.8.4 Ion Implanted MOS Transistors and Poly-Si Gates 

The most accurate method of controlling the threshold voltage is by ion implantation, as 
the number of ions that are implanted into a device and their location can be closely con¬ 
trolled. Furthermore, ion implantation can also provide a self-alignment of the edges of 
the gate electrode with the source and drain regions. In the case of an ^-channel 
enhancement MOSFET, it is generally desirable to keep the p-type doping in the bulk 
low to avoid small Vos for reverse breakdown between the drain and the bulk (see Fig¬ 
ure 6.36). Consequently, the surface, in practice, already has an inversion layer (without 
any gate voltage) due to various fixed positive charges residing in the oxide and at the 
interface, as shown in Figure 6.39b (positive Qf and Qn and Vfb)- It then becomes 
necessary to implant the surface region under the gate with boron acceptors to remove 
the electrons and restore this region to a p-type behavior. 

The ion implantation process is carried out in a vacuum where the required impurity 
ions are generated and then accelerated toward the device. The energy of the arriving 
ions and hence their penetration into the device can be readily controlled. Typically, 
the device is implanted with B acceptors under the gate oxide, as shown in Figure 6.40. 
The distribution of implanted acceptors as a function of distance into the device from 
the surface of the oxide is also shown in the figure. The position of the peak depends 
on the energy of the ions and hence on the accelerating voltage. The peak of the con¬ 
centration of implanted acceptors is made to occur just below the surface of the 
semiconductor. Since ion implantation involves the impact of energetic ions with the 
crystal structure, it results in the inevitable generation of various defects within the im¬ 
planted region. The defects are almost totally eliminated by annealing the device at an 
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drain. 

(b) n+-type ion implantation extends the drain 

and source to line up with the gate. (a) 

Donor implanted n-regions 

(b) 

elevated temperature. Annealing also broadens the acceptor implanted region as a re¬ 
sult of increased diffusion of implanted acceptors. 

Ion implantation also has the advantage of providing self-alignment of the drain 
and source with the edges of the gate electrode. In a MOS transistor, it is important that 
the gate electrode extends all the way from the source to the drain regions so that the 
channel formed under the gate can link the two regions; otherwise, an incomplete 
channel will be formed. To avoid the possibility of forming an incomplete channel, it 
is necessary to allow for some overlap, as shown in Figure 6.41a, between the gate and 
source and drain regions because of various tolerances and variations involved in the 
fabrication of a MOSFET by conventional masking and diffusional techniques. The 
overlap, however, results in additional capacitances between the gate and source and i 
the gate and drain and adversely affects the high-frequency (or transient) response 
of the device. It is therefore desirable to align the edges of the gate electrode with 
the source and drain regions. Suppose that the gate electrode is made narrower so that j 
it does not extend all the way between the source and drain regions, as shown in Fig- ' 
ure 6.41b. If the device is now ion implanted with donors, then donor ions passing | 
through the thin oxide will extend the n+ regions up to the edges of the gate and 
thereby align the drain and source with the edges of the gate. The thick metal gate is 
practically impervious to the arriving donor ions. i 

Another method of controlling Vth is to use silicon instead of A1 for the gate elec- ! 
trode. This technique is called silicon gate technology. Typically, the silicon for the j 

' 
i 
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Figure 6.42 The poly-Si gate technology. 

(a) Poly-Si is deposited onto the oxide, and the areas outside the gate dimensions are etched away. 

(b) The poly-Si gate acts as a mask during ion implantation of donors to form the n+ source and drain regions. 

(c) A simplified schematic sketch of the final poly-Si MOS transistor. 

gate is vacuum deposited (e.g., by chemical vapor deposition using silane gas) onto the 
oxide, as shown in Figure 6.42. As the oxide is noncrystalline, the Si gate is polycrys¬ 
talline (rather than a single crystal) and is therefore called a poly-Si gate. Normally it 
is heavily doped to ensure that it has sufficiently low resistivity to avoid RC time con¬ 
stant limitations in charging and discharging the gate capacitance during transient or ac 
operations. The advantage of the poly-Si gate is that its work function depends on the 
doping (type and concentration) and can be controlled so that Vfb and hence V* can 
also be controlled. There are also additional advantages in using the poly-Si gate. For 
example, it can be raised to high temperatures (A1 melts at 660 °C). It can be used as a 
mask over the gate region of the semiconductor during the formation of the source and 
drain regions. If ion implantation is used to deposit donors into the semiconductor, then 
the n+ source and drain regions are self-aligned with the poly-Si gate, as shown in 
Figure 6.42. 

6.9 LIGHT EMITTING DIODES (LED) 

6.9.1 LED Principles 

A light emitting diode (LED) is essentially a prt junction diode typically made from a 
direct bandgap semiconductor, for example, GaAs, in which the electron-hole pair 
(EHP) recombination results in the emission of a photon. The emitted photon energy 
hv is approximately equal to the bandgap energy Eg. Figure 6.43a shows the energy 
band diagram of an unbiased pn+ junction device in which the n-side is more heavily 
doped than the p-side. The Fermi level EF is uniform through the device, which is a 
requirement of equilibrium with no applied bias. The depletion region extends mainly 
into the p-side. There is a PE barrier eV0 from Ec on the n-side to Ec on the p-side 
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Figure 6.43 Energy band diagram of a pn (heavily n-type doped) junction. 

(a) No bias voltage. 

(b) With forward bias V. Recombination around the junction and within the diffusion length of the electrons in the 
p-side leads to photon emission. 

where V0 is the built-in voltage. The PE barrier e Va prevents the diffusion of electrons 
from the n-side to the p-side. 

When a forward bias V is applied, the built-in potential V0 is reduced to V0 — V, 
which then allows the electrons from the n+-side to diffuse, that is, become injected, 
into the p-side as depicted in Figure 6.43b. The hole injection component from p into 
the n+-side is much smaller than the electron injection component from the n+-side to 
the p-side. The recombination of injected electrons in the depletion region and within 
a volume extending over the electron diffusion length Le in the p-side leads to photon 
emission. The phenomenon of light emission from the EHP recombination as a result 
of minority carrier injection is called injection electroluminescence. Due to the sta¬ 
tistical nature of the recombination process between electrons and holes, the emitted 
photons are in random directions; they result from spontaneous emission processes. 
The LED structure has to be such that the emitted photons can escape the device with¬ 
out being reabsorbed by the semiconductor material. This means the p-side has to be 
sufficiently narrow or we have to use heterostructure devices as discussed below. 

One very simple LED structure is shown in Figure 6.44. First a doped semi¬ 
conductor layer is grown on a suitable substrate (GaAs or GaP). The growth is done 
epitaxially; that is, the crystal of the new layer is grown to follow the structure of the 
substrate crystal. The substrate is essentially a sufficiently thick crystal that serves as a 
mechanical support for the pn junction device (the doped layers) and can be of dif¬ 
ferent crystal. The pn+junction is formed by growing another epitaxial layer but doped 
p-type. Those photons that are emitted toward the n-side become either absorbed or 
reflected back at the substrate interface depending on the substrate thickness and the 
exact structure of the LED. If the epitaxial layer and the substrate crystals have different 
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Figure 6.44 A schematic illustration of 

one possible LED device structure. First an 
n+ layer is epitaxially grown on a substrate 

A thin p layer is then epitaxially grown on 

the first layer. 

crystal lattice parameters, then there is a lattice mismatch between the two crystal struc¬ 
tures. This causes lattice strain in the LED layer and hence leads to crystal defects. Such 
crystal defects encourage radiationless EHP recombinations. That is, a defect acts as a 
recombination center. Such defects are reduced by lattice matching the LED epitaxial 
layer to the substrate crystal. It is therefore important to lattice match the LED layer to 
the substrate crystal. For example, one of the AlGaAs alloys is a direct bandgap semi¬ 
conductor that has a bandgap in the red-emission region. It can be grown on GaAs sub¬ 
strates with excellent lattice match which results in high-efficiency LED devices. 

There are various direct bandgap semiconductor materials that can be readily 
doped to make commercial pn junction LEDs which emit radiation in the red and 
infrared range of wavelengths. An important class of commercial semiconductor ma¬ 
terials that covers the visible spectrum is the III-V ternary alloys based on alloying 
GaAs and GaP and denoted as GaAsi_j,Pr In this compound, As and P atoms from 
Group V are distributed randomly at normal As sites in the GaAs crystal structure. 
When y < 0.45, the alloy GaAsi_yPy is a direct bandgap semiconductor and hence the 
EHP recombination process is direct as depicted in Figure 6.45a. The rate of recombi¬ 
nation is directly proportional to the product of electron and hole concentrations. The 
emitted wavelengths range from about 630 nm, red, for y — 0.45 (GaAso.55Po.45) to 
870 nm for y = 0 (GaAs). 

GaAsi-yPy alloys (which include GaP) with y > 0.45 are indirect bandgap 
semiconductors. The EHP recombination processes occur through recombination cen¬ 
ters and involve lattice vibrations rather than photon emission. However, if we add 

Figure 6.45 

(a) Photon emission in a direct bandgap 

semiconductor. 

(b) GaP is an indirect bandgap 
semiconductor. When it is doped with 

nitrogen, there is an electron 

recombination center at En. Direct 
recombination between a captured 

electron at En and a hole emits a photon. 

(a) GaAsi.yPy (y < 0.45) (b) N doped GaP 
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Table 6.2 Selected LED semiconductor materials 

Semiconductor Active Layer Structure D or I k (nm) ^external (%) Comments 

GaAs DH D 870-900 10 Infrared (IR) 
AlxGai_x As (0 < x < 0.4) DH D 640-870 3-20 Red to IR 
Ini_.*GaJ[:AsyPi_v DH D 1-1.6 jam >10 LEDs in communications 

(y 2.20jc, 0 < jc < 0.47) 

Ino.49 Al* Gao.s i ~x P DH D 590-630 >10 Amber, green, red; high 

luminous intensity 
InGaN/GaN quantum well QW D 450-530 5-20 Blue to green 

GaAsi_yPy (y < 0.45) HJ D 630-870 < 1 Red to IR 

GaAs,_yPy (y > 0.45) HJ I 560-700 < 1 Red, orange, yellow 
(N or Zn, O doping) 

SiC HJ I 460-470 0.02 Blue, low efficiency 

GaP (Zn) HJ I 700 2-3 Red 
GaP(N) HJ I 565 < 1 Green 

NOTE: Optical communication channels are at 850 nm (local network) and at 1.3 and 1.55 iim (long distance). 
D = direct bandgap, I = indirect bandgap. ^external is typical and may vary substantially depending on the device 
structure. DH = double heterostructure, HJ = homojunction, QW = quantum well. 

isoelectronic impurities such as nitrogen (in the same Group V as P) into the 
semiconductor crystal, then some of these N atoms substitute for P atoms. Since N and 
P have the same valency, N atoms substituting for P atoms form the same number of 
bonds and do not act as donors or acceptors. The electronic cores of N and P, however, 
are different. The positive nucleus of N is less shielded by electrons compared with 
that of the P atom. This means that a conduction electron in the neighborhood of a N 
atom will be attracted and may become captured at this site. N atoms therefore intro¬ 
duce localized energy levels, or electron traps, EN near the conduction band (CB) edge 
as depicted in Figure 6.45b. When a conduction electron is captured at EN, it can at¬ 
tract a hole (in the valence band) in its vicinity by Coulombic attraction and eventually 
recombine with it directly and emit a photon. The emitted photon energy is only 
slightly less than Eg as EN is typically close to Ec. As the recombination process 
depends on N doping, it is not as efficient as direct recombination. Thus, the efficiency 
of LEDs from N doped indirect bandgap GaAs^P^ semiconductors is less than those 
from direct bandgap semiconductors. Nitrogen doped indirect bandgap GaAsi-yPy 
alloys are widely used in inexpensive green, yellow, and orange LEDs. 

The external efficiency ^external of an LED quantifies the efficiency of conversion of 
electric energy into an emitted external optical energy. It incorporates the internal effi¬ 
ciency of the radiative recombination process and the subsequent efficiency of photon 
extraction from the device. The input of electric power into an LED is simply the diode cur¬ 
rent and diode voltage product (/ V). If Pout is the optical power emitted by the device, then 

External 
efficiency 

and some typical values are listed in Table 6.2. For indirect bandgap semiconductors, 
external are generally less than 1 percent, whereas for direct bandgap semiconductors 

with the right device structure, external can be substantial. 

_ Pou,(optical) innrv 
*7external — jy X 100% [6.65] 
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6.9.2 Heterojunction High-Intensity LEDs 

A pn junction between two differently doped semiconductors that are of the same 
material, that is, the same bandgap Eg, is called a homojunction. A junction between 
two different bandgap semiconductors is called a heterojunction. A semiconductor 
device structure that has junctions between different bandgap materials is called a 
heterostructure device. 

LED constructions for increasing the intensity of the output light make use of the 
double heterostructure. Figure 6.46a shows a double-heterostructure (DH) device 
based on two junctions between different semiconductor materials with different 
bandgaps. In this case the semiconductors are AlGaAs with Eg % 2 eV and GaAs with 
Eg « 1.4 eV. The double heterostructure in Figure 6.46a has an n+p heterojunction be¬ 
tween -AlGaAs and p-GaAs. There is another heterojunction between p-GaAs and 
p-AlGaAs. The p-GaAs region, is a thin layer, typically a fraction of a micron, and it 
is lightly doped. 

(a) 

(b) 

rv 

AlGaAs GaAs AlGaAs 

— 0.2 }im- 

Electrons in CB 
2 ev No bias 

Holes in VB 

Figure 6.46 

(a) A double heterostructure diode has two 

junctions which are between two different 

bandgap semiconductors (GaAs and 
AlGaAs). 

(b) A simplified energy band diagram with 

exaggerated features. E? must be uniform. 

(c) Forward-biased simplified energy band 
diagram. 

(d) Forward-biased LED. Schematic 

illustration of photons escaping reabsorption 

in the AlGaAs layer and being emitted from 
the device. 

|c) 

With 
forward 
bias 

AlGaAs GaAs AlGaAs 

+ 
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The simplified energy band diagram for the whole device in the absence of an ap¬ 
plied voltage is shown in Figure 6.46b. The Fermi level EF is continuous throughout 
the whole structure. There is a potential energy barrier eV0 for electrons in the CB of I 
«+-AlGaAs against diffusion into p-GaAs. There is a bandgap change at the junction 
between p-GaAs and p-AlGaAs which results in a step change AEc in Ec between the 
two conduction bands of p-GaAs and p-AlGaAs. This AEc is effectively a potential 
energy barrier that prevents any electrons in the CB in p-GaAs passing to the CB of 
p-AlGaAs. (There is also a step change AEv in Ev, but this is small and is not shown.) j 

When a forward bias is applied, most of this voltage drops between the n+- 
AlGaAs and p-GaAs and reduces the potential energy barrier eV0, just as in the nor¬ 
mal pn junction. This allows electrons in the CB of n+-AlGaAs to be injected into 
p-GaAs as shown in Figure 6.46c. These electrons, however, are confined to the CB of 
p-GaAs since there is a barrier A Ec between p-GaAs and p-AlGaAs. The wide 
bandgap AlGaAs layers therefore act as confining layers that restrict injected elec¬ 
trons to the p-GaAs layer. The recombination of injected electrons and the holes 
already present in this p-GaAs layer results in spontaneous photon emission. Since the 
bandgap Eg of AlGaAs is greater than GaAs, the emitted photons do not get reab¬ 
sorbed as they escape the active region and can reach the surface of the device as de¬ 
picted in Figure 6.46d. Since light is also not absorbed in p-AlGaAs, it can be reflected 
to increase the light output. 

6.9.3 LED Characteristics 

The energy of an emitted photon from an LED is not simply equal to the bandgap en¬ 
ergy Eg because electrons in the conduction band are distributed in energy and so are 
the holes in the valence band (VB). Figure 6.47a and b illustrate the energy band dia¬ 
gram and the energy distributions of electrons and holes in the CB and VB, respec¬ 
tively. The electron concentration as a function of energy in the CB is given by 
g(E)f(E) where g(E) is the density of states and/(E) is the Fermi-Dirac function 
(probability of finding an electron in a state with energy E). The product g(E)f(E) 
represents the electron concentration per unit energy or the concentration in energy : 
and is plotted along the horizontal axis in Figure 6.47b. There is a similar energy dis¬ 
tribution for holes in the VB. 

The electron concentration in the CB as a function of energy is asymmetrical and j 
has a peak at jkT above Ec. The energy spread of these electrons is typically ~2kT 
from Ec as shown in Figure 6.47b. The hole concentration is similarly spread from 
Ev in the valence band. Recall the rate of direct recombination is proportional to both ] 
the electron and hole concentrations at the energies involved. The transition which is 
identified as 1 in Figure 6.47a involves the direct recombination of an electron at Ec 
and a hole at Ev. But the carrier concentrations near the band edges are very small 
and hence this type of recombination does not occur frequently. The relative intensity 
of light at this photon energy hvi is small as shown in Figure 6.47c. The transitions 
that involve the largest electron and hole concentrations occur most frequently. For j 
example, the transition 2 in Figure 6.47a has the maximum probability as both elec¬ 
tron and hole concentrations are largest at these energies as shown in Figure 6.47b. 
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(a) E (b) (c) Id) 

CB 

VB 

Carrier concentration 
per unit energy 

Relative intensity 

Figure 6.47 

(a) Energy band diagram with possible recombination paths. 

(b) Energy distribution of electrons in the CB and holes in the VB. The highest electron concentration is jkTabove Ec. 

(c) The relative light intensity as a function of photon energy based on (b). 

(d) Relative intensity as a function of wavelength in the output spectrum based on (b) and (c). 

The relative intensity of light corresponding to this transition energy hv2 is then max¬ 
imum, or close to maximum, as indicated in Figure 6.47c.11 The transitions marked as 
3 in Figure 6.47a that emit relatively high energy photons hv3 involve energetic elec¬ 
trons and holes whose concentrations are small as apparent in Figure 6.47b. Thus, the 
light intensity at these relatively high photon energies is small. The fall in light inten¬ 
sity with photon energy is shown in Figure 6.47c. The relative light intensity versus 
photon energy characteristic of the output spectrum is shown in Figure 6.47c and rep¬ 
resents an important LED characteristic. Given the spectrum in Figure 6.47c we can 
also obtain the relative light intensity versus wavelength characteristic as shown in 
Figure 6.47d since X = c/v. The linewidth of the output spectrum, Av or AX, is de¬ 
fined as the width between half-intensity points as shown in Figure 6.47c and d. 

The wavelength for the peak intensity and the linewidth AX of the emitted spec- 
hum are obviously related to the energy distributions of the electrons and holes in the 
conduction and valence bands and therefore to the density of states in these bands. The 
photon energy for the peak emission is roughly Eg + kT inasmuch as it corresponds to 
peak-to-peak transitions in the energy distributions of the electrons and holes in Figure 
6.47b. The linewidth A (hv) of the output radiation between the half intensity points is 
approximately 3kT as shown in Figure 6.47c. It is relatively straightforward to calcu¬ 
late the corresponding spectral linewidth AX in terms of wavelength as explained in 
Example 6.14. 

" The intensity is not necessarily maximum when both the electron and hole concentrations are maximum, but it will 
be close. 
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Figure 6.48 

(a) A typical output spectrum from a red GaAsP LED. 

(b) Typical output light power versus forward current. 

(c) Typical l-Vcharacteristics of a red LED. The turn-on voltage is around 1.5 V. 

The output spectrum, or the relative intensity versus wavelength characteristics, 
from an LED depends not only on the semiconductor material but also on the structure 
of the pn junction diode, including the dopant concentration levels. The spectrum in 
Figure 6.47d represents an idealized spectrum without including the effects of heavy 
doping on the energy bands and the reabsorption of some of the photons. 

Typical characteristics of a red LED (655 nm), as an example, are shown in Fig¬ 
ure 6.48a to c. The output spectrum in Figure 6.48a exhibits less asymmetry than the 
idealized spectrum in Figure 6.47d. The width of the spectrum is about 24 nm, which 
corresponds to a width of about 2.1 kT in the energy distribution of the emitted photons. 
As the LED current increases so does the injected minority carrier concentration, and 
thus the rate of recombination and hence the output light intensity. The increase in the 
output light power is not however linear with the LED current as apparent in Figure 
6.48b. At high current levels, a strong injection of minority carriers leads to the recom¬ 
bination time depending on the injected carrier concentration and hence on the current 
itself; this leads to a nonlinear recombination rate with current. Typical current-voltage 
characteristics are shown in Figure 6.48c where it can be seen that the turn-on, or 
cut-in, voltage is about 1.5 V from which point the current increases very steeply with 
voltage. The turn-on voltage depends on the semiconductor and generally increases with 
the energy bandgap Eg. For example, typically, for a blue LED it is about 3.5-4.5 V, 
for a yellow LED it is about 2 V, and for a GaAs infrared LED it is around 1 V. 

EXAMPLE 6.14 

LED spectral 

linewidth 

SPECTRAL LINEWIDTH OF LEDS We know that a spread in the output wavelengths is related to 
a spread in the emitted photon energies as depicted in Figure 6.47. The emitted photon energy 
£ph = hc/X and the spread in the photon energies A£ph = A(hv) « 3kT between the half¬ 
intensity points as shown in Figure 6.47c. Show that the corresponding linewidth A A, between 
the half-intensity points in the output spectrum is 

I* 

he 
16.66] 
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What is the spectral linewidth of an optical communications LED operating at 1550 nm and at 
300 K? 

SOLUTION 

First consider the relationship between the photon frequency v and X, 

c he 

v hv 

in which hv is the photon energy. We can differentiate this, 

dX _ he _ X^_ 

d(hv) (hv)1 he 

The negative sign implies that increasing the photon energy decreases the wavelength. We are 
only interested in changes or spreads; thus AX/A (hv) \dX/d(hv)\, 

X2 X2 
AX = —A (hv) = —3k T 

he he 

where we used A(hv) = 3kT, and obtained Equation 6.66. We can substitute X = 1550nm and 
T = 300 K to calculate the linewidth of the 1550 nm LED: 

AX = X2 
3 kT 

he 
= (1550 x 10"9)2 

3(1.38 x 10~23)(300) 

(6.626 x lO"34)^ x 108) 

= 1.50 x 10 7 m or 150 nm 

The spectral linewidth of an LED output is due to the spread in the photon energies, which is 
fundamentally about 3kT. The only option for decreasing AX at a given wavelength is to reduce 
the temperature. The output spectrum of a laser, on the other hand, has a much narrower 
linewidth. A single-mode laser can have an output linewidth less than 1 nm. 

6.10 SOLAR CELLS 

6.10.1 Photovoltaic Device Principles 

A simplified schematic diagram of a typical solar cell is shown in Figure 6.49. Con¬ 
sider a pn junction with a very narrow and more heavily doped n-region. The illumi¬ 
nation is through the thin n-side. The depletion region (W) or the space charge layer 
(SCL) extends primarily into the p-side. There is a built-in field £0 in this depletion 
layer. The electrodes attached to the n-side must allow illumination to enter the device 
and at the same time result in a small series resistance. They are deposited on the 
n-side to form an array of finger electrodes on the surface as depicted in Figure 6.50. 
A thin antireflection coating on the surface (not shown in the figure) reduces reflec¬ 
tions and allows more light to enter the device. 

As the n-side is very narrow, most of the photons are absorbed within the deple¬ 
tion region (W) and within the neutral p-side (lp) and photogenerate EHPs in these 
regions. EHPs photogenerated in the depletion region are immediately separated by 
the built-in field £0 which drifts them apart. The electron drifts and reaches the neutral 
n+-side whereupon it makes this region negative by an amount of charge —e. Similarly, 
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Figure 6.49 The principle of 

operation of the solar cell (exaggerated 

features to highlight principles). 

Neutral Neutral 
<r 

n-region o p-region 
<—> ^ 

Figure 6.50 Finger electrodes on the surface 

of a solar cell reduce the series resistance. 

the hole drifts and reaches the neutral p-side and thereby makes this side positive. Con¬ 
sequently an open circuit voltage develops between the terminals of the device with 
the p-side positive with respect to the n-side. If an external load is connected, then the 
excess electron in the n-side can travel around the external circuit, do work, and reach 
the p-side to recombine with the excess hole there. It is important to realize that with¬ 
out the internal field it is not possible to drift apart the photogenerated EHPs and 
accumulate excess electrons on the n-side and excess holes on the/?-side. 

The EHPs photogenerated by long-wavelength photons that are absorbed in the 
neutral p-side diffuse around in this region as there is no electric field. If the recombi¬ 
nation lifetime of the electron is xe, it diffuses a mean distance Le = *j2Dexe where De 
is its diffusion coefficient in the p-side. Those electrons within a distance Le to the de¬ 
pletion region can readily diffuse and reach this region whereupon they become drifted 
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Figure 6.51 Photogenerated carriers 

within the volume Lh+ W + U give rise to a 
photocurrent /ph. 

The variation in the photogenerated EHP 

concentration with distance is also shown 

where a is the absorption coefficient at the 

wavelength of interest. 

by “Eg to the n-side as shown in Figure 6.49. Consequently only those EHPs photogen¬ 
erated within the minority carrier diffusion length Le to the depletion layer can 
contribute to the photovoltaic effect. Again the importance of the built-in field £„ is 
apparent. Once an electron diffuses to the depletion region, it is swept over to the 
n-side by £0 to give an additional negative charge there. Holes left behind in the p-side 
contribute a net positive charge to this region. Those photogenerated EHPs further 
away from the depletion region than Le are lost by recombination. It is therefore im¬ 
portant to have the minority carrier diffusion length Le be as long as possible. This is 
the reason for choosing this side of a Si pn junction to be p-type which makes 
electrons the minority carriers; the electron diffusion length in Si is longer than the 
hole diffusion length. The same ideas also apply to EHPs photogenerated by short- 
wavelength photons absorbed in the n-side. Those holes photogenerated within a dif¬ 
fusion length Lh can reach the depletion layer and become swept across to the p-side. 
The photogeneration of EHPs that contributes to the photovoltaic effect therefore 
occurs in a volume covering Lh + W + Le. If the terminals of the device are shorted, 
as in Figure 6.51, then the excess electron in the n-side can flow through the external 
circuit to neutralize the excess hole in the p-side. This current due to the flow of the 
photogenerated carriers is called the photocurrent. 

Under a steady-state operation, there can be no net current through an open circuit 
solar cell. This means the photocurrent inside the device due to the flow of photogen¬ 
erated carriers must be exactly balanced by a flow of carriers in the opposite direction. 
The latter carriers are minority carriers that become injected by the appearance of the 
photovoltaic voltage across the pn junction as in a normal diode. This is not shown in 
Figure 6.49. 

EHPs photogenerated by energetic photons absorbed in the n-side near the surface 
region or outside the diffusion length Lh to the depletion layer are lost by recombina¬ 
tion as the lifetime in the n-side is generally very short (due to heavy doping). The 
n-side is therefore made very thin, typically less than 0.2 pm. Indeed, the length in of 
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Solar cell inventors at Bell Labs (left to right): Gerald Pearson, Daryl Chapin, 
and Calvin Fuller. They are checking a Si solar cell sample for the amount 
of voltage produced (1954). 

I SOURCE: Courtesy of Bell Labs, Lucent Technologies. 

Helios is a solar cell-powered airplane that is 
remotely piloted. It has been able to fly as high 
as about 30 km during the day. Its wingspan is 
9 m. It has fuel cells to fly at night. 

I SOURCE: Courtesy of NASA, Dryden Flight 
I Center. 

pn Junction Si solar cells at work. Honda's two-seated 
Dream car is powered by photovoltaics. The Honda 
Dream was first to finish 3,010 km in four days in the 
1996 World Solar Challenge. 

SOURCE: Courtesy of Centre for Photovoltaic 
Engineering, University of New South Wales, Sydney, 
Australia. 
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the n-side may be shorter than the hole diffusion length Lh. The EHPs photogenerated 
very near the surface of the n-side, however, disappear by recombination due to vari¬ 
ous surface defects acting as recombination centers as discussed below. 

At long wavelengths, around 1-1.2 pm, the absorption coefficient a of Si is small 
and the absorption depth (1 /a) is typically greater than 100 pm. To capture these long- 
wavelength photons, we therefore need a thick p-side and at the same time a long mi¬ 
nority carrier diffusion length Le. Typically the p-side is 200-500 pm and Le tends to 
be shorter than this. 

Crystalline silicon has a bandgap of 1.1 eV which corresponds to a threshold 
wavelength of 1.1 pm. The incident energy in the wavelength region greater than 
1.1 pm is then wasted; this is not a negligible amount (~25 percent). The worst part 
of the efficiency limitation however comes from the high-energy photons becoming 
absorbed near the crystal surface and being lost by recombination in the surface re¬ 
gion. Crystal surfaces and interfaces contain a high concentration of recombination 
centers which facilitate the recombination of photogenerated EHPs near the surface. 
Losses due to EHP recombinations near or at the surface can be as high as 40 percent. 
These combined effects bring the efficiency down to about 45 percent. In addition, 
the antireflection coating is not perfect, which reduces the total collected photons by 
a factor of about 0.8-0.9. When we also include the limitations of the photovoltaic 
action itself (discussed below), the upper limit to a photovoltaic device that uses a 
single crystal of Si is about 24-26 percent at room temperature. 

Consider an ideal pn junction photovoltaic device connected to a resistive load 
R as shown in Figure 6.52a. Note that I and V in the figure define the convention for 
the direction of positive current and positive voltage. If the load is a short circuit, 
then the only current in the circuit is that generated by the incident light. This is the 
photocurrent 7Ph shown in Figure 6.52b which depends on the number of EHPs photo¬ 
generated within the volume enclosing the depletion region (W) and the diffusion 
lengths to the depletion region (Figure 6.51). The greater is the light intensity, the 

(c) 

Figure 6.52 

(a) The solar cell connected to an external load R and the convention for the definitions of positive voltage and 

positive current. 

(b) The solar cell in short circuit. The current is the photocurrent lph. 

(c) The solar cell driving an external load R. There is a voltage V and current / in the circuit. 
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Short circuit 

solar cell 

current in 

light 

higher is the photogeneration rate and the larger is 7Ph. If I is the light intensity, then 
the short circuit current is 

/sc = _7ph = -Kl [6.67] 

where K is a constant that depends on the particular device. The photocurrent does not 
depend on the voltage across the pn junction because there is always some internal 
field to drift the photogenerated EHP. We exclude the secondary effect of the voltage 
modulating the width of the depletion region. The photocurrent 7Ph therefore flows 
even when there is not a voltage across the device. 

If R is not a short circuit, then a positive voltage V appears across the pn junction as 
a result of the current passing through it as shown in Figure 6.52c. This voltage reduces 
the built-in potential of the pn junction and hence leads to minority carrier injection and 
diffusion just as it would in a normal diode. Thus, in addition to 7ph there is also a forward 
diode current Id in the circuit as shown in Figure 6.52c which arises from the voltage de¬ 
veloped across R. Since Id is due to the normal pn junction behavior, it is given by the 
diode characteristics, 

Solar cell I-V 

where Ia is the “reverse saturation current” and rj is the ideality factor (rj = l — 2). In an 
open circuit, the net current is zero. This means that the photocurrent 7ph develops just 
enough photovoltaic voltage Voc to generate a diode current Id = 7ph. 

Thus the total current through the solar cell, as shown in Figure 6.52c, is 

/eV_ 

\rjkT 
I = —fph + 70 

The overall I-V characteristics of a typical Si solar cell are shown in Figure 6.53. 
It can be seen that it corresponds to the normal dark characteristics being shifted down 

Figure 6.53 Typical I-V characteristics of 

a Si solar cell. 

The short circuit current is /ph and the open 

circuit voltage is Voc- The I-V curves for 
positive current require an external bias 

voltage. Photovoltaic operation is always in 

the negative current region. 
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7(mA) 

Figure 6.54 

(a) When a solar cell drives a load R, R has the same voltage as the solar cell but the current through it is in the 
opposite direction to the convention that current flows from high to low potential. 

(b) The current /' and voltage V' in the circuit of (a) can be found from a load line construction. Point P is the 

operating point (/', V'). The load line is for R = 3 £2. 

by the photocurrent 7Ph, which depends on the light intensity I. The open circuit out¬ 
put voltage Vqc, of the solar cell is given by the point where the I-V curve cuts the 
V axis (7 = 0). It is apparent that although it depends on the light intensity, its value 
typically lies in the range 0.5-0.7 V. 

Equation 6.68 gives the I-V characteristics of the solar cell. When the solar cell is 
connected to a load as in Figure 6.54a, the load has the same voltage as the solar cell and 
carries the same current. But the current I through R is now in the opposite direction to 
the convention that current flows from high to low potential. Thus, as shown in Fig¬ 
ure 6.54a, 

V 
I =- [6.69] The load line 

R 

The actual current /' and voltage V' in the circuit must satisfy both the I-V char¬ 
acteristics of the solar cell. Equation 6.68, and that of the load, Equation 6.69. We can 
find V and V' by solving these two equations simultaneously or using a graphical 
solution. /' and V' in the solar cell circuit are most easily found by using a load line 
construction. The I-V characteristics of the load in Equation 6.69 is a straight line 
with a negative slope —1/R. This is called the load line and is shown in Figure 6.54b 
along with the I-V characteristics of the solar cell under a given intensity of illumina¬ 
tion. The load line cuts the solar cell characteristic at P where the load and the solar 
cell have the same current and voltage T and V'. Point P therefore satisfies both 
Equations 6.68 and 6.69 and thus represents the operating point of the circuit. 

The power delivered to the load is P0ut = /' Vr, which is the area of the rectangle 
bound by the I and V axes and the dashed lines shown in Figure 6.54b. Maximum 
power is delivered to the load when this rectangular area is maximized (by changing R 
or the intensity of illumination), when /' = lm and V' = Vm. Since the maximum 
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possible current is 7SC and the maximum possible voltage is V^, /scVoC represents the 
desirable goal in power delivery for a given solar cell. Therefore it makes sense to 
compare the maximum power output ImVm with /scVoC. The fill factor FF, which is a 
figure of merit for the solar cell, is defined as 

Definition of 

fill factor 

The FF is a measure of the closeness of the solar cell I-V curve to the rectangular 
shape (the ideal shape). It is clearly advantageous to have the FF as close to unity as 
possible, but the exponential pn junction properties prevent this. Typically FF values 
are in the range 70-85 percent and depend on the device material and structure. 

FF = 
7 V 1m v m 

fc Voc 

[6.70] 

EXAMPLE 6.15 A SOLAR CELL DRIVING A RESISTIVE LOAD Consider the solar cell in Figure 6.54 that is 
driving a load of 3 £2. This cell has an area of 3 cm x 3 cm and is illuminated with light of 
intensity 700 W m-2. Find the current and voltage in the circuit. Find the power delivered to the 
load, the efficiency of the solar cell in this circuit, and the fill factor of the solar cell. 

SOLUTION 

The I-V characteristic of the load in Figure 6.54a, is the load line in Equation 6.69; that is, 
7 = — V/(3 £2). The line is drawn in Figure 6.54b with a slope 1/(3 £2). It cuts the I-V charac¬ 
teristics of the solar cell at 7' = 157 mA and V' = 0.475 V as apparent in Figure 6.54b, which 
are the current and voltage, respectively, in the photovoltaic circuit of Figure 6.54a. The power 
delivered to the load is 

/>out = I'V' = (157 x 10"3)(0.475 V) = 0.0746 W or 74.6 mW 

The input of sunlight power is 

Pin = (Light intensity)(Surface area) = (700 W m-2)(0.03 m)2 = 0.63 W 

The efficiency is 

Poul (0.0746 W) 
^photovoltaic = (100%)-^- = (100%) \ ' = 11.8% 

rm (U.OJ W ) 

This will increase if the load is adjusted to extract the maximum power from the solar cell, 
but the increase will be small as the rectangular area I'V' in Figure 6.54b is already quite close 
to the maximum. 

The fill factor can also be calculated since point P in Figure 6.54b is close to the optimum 
operation, maximum output power, in which the rectangular area 7'V' is maximum: 

_ ImVm I'V' (157 mA)(0.475 V) 
FF = 1-    = 0.722 or 72% 

7SC Voc (178 mA)(0.58 V) 

EXAMPLE 6.16 OPEN CIRCUIT VOLTAGE AND ILLUMINATION A solar cell under an illumination of 500 W m-2 
has a short circuit current 7SC of 150 mA and an open circuit output voltage of 0.530 V. What 
are the short circuit current and open circuit voltage when the light intensity is doubled? Assume 

r) = 1.5, a typical value for various Si pn junctions. 
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SOLUTION 

The general I-V characteristic under illumination is given by Equation 6.68. Setting / = 0 for 
open circuit, 

/ = = 0 

Assuming that Voc » r/kT/e, rearranging the above equation we can find , 

r\kT 
= — In! 

e 

The photocurrent 7ph depends on the light intensity J via 7ph = Kl, where K is a constant. 
Thus, at a given temperature, the change in V,* is 

rjkT jw\ahl j h\ 
V fphl / & \IlJ 

Voc2 ~V^ =--In 
e \ 'phi / e 

The short circuit current is the photocurrent, so at double the intensity this is 

7SC2 = = (150 mA)(2) = 300 mA 

Open circuit 

condition 

Open circuit 

output 

voltage 

Open circuit 

voltage and 

light intensity 

Assuming r) = 1.5, the new open circuit voltage is 

V0C2 = Vod + ^ ln(^) = °-530 V + (l-5)(0.026) ln(2) = 0.557 V 

This is a 5 percent increase compared with the 100 percent increase in illumination and the short 
circuit current. 

6.10.2 Series and Shunt Resistance 

Practical solar cells can deviate substantially from the ideal pn junction solar cell be¬ 
havior depicted in Figure 6.53 due to a number of reasons. Consider an illuminated pn 
junction driving a load resistance Rl and assume that photogeneration takes place in 
the depletion region. As shown in Figure 6.55, the photogenerated electrons have to 
traverse a surface semiconductor region to reach the nearest finger electrode. All these 
electron paths in the n -layer surface region to finger electrodes introduce an effective 
series resistance Rs into the photovoltaic circuit. If the finger electrodes are thin, then 
the resistance of the electrodes themselves will further increase Rs. There is also a se¬ 
ries resistance due to the neutral p-region, but this is generally small compared with 
the resistance of the electron paths to the finger electrodes. 

Figure 6.56a shows the equivalent circuit of an ideal pn junction solar cell. The 
photogeneration process is represented by a constant current generator 7ph, which gen¬ 
erates a current that is proportional to the light intensity. The flow of photogenerated 
carriers across the junction gives rise to a photovoltaic voltage difference V across the 
junction, and this voltage leads to the normal diode current Id = I0[exp(eV/r]kT) — 1]. 
This diode current Id is represented by an ideal pn junction diode in the circuit as 
shown in Figure 6.56a. As apparent, 7ph and Id are in opposite directions (7ph is “up” 
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Neutral Depletion Neutral 
n-region region p-region 
<—x-x-> 

A I 

Ideal solar cell Load Solar cell Load 

Figure 6.56 The equivalent circuit of a solar cell. 

(a) Ideal pn junction solar cell. 

(b) Parallel and series resistances Rs and Rp. 

and Id is “down”), so in an open circuit the photovoltaic voltage is such that /ph and Id 
have the same magnitude and cancel each other. By convention, positive current I at 
the output terminal is normally taken to flow into the terminal and is given by Equa¬ 
tion 6.68. (In reality, of course, the solar cell current is negative, as in Figure 6.53, 
which represents a current that is flowing out into the load.) 

Figure 6.56b shows the equivalent circuit of a more practical solar cell. The series 
resistance Rs in Figure 6.56b gives rise to a voltage drop and therefore prevents the 
ideal photovoltaic voltage from developing at the output between A and B when a 
current is drawn. A fraction (usually small) of the photogenerated carriers can also 
flow through the crystal surfaces (edges of the device) or through grain boundaries in 
polycrystalline devices instead of flowing though the external load RL. These effects 
that prevent photogenerated carriers from flowing in the external circuit can be repre¬ 
sented by an effective internal shunt or parallel resistance Rp that diverts the pho¬ 
tocurrent away from the load Rl- Typically Rp is less important than Rs in overall 
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Figure 6.57 The series resistance broadens 
the l-V curve and reduces the maximum 

available power and hence the overall efficiency 
of the solar cell. 

The example is a Si solar cell with r\ % 1.5 and 
l0 « 3 x 10-6 mA. Illumination is such that the 

photocurrent lph — 10 mA. 

device behavior, unless the device is highly polycrystalline and the current component 
flowing through grain boundaries is not negligible. 

The series resistance Rs can significantly deteriorate the solar cell performance 
as illustrated in Figure 6.57 where Rs = 0 is the best solar cell case. It is apparent that 
the available maximum output power decreases with the series resistance which 
therefore reduces the cell efficiency. Notice also that when Rs is sufficiently large, it 
limits the short circuit current. Similarly, low shunt resistance values, due to exten¬ 
sive defects in the material, also reduce the efficiency. The difference is that although 
Rs does not affect the open circuit voltage VqC, low Rp leads to a reduced VoC. 

6.10.3 Solar Cell Materials, Devices, and Efficiencies 

Most solar cells use crystalline silicon because silicon-based semiconductor fabrication 
is now a mature technology that enables cost-effective devices to be manufactured. 
Typical Si-based solar cell efficiencies range from about 18 percent for polycrystalline 
to 22-24 percent in high-efficiency single-crystal devices that have special structures 
to absorb as many of the incident photons as possible. Solar cells fabricated by making 
a pn junction in the same crystal are called homo junctions. The best Si homojunction 
solar cell efficiencies are about 24 percent for expensive single-crystal passivated 
emitter rear locally diffused (PERL) cells.12 The PERL and similar cells have a tex¬ 
tured surface that is an array of “inverted pyramids” etched into the surface to capture 
as much of the incoming light as possible as depicted in Figure 6.58. Normal reflec¬ 
tions from a flat crystal surface lead to a loss of light, whereas reflections inside the 
pyramid allow a second or even a third chance for absorption. Further, after refraction, 
photons would be entering the semiconductor at oblique angles which means that they 
will be absorbed in the useful photogeneration volume, that is, within the electron dif¬ 
fusion length of the depletion layer as shown in Figure 6.58. 

,2 Much of the pioneering work for high-efficiency PERL solar cells was done by Martin Green and coworkers at the 
University of New South Wales. 
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Figure 6.58 An inverted pyramid textured 
surface substantially reduces reflection losses and 

increases absorption probability in the device. 

Table 6.3 summarizes some typical characteristics of various solar cells. GaAs and 
Si solar cells have comparable efficiencies though theoretically GaAs with a higher 
bandgap is supposed to have a better efficiency. The largest factors reducing the effi¬ 
ciency of a Si solar cell are the unabsorbed photons with hv <Eg and short wavelength 
photons absorbed near the surface. Both these factors are improved if tandem cell 
structures or heterojunctions are used. 

There are a number of III—V semiconductor alloys that can be prepared with differ¬ 
ent bandgaps but with the same lattice constant. Heterojunctions (junctions between dif¬ 
ferent materials) from these semiconductors have negligible interface defects. AlGaAs 
has a wider bandgap than GaAs and would allow most solar photons to pass through. If 
we use a thin AlGaAs layer on a GaAs pn junction, as shown in Figure 6.59, then this 
layer passivates the surface defects normally present in a homojunction GaAs cell. The 
AlGaAs window layer therefore overcomes the surface recombination limitation and 
improves the cell efficiency (such cells have efficiencies of about 24 percent). 

Table 6.3 Typical characteristics of various solar cells at room temperature under AMI .5 illumination of 1000 W m -2 

Semiconductor Eg (eV) Voc(V) 7sc (mA cm 2) FF rj(%) Comments 

Si, single crystal 1.1 0.5-0.7 42 0.7-0.8 15-24 Single crystal, PERL 

Si, polycrystalline 
Amorphous Si:Ge:H film 

1.1 0.5-0.65 38 0.7-0.8 12-19 

8-13 Amorphous film with tandem 

structure, convenient large- 

area fabrication 

GaAs, single crystal 1.42 1.02 28 0.85 24-25 

GaAlAs/GaAs, tandem 1.03 27.9 0.864 24.8 Different bandgap materials in 

tandem increases absorption 

efficiency 

GalnP/GaAs, tandem 2.5 14 0.86 25-30 Different bandgap materials in 

tandem increases absorption 

efficiency 

CdTe, thin film 1.5 0.84 26 0.75 15-16 

InP, single crystal 

CuInSe2 

1.34 

1.0 

0.87 29 0.85 21-22 

12-13 

NOTE: AMI .5 refers to a solar illumination of "Air Mass 1.5," which represents solar radiation falling on the Earth's surface with a total 
intensity (or irradiance) of 1000 W m 2. AMI .5 is widely used for comparing solar cells. 
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Figure 6.59 AlGaAs window layer on GaAs 

passivates the surface states and thereby increases 

the photogeneration efficiency. 

n P 

AlGaAs GaAs 
(a) 

Ev 

(b) 

Figure 6.60 A heterojunction solar cell between two 

different bandgap semiconductors (GaAs and AlGaAs). 

Heterojunctions between different bandgap III-V semiconductors that are lat¬ 
tice matched offer the potential of developing high-efficiency solar cells. The sim¬ 
plest single heterojunction example, shown in Figure 6.60, consists of a injunction 
using a wider bandgap n-AlGaAs with p-GaAs. Energetic photons (/tv > 2 eV) are 
absorbed in AlGaAs, whereas those with energies less than 2 eV but greater than 
1.4 eV are absorbed in the GaAs layer. In more sophisticated cells, the bandgap 
of AlGaAs is graded slowly from the surface by varying the composition of the 
AlGaAs layer. 

Tandem or cascaded cells use two or more cells in tandem or in cascade to in¬ 
crease the absorbed photons from the incident light as illustrated in Figure 6.61. The 
first cell is made from a wider bandgap (Eg i) material and only absorbs photons with 
hv > Egi. The second cell with bandgap Eg2 absorbs photons that pass the first cell 
and have h v > Eg2. The whole structure can be grown within a single crystal by using 
lattice-matched crystalline layers leading to a monolithic tandem cell. If, in addition, 
light concentrators are also used, the efficiency can be further increased. For exam¬ 
ple, a GaAs-GaSb tandem cell operating under a 100-sun condition, that is, 100 times 
that of ordinary sunlight, have exhibited an efficiency of about 34 percent. Tandem 
cells have been used in thin-film a-Si:H (hydrogenated amorphous Si) pin (p-type, 
intrinsic, and n-type structure) solar cells to obtain efficiencies up to about 12 percent. 
These tandem cells have a-Si:H and a-Si:Ge:H cells and are easily fabricated in large 
areas. 

Figure 6.61 A tandem cell. 

Cell 1 has a wider bandgap and absorbs energetic 

photons with hv > Cell 2 absorbs photons that 

pass through cell 1 and have hv > EQ2. 

Cell 1 (Egl) Cell 2 (Eg2 < Egl) 
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ADDITIONAL TOPICS 

6.11 pin DIODES, PHOTODIODES, AND SOLAR CELLS 
The pin Si diode is a device that has a structure with three distinct layers: a heavily 
doped thin p+-type layer, a relatively thick intrinsic (i-Si) layer, and a heavily doped 
thin n+-type layer, as shown in Figure 6.62a. For simplicity we will assume that the 
i -layer is truly intrinsic, or at least doped so lightly compared with p+ and n+ layers that 
it behaves almost as if intrinsic. The intrinsic layer is much wider than the p+ and n+ 
regions, typically 5-50 pm depending on the particular application. When the structure 
is first formed, holes diffuse from the p+-side and electrons from the n+-side into the /- 
Si layer where they recombine and disappear. This leaves behind a thin layer of exposed 
negatively charged acceptor ions in the p+-side and a thin layer of exposed positively 
charged donor ions in the n+-side as shown in Figure 6.22b. The two charges are sepa¬ 
rated by the /-Si layer of thickness W. There is a uniform built-in field £„ in the /-Si 
layer from the exposed positive ions to the exposed negative ions as illustrated in Fig¬ 
ure 6.22c. (Since there is no net space charge in the /-layer, from dT/dx = p/e0sr = 0, 
the field must be uniform.) In contrast, the built-in field in the depletion layer of a pn 
junction is not uniform. With no applied bias, the equilibrium is maintained by the built- 
in field £0 which prevents further diffusion of majority carriers from the p+ and n+ lay¬ 
ers into the /-Si layer. A hole that manages to diffuse from the p+-side into the /-layer 
is drifted back by £0, so the net current is zero. As in the pn junction, there is also a 
built-in potential V0 from the edge of the p+-side depletion region to the edge of the n+- 
side depletion region. Va (like £„) provides a potential barrier against further net diffu¬ 
sion of holes and electrons into the / -layer and maintains the equilibrium in the open cir¬ 
cuit (net current being zero) as in the pn junction. It is apparent from Figure 6.62c that, 
in the absence of an applied voltage, £0 = VQ/W. 

One of the distinct advantages of pin diodes is that the depletion layer capacitance 
is very small and independent of the voltage. The separation of two very thin layers of 
negative and positive charges by a fixed distance, width W of the / -Si layer, is the same 
as that in a parallel plate capacitor. The junction or depletion layer capacitance of 

the pin diode is simply given by 

CdeP ~ ~W~ 
[6.70] 

where A is the cross-sectional area and e0sr is the permittivity of the semiconductor 
(Si), respectively. Further, since the width W of the /-Si layer is fixed by the structure, 
the junction capacitance does not depend on the applied voltage in contrast to that of 

the pn junction. Cdep is typically of the order of a picofarad in fast pin photodiodes, so 

with a 50 Q resistor, the /?Cdep time constant is about 50 ps. 
When a reverse bias voltage Vr is applied across the pin device, it drops almost en¬ 

tirely across the width of the / -Si layer. The depletion layer widths of the thin sheets of 
acceptor and donor charges in the p+ and n+ sides are negligible compared with W. 
The reverse bias Vr increases the built-in voltage to VQ -I- Vr as shown in Figure 6.62d. 

The field £ in the / -Si layer is still uniform and increases to 

£ = £0 + ^ ^ (Vr » v0) [6.71] 
w w 
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Figure 6.62 
(a) The schematic structure of an idealized pin photodiode. 

(b) The net space charge density across the photodiode. 

(c) The built-in field across the diode. 

(d) The pin photodiode in photodetection is reverse-biased. 

Since the width of the / -layer in a pin device is typically much larger than the depletion 
layer width in an ordinary pn junction, the pin devices usually have higher breakdown 
voltages, which makes them useful where high breakdown voltages are required. 

In pin photodetectors, the pin structure is designed so that photon absorption occurs 
primarily over the /-Si layer. The photogenerated electron-hole pairs (EHPs) in the 
/-Si layer are then separated by the field £ and drifted toward the n+ and p+ sides, 
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respectively, as illustrated in Figure 6.62x1. While the photogenerated carriers are drifting 
through the i-Si layer, they give rise to an external photocument which is easily detected as 
a voltage across a small sampling resistor R in Figure 6.62d (or detected by a current-to- 
voltage converter). The response time of the pin photodiode is determined by the transit 
times of the photogenerated carriers across the width W of the i-Si layer. Increasing W al¬ 
lows more photons to be absorbed, which increases the output signal per input light inten¬ 
sity, but it slows down the speed of response because carrier transit times become longer. 

The simple pn junction photodiode has two major drawbacks. Its junction or de¬ 
pletion layer capacitance is not sufficiently small to allow photodetection at high mod- 
tolnivaY* xfcqiuaTCHftf. Xhir as ap J?C .titap rnasfcattf iiraifcarion Secondly, its depletion 
layer is at most a few microns. This means that at long wavelengths where the pene¬ 
tration depth is greater than the depletion layer width, the majority of photons are ab¬ 
sorbed outside the depletion layer where there is no field to separate the EHPs and drift 
them. The photodetector efficiency is correspondingly low at these long wavelengths. 
These problems are substantially reduced in the pin photodiode.13 The pin photo¬ 
voltaic devices, such as a-Si:H solar cells, are designed to have the photogeneration 
occur in the i-layer as in the case of photodetectors. Obviously, there is no external ap¬ 
plied bias, and the built-in field rE0 separates the EHPs and drives the photocurrent. 

6.12 SEMICONDUCTOR OPTICAL AMPLIFIERS 
AND LASERS 

All practical semiconductor laser diodes are double heterostructures (DH) whose 
energy band diagrams are similar to the LED diagram in Figure 6.46. The energy 
band diagram of a forward biased DH laser diode is shown in Figure 6.63a and b. 

Izuo Hayashi and Morton Panish at Bell Labs 
(1971) were able to design the first semicon¬ 
ductor laser that operated continuously at room 
temperature. (Notice the similarity of the energy 
band diagram on the chalkboard with that in 
Figure 6.63.) 

I SOURCE: Courtesy of Bell Labs, Lucent 
I Technologies. 

I 13 The pin photodiode was invented by J. Nishizawa and his research group in Japan in 1950. 
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Figure 6.63 
(a) A double heterostructure diode has two 

junctions which are between two different 

bandgap semiconductors (GaAs and AIGaAs). 

(b) Simplified energy band diagram under a large 
forward bias. Lasing recombination takes place in 

the p-GaAs layer, the active layer. 

(c) The density of states and energy distribution of 

electrons and holes in the conduction and valence 
bands in the active layer. 

In this case the semiconductors are AIGaAs with Eg & 2 eV and GaAs with Eg 
1.4 eV. The p-GaAs region is a thin layer, typically 0.1-0.2 pm, and constitutes 
the active layer in which stimulated emissions take place. Both p-GaAs and 
p-AlGaAs are heavily p-type doped and are degenerate with the Fermi level EFp in 
the valence band. When a sufficiently large forward bias is applied, Ec of n-AlGaAs 
moves very close to the Ec of p-GaAs which leads to a large injection of electrons 
in the CB of n-AlGaAs into p-GaAs as shown in Figure 6.63b. In fact, with a 
sufficient large forward bias, Ec of AIGaAs can be moved above the Ec of GaAs, 
which causes an enormous electron injection from n-AlGaAs into the CB of 
p-GaAs. These injected electrons, however, are confined to the CB of p-GaAs 
since there is a barrier A Ec between p-GaAs and p-AIGaAs due to the change in 
the bandgap. 

The p-GaAs layer is degenerately doped. Thus, the top of its valence band (VB) 
is full of holes, or it has all the electronic states empty above the Fermi level EFp 
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Figure 6.64 Semiconductor lasers have an optical cavity to build up the required electromagnetic oscillations. 

In this example, one end of the cavity has a Bragg distributed reflector, a reflection grating, that reflects only certain 
wavelengths back into the cavity. 

in this layer. The large forward bias injects a very large concentration of electrons 
from n-AlGaAs into the conduction band of p-GaAs. Consequently, as shown in 
Figure 6.63c, there is a large concentration of electrons in the CB and totally empty 
states at the top of the VB, which means that there is a population inversion. An in¬ 
coming photon with an energy hv0 just above Eg can stimulate a conduction electron 
in the p-GaAs layer to fall down from the CB to the VB and emit a photon by stimu¬ 
lated emission as depicted in Figure 6.63c. Such a transition is a photon-stimulated 
electron-hole recombination, or a lasing recombination. Thus, an avalanche of stimu¬ 
lated emissions in the active layer provides an optical amplification of photons with 
hv0 in this layer. The amplification depends on the extent of population inversion and 
hence on the diode forward current. The device operates as a semiconductor optical 
amplifier which amplifies an optical signal that is passed through the active layer. 
There is a threshold current below which there is no stimulated emission and no 
optical amplification. 

To construct a semiconductor laser with a self-sustained lasing emission we 
have to incorporate the active layer into an optical cavity just as in the case of the 
HeNe laser in Chapter 3. The optical cavity with reflecting ends, reflects the coher¬ 
ent photons back and forward and encourages their constructive interference within 
the cavity as depicted in Figure 6.64. This leads to a buildup of high-energy electro¬ 
magnetic oscillations in the cavity. Some of this electromagnetic energy in the 
cavity is tapped out as output radiation by having one end of the cavity as partially 
reflecting. For example, one type of optical cavity, as shown in Figure 6.64, has a 
special reflector, called a Bragg distributed reflector (BDR), at one end to reflect 
only certain wavelengths back into the cavity.14 A BDR is a periodic corrugated 

14 Partial reflections of waves from the corrugations in the DBR can interfere constructively and constitute a reflected 
wave only for certain wavelengths, called Bragg wavelengths, that are related to the periodicity of the corrugations. 
A DBR acts like a reflection grating in optics. 
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(a) Typical optical power output versus 

forward current for a laser diode and 

an LED. 

(b) Comparison of spectral output 

characteristics. 

structure, like a reflection grating, etched in a semiconductor that reflects only certain 
wavelengths that are related to the corrugation periodicity. This Bragg reflector has a 
corrugation periodicity such that it reflects only one desirable wavelength that falls 
within the optical gain of the active region. This wavelength selective reflection leads 
to only one possible electromagnetic radiation mode existing in the cavity, which 
leads to a very narrow output spectrum: a single-mode output, that is, only one peak 
in the output spectrum shown in Figure 3.43. Semiconductor lasers that operate with 
only one mode in the radiation output are called single-mode or single-frequency 
lasers; the spectral linewidth of a single-mode laser output is typically ~0.1 nm, 
which should be compared with an LED spectral width of 150 nm operating at a 1550 nm 
emission. 

The double heterostructure has further advantages. Wider bandgap semiconduc¬ 
tors generally have lower refractive indices, which means AlGaAs has a lower refrac¬ 
tive index than that of GaAs. The change in the refractive index defines an optical 
dielectric waveguide that confines the photons to the active region of the optical cav¬ 
ity and thereby reduces photon losses and increases the photon concentration. This in¬ 
crease in the photon concentration increases the rate of stimulated emissions and the 
efficiency of the laser. 

To achieve the necessary stimulated emissions from a laser diode and build up 
the necessary optical oscillations in the cavity (to overcome all the optical losses) the 
current must exceed a certain threshold current /* as shown in Figure 6.65a. 
The optical power output at a current / is then very roughly proportional to / — /*. 
There is still some weak optical power output below /*, but this is simply due to 
spontaneous recombinations of injected electrons and holes in the active layer; the 
laser diode behaves like a “poor” LED below /*. The output light from an LED 
however increases almost in proportion to the diode current. Figure 6.65b compares 
the output spectrum from the two devices. Remember that the output light from the 
laser diode is coherent radiation, whereas that from an LED is a stream of incoher¬ 
ent photons. 
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DEFINING TERMS 

Accumulation occurs when an applied voltage to the 

gate (or metal electrode) of a MOS device causes the 

semiconductor under the oxide to have a greater num¬ 

ber of majority carriers than the equilibrium value. Ma¬ 

jority carriers have been accumulated at the surface of 

the semiconductor under the oxide. 

Active device is a device that exhibits gain (current or 

voltage, or both) and has a directional electronic func¬ 

tion. Transistors are active devices, whereas resistors, 

capacitors, and inductors are passive devices. 

Antireflection coating reduces light reflection from a 
surface. 

Avalanche breakdown is the enormous increase in 

the reverse current in a pn junction when the applied 

reverse field is sufficiently high to cause the generation 

of electron-hole pairs by impact ionization in the space 
charge layer. 

Base width modulation (the Early effect) is the 

modulation of the base width by the voltage appearing 

across the base-collector junction. An increase in the 

base to collector voltage increases the collector junc¬ 

tion depletion layer width, which results in the narrow¬ 
ing of the base width. 

Bipolar junction transistor (BJT) is a transistor 

whose normal operation is based on the injection of 

carriers from the emitter into the base region, where 

they become minority carriers, and their subsequent 

diffusion to the collector, where they give rise to a col- 

lector current. The voltage between the base and the 

emitter controls the collector current. 

Built-in field is the internal electric field in the deple¬ 

tion region of a pn junction that is maximum at the 

metallurgical junction. It is due to exposed negative 

acceptors on the p-side and positive donors on the 

n-side of the junction. 

Built-in voltage (V0) is the voltage across a pn junc¬ 

tion, going from a p- to n-type semiconductor, in an 
open circuit. 

Channel is the conducting strip between the source 

and drain regions of a MOSFET. 

Chip is a piece (or a volume) of a semiconductor crys¬ 

tal that contains many integrated active and passive 

components to implement a circuit. 

Collector junction is the metallurgical junction 

between the base and the collector of a bipolar 
transistor. 
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Critical electric field is the field in the space charge 

(or depletion) region at reverse breakdown (avalanche 

or Zener). 

Depletion layer (or space charge layer, SCL) is a 

region around the metallurgical junction where recombi¬ 

nation of electrons and holes has depleted this region 

of its large number of equilibrium majority carriers. 

Depletion (space charge) layer capacitance is the in¬ 

cremental capacitance (dQ/dV) due to the change in the 

exposed dopant charges in the depletion layer as a result 

of the change in the voltage across the injunction. 

Diffusion is the flow of particles of a given species 

from high- to low-concentration regions by virtue of 

their random thermal motions. 

Diffusion (storage) capacitance is the pn junction ca¬ 

pacitance due to the diffusion and storage of minority 

carriers in the neutral regions when a forward bias is 

applied. 

Dynamic (incremental) resistance rd of a diode is 

the change in the voltage across the diode per unit 

change in the current through the diode rd = d V/d I. It 
is the low-frequency ac resistance of the diode. Dy¬ 
namic conductance gd is the reciprocal dynamic resis¬ 

tance: gd = \/rd. 

Emitter junction is the metallurgical junction between 

the emitter and the base. 

Enhancement MOSFET is a MOSFET device that 

needs a gate to source voltage above the threshold volt¬ 

age to form a conducting channel between the source 

and the drain. In the absence of a gate voltage, there is 

no conduction between the source and drain. In its 

usual mode of operation, the gate voltage enhances the 

conductance of the source to drain inversion layer and 

increases the drain current. 

Epitaxial layer is a thin layer of crystal that has been 

grown on the surface of another crystal which is usu¬ 

ally a substrate, a mechanical support for the new crys¬ 

tal layer. The atoms of the new layer bond to follow the 

crystal pattern of the substrate, so the crystal structure 

of the epitaxial layer is matched with the crystal struc¬ 

ture of the substrate. 

External quantum efficiency is the optical power 

emitted from a light emitting device per unit electric 

input power. 

Field effect transistor (FET) is a transistor whose 

normal operation is based on controlling the conduc¬ 

tance of a channel between two electrodes by the 

application of an external field. The effect of the 

applied field is to control the current flow. The cur¬ 

rent is due to majority carrier drift from the source 

to the drain and is controlled by the voltage applied to 

the gate. 

Fill factor (FF) is a figure of merit for a solar cell that 

represents, as a percentage, the maximum power Im Vm 
available to an external load as a fraction of the ideal 
theoretical power determined by the product of the 

short circuit current 7SC and the open circuit voltage 

Voc:FF = (/mVm)/(/scVoc). 

Forward bias is the application of an external voltage 

to a pn junction such that the positive terminal is con¬ 

nected to the p-side and the negative to the n-side. The 

applied voltage reduces the built-in potential. 

Heterojunction is a junction between different semi¬ 

conductor materials, for example, between GaAs and 

AlGaAs ternary alloy. There may or may not be a change 

in the doping. 

Homojunction is a junction between differently doped 

regions of the same semiconducting material, for ex¬ 

ample, a pn junction in the same silicon crystal; there is 

no change in the bandgap energy Eg. 

Impact ionization is the process by which a high 

electric field accelerates a free charge carrier (electron 

in the CB), which then impacts with a Si-Si bond to 

generate a free electron-hole pair. The impact excites 

an electron from Ev to Ec. 

Integrated circuit (IC) is a chip of a semiconductor 

crystal in which many active and passive components 

have been miniaturized and integrated together to form 

a sophisticated circuit. 

Inversion occurs when an applied voltage to the gate 

(or metal electrode) of a MOS device causes the 

semiconductor under the oxide to develop a conducting 

layer (or a channel) at the surface of the semiconductor. 

The conducting layer has opposite polarity carriers to 

the bulk semiconductor and hence is termed an inver¬ 

sion layer. 

Ion implantation is a process that is used to bombard 

a sample in a vacuum with ions of a given species of 
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atom. First the dopant atoms are ionized in a vacuum 

and then accelerated by applying voltage differences 

to impinge on a sample to be doped. The sample is 

grounded to neutralize the implanted ions. 

Isoelectronic impurity atom has the same valency as 

the host atom. 

Law of the junction relates the injected minority car¬ 

rier concentration just outside the depletion layer to the 

applied voltage. For holes in the n-side, it is 

Pn(0) = Pno exp 

where p„{0) is the hole concentration just outside the 

depletion layer. 

Linewidth is the width of the intensity versus wave¬ 

length spectrum, usually between the half-intensity 

points, emitted from a light emitting device. 

Long diode is a pn junction with neutral regions 

longer than the minority carrier diffusion lengths. 

Metallurgical junction is where there is an effective 

junction between the p-type and n-type doped re¬ 

gions in the crystal. It is where the donor and acceptor 

concentrations are equal or where there is a transition 

from n- to p-type doping. 

Metal-oxide-semiconductor transistor (MOST) is 

a field effect transistor in which the conductance 

between the source and drain is controlled by the volt¬ 

age supplied to the gate electrode, which is insulated 

from the channel by an oxide layer. 

Minority carrier injection is the flow of electrons 

into the p-side and holes into the n-side of a pn junction 

when a voltage is applied to reduce the built-in voltage 

across the junction. 

MOS is short for a metal-insulator-semiconductor 

structure in which the insulator is typically silicon 

oxide. It can also be a different type of dielectric; for 

example, it can be the nitride Si3N4. 

NMOS is an enhancement type n-channel MOSFET. 

Passive device or component is a device that exhibits 

no gain and no directional function. Resistors, capaci¬ 

tors, and inductors are passive components. 

Photocurrent is the current generated by a light¬ 

receiving device when it is illuminated. 

Pinch-off voltage is the gate to source voltage needed 

to just pinch off the conducting channel between the 

source and drain with no source to drain voltage 

applied. It is also the source to drain voltage that just 

pinches off the channel when the gate and source are 

shorted. Beyond pinch-off, the drain current is almost 

constant and controlled by Vos • 

PMOS is an enhancement type p-channel MOSFET. 

Poly-Si gate is short for a polycrystalline and highly 

doped Si gate. 

Recombination current flows under forward bias to 

replenish the carriers recombining in the space charge 

(depletion) layer. Typically, it is described by / = 

Ir0[exp(eV/2kT) - 1]. 

Reverse bias is the application of an external voltage 

to a pn junction such that the positive terminal is con¬ 

nected to the n-side and the negative to the p-side. The 

applied voltage increases the built-in potential. 

Reverse saturation current is the reverse current that 

would flow in a reverse-biased ideal pn junction obey¬ 

ing the Shockley equation. 

Shockley diode equation relates the diode current to 

the diode voltage through 7 = I0[exp(eV/kT) — 1]. It 

is based on the injection and diffusion of injected 

minority carriers by the application of a forward bias. 

Short diode is a pn junction in which the neutral 

regions are shorter than the minority carrier diffusion 

lengths. 

Small-signal equivalent circuit of a transistor re¬ 

places the transistor with an equivalent circuit that 

consists of resistances, capacitances, and dependent 

sources (current or voltage). The equivalent circuit rep¬ 

resents the transistor behavior under small-signal ac 

conditions. The batteries are replaced with short cir¬ 

cuits (or their internal resistances). Small signals imply 

small variations about dc values. 

Substrate is a single mechanical support that carries 

active and passive devices. For example, in integrated 

circuit technology, typically, many integrated circuits 

are fabricated on a single silicon crystal wafer that 

serves as the substrate. 

Thermal generation current is the current that flows in 

a reverse-biased pn junction as a result of the thermal 
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generation of electron-hole pairs in the depletion layer 

that become separated and swept across by the built-in 

field. 

Threshold voltage is the gate voltage needed to 

establish a conducting channel between the source 

and drain of an enhancement MOST (metal-oxide- 

semiconductor transistor). 

Transistor is a three-terminal solid-state device in 

which a current flowing between two electrodes is con¬ 

trolled by the voltage between the third and one of the 

other terminals or by a current flowing into the third 

terminal. 

Thrn-on, or cut-in, voltage of a diode is the voltage 

beyond which there is a substantial increase in the 

QUESTIONS AND PROBLEMS 

6.1 The pn junction Consider an abrupt Si pn+ junction that has 1015 acceptors cm-3 on the p-side and 

1019 donors on the n-side. The minority carrier recombination times are xe = 490 ns for electrons in the 

p-side and r* = 2.5 ns for holes in the n-side. The cross-sectional area is 1 mm2. Assuming a long diode, 

calculate the current I through the diode at room temperature when the voltage V across it is 0.6 V. What 
are V/1 and the incremental resistance (rj) of the diode and why are they different? 

*6.2 The Si pn junction Consider a long pn junction diode with an acceptor doping Na of 1018 cm-3 on the 

p-side and donor concentration of Nj on the n-side. The diode is forward-biased and has a voltage of 

0.6 V across it. The diode cross-sectional area is 1 mm2. The minority carrier recombination time r de¬ 

pends on the dopant concentration Ndopant(cm-3) through the following approximate relation 

5 x 1(T7 

T ” (1+ 2 X 10-17 ^dopam) 

a. Suppose that Nd = 1015 cm-3. Then the depletion layer extends essentially into the w-side and we 

have to consider minority carrier recombination time r/, in this region. Calculate the diffusion and 
recombination contributions to the total diode current. What is your conclusion? 

b. Suppose that N4 = Na = 1018 cm-3. Then Wextends equally to both sides and, further, re = r 

Calculate the diffusion and recombination contributions to the diode current. What is your con¬ 
clusion? 

6.3 Junction capacitance of a pn junction The capacitance (C) of a reverse-biased abrupt Si p+n junc¬ 
tion has been measured as a function of the reverse bias voltage Vr as listed in Table 6.4. The pn junc¬ 

tion cross-sectional area is 500 p,m X 500 |xm. By plotting 1/C2 versus Vr, obtain the built-in potential 

V„ and the donor concentration Nj in the n-region. What is Nal 

current. The turn-on voltage of a Si diode is about 

0.6 V whereas it is about 1 V for a GaAs LED. The 

turn-on voltage of a pn junction diode depends on 

the bandgap of the semiconductor and the device 

structure. 

Zener breakdown is the enormous increase in the re¬ 

verse current in a pn junction when the applied voltage 

is sufficient to cause the tunneling of electrons from 

the valence band in the p-side to the conduction band 

in the zt-side. Zener breakdown occurs in pn junctions 

that are heavily doped on both sides so that the deple¬ 

tion layer width is narrow. 

Table 6.4 Capacitance at various values of reverse bias (W) 

Vr(V) 1 2 3 5 10 15 20 

C (pF) 38.3 30.7 26.4 21.3 15.6 12.9 11.3 
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■'} ;■ 

6.4 

6.5 

6.6 

6.7 

Temperature dependence of diode properties 

a. Consider the reverse current in a pn junction. Show that 

<S/rev ^ / Eg \ ST 

/*v ~ \rikTj T 

where rj = 2 for Si and GaAs, in which thermal generation in the depletion layer dominates the re¬ 

verse current, and r; = 1 for Ge, in which the reverse current is due to minority carrier diffusion to 

the depletion layer. It is assumed that Eg » kT at room temperature. Order the semiconductors Ge, 
Si, and GaAs according to the sensitivity of the reverse current to temperature. 

b. Consider a forward-biased pn junction carrying a constant current /. Show that the change in the 

voltage across the pn junction per unit change in the temperature is given by 

dV _ (Vg-V\ 

dT \ T ) 

where Vg = Eg/e is the energy gap expressed in volts. Calculate typical values for dV/dT for 
Ge, Si, and GaAs assuming that, typically, V = 0.2 V for Ge, 0.6 V for Si, and 0.9 V for GaAs. 

What is your conclusion? Can one assume that, typically, dV/dT ^ -2 mV °C“1 for these 
diodes? 

Avalanche breakdown Consider a Si p+n junction diode that is required to have an avalanche break¬ 

down voltage of 25 V. Given the breakdown field £br in Figure 6.19, what should be the donor doping 
concentration? 

Design of a pn junction diode Design an abrupt Si pn+ junction that has a reverse breakdown voltage 

of 100 V and provides a current of 10 mA when the voltage across it is 0.6 V. Assume that, if Adopant is 
in cm-3, the minority carrier recombination time is given by 

5 x 10"7 

r“(l+2x 10-17 Adopant) 

Mention any assumptions made. 

Minority carrier profiles (the hyperbolic functions) Consider a pnp BJT under normal operating 

conditions in which the EB junction is forward-biased and the BC junction is reverse-biased. The field 

in the neutral base region outside the depletion layers can be assumed to be negligibly small. The conti¬ 

nuity equation for holes pn(x) in the n-type base region is 

Dh^Pn_pn-Pno _ Q [6j/] 
dxl Th / 

where pn(x) is the hole concentration at x from just outside the depletion region and pno and rh are the 

equilibrium hole concentration and hole recombination lifetime in the base. 

a. What are the boundary conditions at x = 0 and x = Wb , just outside the collector region depletion 
layer? (Consider the law of the junction.) 

b. Show that the following expression for pn{x) is a solution of the continuity equation 

c. 

where V = Veb and Lh = s/T>h Xh • 

Show that Equation 6.72 satisfies the boundary conditions. 

[6.72] 

*6.8 The pnp bipolar transistor Consider a pnp transistor in a common base configuration and under 

normal operating conditions. The emitter-base junction is forward-biased and the base-collector 

junction is reverse-biased. The emitter, base, and collector dopant concentrations are Wa(£), A^), 
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and A/a(C), respectively, where AJa(£) ^d(B) > Ala(C) - For simplicity, assume uniform doping in all 
the regions. The base and emitter widths are Wb and We, respectively, both much shorter than the mi¬ 
nority carrier diffusion lengths, Lh and Le. The minority carrier lifetime in the base is the hole recom¬ 

bination time r*. The minority carrier mobility in the base and emitter are denoted by fXh and ne, re¬ 
spectively. 

The minority carrier concentration profile in the base can be represented by Equation 6.72. 

a. Assuming that the emitter injection efficiency is unity show that 

1. Ie 

2. lc 

3. a ' 

4. f}s 

eADhn mb 
LhNd(B) 

eADhnf cosech^-^-^ 

LhNd(B) 

m 

■0 
, eVEB\ 

exp»TFj 

exp | 
eVEB\ 

, kT ) 

sech 

— where 
2 Dh 

is the base transit time. 

b. Consider the total emitter current Ie through the EB junction, which has diffusion and recombina¬ 
tion components as follows: 

6.9 

Ie = Ie(so) exp + lE(ro) exp 

Only the hole component of the diffusion current (first term) can contribute to the collector 

current. Show that when Na(E) » the emitter injection efficiency y is given by 

How does y < 1 modify the expressions derived in part (a)? What is your conclusion (con¬ 

sider small and large emitter currents, or Veb = 0.4 and 0.7 V)? 

Characteristics of an npn Si BJT Consider an idealized silicon npn bipolar transistor with the prop¬ 

erties in Table 6.5. Assume uniform doping in each region. The emitter and base widths are between 

metallurgical junctions (not neutral regions). The cross-sectional area is 100 |xm X 100 |xm. The tran¬ 

sistor is biased to operate in the normal active mode. The base-emitter forward bias voltage is 0.6 V and 
the reverse bias base-collector voltage is 18 V. 

Table 6.5 Properties of an npn BJT 

Emitter 

Width 

Emitter 

Doping 

Hole 

Lifetime 

in Emitter 

Base 

Width Base Doping 

Electron 

Lifetime 

in Base 

Collector 

Doping 

10 jum 1 x 10'8 cm"3 10 ns 5 pm 1 x 1016cm"3 200 ns 1 x 10,6cmT3 

a. Calculate the depletion layer width extending from the collector into the base and also from the 

emitter into the base. What is the width of the neutral base region? 

b. Calculate a and hence for this transistor, assuming unity emitter injection efficiency. How do a 

and change with Vcs? 
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Bandgap 

narrowing 

Bandgap 

narrowing 

Mass action law 

with bandgap 

narrowing 

c. What is the emitter injection efficiency and what are a and ft, taking into account that the emitter 
injection efficiency is not unity? 

d. What are the emitter, collector, and base currents? 

e. What is the collector current when Vcb = 19 V but Veb = 0.6 V? What is the incremental collec¬ 
tor output resistance defined as A Vcb /A 7c? 

*6.10 Bandgap narrowing and emitter ipjection efficiency Heavy doping in semiconductors leads to what 
is called bandgap narrowing which is an effective narrowing of the bandgap Eg. If A Eg is the reduc¬ 

tion in the bandgap, then for an /i-type semiconductor, according to Lanyon and Tuft (1979), 

AE,(meV) = 22.5(Ip) 

where n (in cm-3) is the concentration of majority carriers which is equal to the dopant concentration if 

they are all ionized (for example, at room temperature). The new effective intrinsic concentration «/eff 
due to the reduced bandgap is given by 

"feff = NcNv exp 
(Eg-AEgy 

kT 
— nf exp 

where n, is the intrinsic concentration in the absence of emitter bandgap narrowing. 

The equilibrium electron and hole concentrations nno and pno, respectively, obey 

rinoPno = nfe ff 

where nno = Nd since nearly all donors would be ionized at room temperature. 
Consider a Si npn bipolar transistor operating under normal active conditions with the base-emitter 

forward biased, and the base-collector reverse biased. The transistor has narrow emitter and base 

regions. The emitter neutral region width We is 1 pm, and the donor doping is 1019 cm-3. The width 

Wb of the neutral base region is 1 pm, and the acceptor doping is 1017 cm-3. Assume that We and Wb 

are less than the minority carrier diffusion lengths in the emitter and the base. 

a. Obtain an expression for the emitter injection efficiency taking into account the emitter bandgap 
narrowing effect above. 

b. Calculate the emitter injection efficiency with and without the emitter bandgap narrowing. 

c. Calculate the common emitter current gain with and without the emitter bandgap narrowing 

effect given a perfect base transport factor (o?r = 1). 

6.11 The JFET pinch-ctff voltage Consider the symmetric n-channel JFET shown in Figure 6.66. The 

width of each depletion region extending into the ^-channel is W. The thickness, or depth, of the chan¬ 

nel, defined between the two metallurgical junctions, is 2a. Assuming an abrupt pn junction and 

Vds = 0, show that when the gate to source voltage is — Vp the channel is pinched off where 

vp = a2eNd 
2s 

-Vo 

Figure 6.66 A symmetric JFET. 
Gate 

Depletion 
region 

Source 

Channel 
thickness 

p+ 
_\ L_L 

1 1 ' \u 
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a 1 t -4| 
n-channel 

J_/_”_L 

— / 

Drain 
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where Va is the built-in potential between p+n junction and Nj is the donor concentration of the 
channel. 

Calculate the pinch-off voltage of a JFET that has an acceptor concentration of 1019 cm-3 in the p+ 
gate, a channel donor doping of 1016 cm-3, and a channel thickness (depth) 2a of 2 pm. 

6.12 The JFET Consider an ^-channel JFET that has a symmetric p+n gate-channel structure as shown in 

Figures 6.27a and 6.66. Let L be the gate length, Z the gate width, and 2a the channel thickness. The 

pinch-off voltage is given by Question 6.11. The drain saturation current loss is the drain current when 

Vqs = 0. This occurs when Vos = ^DS(sat) = Vp (Figure 6.29), so loss = VpGch> where GCh is the 
conductance of the channel between the source and the pinched-off point (Figure 6.30). Taking into ac¬ 

count the shape of the channel at pinch-off, if GCh is about one-third of the conductance of the free or 
unmodulated (rectangular) channel, show that 

, l7 Tl (epeNd)(2a)Z-\ W = -1-J 
A particular n-channel JFET with a symmetric p+n gate-channel structure has a pinch-off voltage 

of 3.9 V and an loss of 5.5 mA. If the gate and channel dopant concentrations are Na = 1019 cm"3 and 
N4 = 1015 cm"3, respectively, find the channel thickness 2a and Z/L.lf L= 10 p,m, what is Z? What 

is the gate-source capacitance when the JFET has no voltage supplies connected to it? 

6.13 The JFET amplifier Consider an n-channel JFET that has a pinch-off voltage (V/>) of 5 V and 

Idss = 10 mA. It is used in a common source configuration as in Figure 6.34a in which the gate to 

source bias voltage (Vgs) is —1.5 V. Suppose that Vqd = 25 V. 

a. If a small-signal voltage gain of 10 is needed, what should be the drain resistance (/?d)? What is 

Vos'? 

b. If an ac signal of 3 V peak-to-peak is applied to the gate in series with the dc bias voltage, what will 

be the ac output voltage peak-to-peak? What is the voltage gain for positive and negative input sig¬ 
nals? What is your conclusion? 

6.14 The enhancement NMOSFET amplifier Consider an n-channel Si enhancement NMOS transis¬ 

tor that has a gate width (Z) of 150 |xm, channel length (L) of 10 |xm, and oxide thickness (fox) of 

500 A. The channel has pe = 700 cm2 V"1 s"1 and the threshold voltage (Vth) is 2 V {sr = 3.9 for 

Si02). 

a. Calculate the drain current when Vgs = 5 V and Vos = 5 V and assuming k — 0.01. 
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source (Vgg = 5 V) and Vdd is such that Vds = 5 V? What is Vdd? What will happen if the drain 
supply is smaller? 

c. Estimate the most positive and negative input signal voltages that can be amplified if Vdd is fixed 

at the above value in part (ft). 

d. What factors will lead to a higher voltage amplification? 

*6.15 Ultimate limits to device performance 

a. Consider the speed of operation of an ^-channel FET-type device. The time required for an electron 

to transit from the source to the drain is xt — L/vd, where L is the channel length and Vd is the drift 
velocity. This transit time can be shortened by shortening L and increasing Vd- As the field increase, 

the drift velocity eventually saturates at about u</Sat = 105 ms-1 when the field in the channel is 

equal to Ec % 106 V m-1. A short xt requires a field that is at least £c. 

1. What is the change in the PE of an electron when it traverses the channel length L from source 

to drain if the voltage difference is V^s? 

2. This energy must be greater than the energy due to thermal fluctuations, which is of the order 

of kT. Otherwise, electrons would be brought in and out of the drain due to thermal fluctua¬ 

tions. Given the minimum field and Vds* what is the minimum channel length and hence the 

minimum transit time? 

ft. Heisenberg’s uncertainty principle relates the energy and the time duration in which that energy is 
possessed through a relationship of the form (Chapter 3) A E A t > ft. Given that during the transit 

of the electron from the source to the drain its energy changes by e Vds, what is the shortest transit 
time x satisfying Heisenberg’s uncertainty principle? How does it compare with your calculation in 

part (a)? 

c. How does electron tunneling limit the thickness of the gate oxide and the channel length in a 

MOSFET? What would be typical distances for tunneling to be effective? (Consider Exam¬ 

ple 3.10.) 

6.16 Energy distribution of electrons in the conduction band of a semiconductor and LED emission 

spectrum 

a. Consider the energy distribution of electrons he{E) in the conduction band (CB). Assuming 

that the density of state gCb(E) a (E — Ec)x^2 and using Boltzmann statistics f(E) ^ 
exp[—(E - Ep)/kT], show that the energy distribution of the electrons in the CB can be 

written as 

nx(x) = Cxx^2 exp(—x) 

where x = (E — Ec)/kT is electron energy in terms of kT measured from Ec, and C is a temper¬ 

ature-dependent constant (independent of E). 

b. Setting arbitrarily C = 1, plot nx versus jc. Where is the maximum, and what is the full width at 

half maximum (FWHM), i.e., between half maximum points? 

c. Show that the average electron energy in the CB is |fc7\ by using the definition of the average, 

oo 

f xnx dx 
_ o 

■^average — ^ 

f nx dx 
0 

where the integration is from x = 0 (Ec) to say x = 10 (far away from Ec where nx -► 0). You 

need to use a numerical integration. 

d. Show that the maximum in the energy distribution is at x = \ or at Emax = \kT above Ec. 

e. Consider the recombination of electrons and holes in GaAs. The recombination involves the 

emission of a photon. Given that both electron and hole concentrations have energy distribu¬ 

tions in the conduction and valence bands, respectively, sketch schematically the expected light 
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intensity emitted from electron and hole recombinations against the photon energy. What is 
your conclusion? 

6.17 LED output spectrum Given that the width of the relative light intensity between half-intensity points 
versus photon energy spectrum of an LED is typically ~3feT’, what is the linewidth AX in the output spec¬ 

trum in terms of the peak emission wavelength? Calculate the spectral linewidth AX of the output radiation 

from a green LED emitting at 570 nm at 300 K. 

6.18 LED output wavelength variations Show that the change in the emitted wavelength X with temper¬ 

ature T from an LED is approximately given by 

dk^^h^(dEl\ 
dT * Ej\dT ) 

where Eg is the bandgap. Consider a GaAs LED. The bandgap of GaAs at 300 K is 1.42 eV which 

changes (decreases) with temperature as dEg/dT = —4.5 x 10~4 eV K"1. What is the change in the 

emitted wavelength if the temperature change is 10 °C? 

6.19 Linewidth of direct recombination LEDs Experiments carried out on various direct bandgap semi¬ 

conductor LEDs give the output spectral linewidth (between half-intensity points) listed in Table 6.6. 

Since wavelength k = hc/Eph, where £ph = hv is the photon energy, we know that the spread in the 

wavelength is related to a spread in the photon energy. 

LED output 

spectrum 
linewidth 

he 
Ak * —^AEph 

EPh 

Suppose that we write £Ph = hc/k and A£ph = A (hv) % nkT where n is a numerical constant. 

Show that, 

nkT 9 
AA. = ——A2 

he 

and by appropriately plotting the data in Table 6.6 find n. 

Table 6.6 Linewidth AX 1/2 between half-points in the output spectrum (intensity versus wavelength) 

of GaAs ahd AlGaAs LEDs 

Peak wavelength of emission X (nm) 

650 810 820 890 950 1150 1270 1500 

AX 1/2 (nm) 
Material (direct Eg) 

22 

AlGaAs 

36 
AlGaAs 

40 

AlGaAs 

50 
GaAs 

55 
GaAs 

90 

InGaAsP 

110 

InGaAsP 

150 

InGaAsP 

6.20 AlGaAs LED emitter An AlGaAs LED emitter for use in a local optical fiber network has the output 

spectrum shown in Figure 6.68. It is designed for peak emission at 820 nm at 25 °C. 

a. What is the linewidth AX between half power points at temperatures —40 °C, 25 °C, and 85 °C? 

Given these three temperatures, plot AX and T (in K) and find the empirical relationship between 

AX and T. How does this compare with A (hv) ^ 2.5 kT to 3 kTl 

b. Why does the peak emission wavelength increase with temperature? 

c. What is the bandgap of AlGaAs in this LED? 

d. The bandgap Eg of the ternary alloys Al^Gai-* As follows the empirical expression 

Eg (e V) = 1.424+ 1.266* + 0.266a:2 

What is the composition of the AlGaAs in this LED? 
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Figure 6*68 The output spectrum from an AIGaAs 
LED. 

Values are normalized to peak emission at 25 °C. 

Relative spectral output power 

Wavelength (nm) 

Normalized 

solar cell 

voltage and 

current 

Power delivered 

by solar cell 

6.21 

6.22 

6.23 

Solar cell driving a load 

a. A Si solar cell of area 2.5 cm X 2.5 cm is connected to drive a load R as in Figure 6.54a. It has the 

I-Vcharacteristics in Figure 6.53. Suppose that the load is 2 Q and it is used under a light intensity 
of 800 W m-2. What are the current and voltage in the curcuit? What is the power delivered to the 

load? What is the efficiency of the solar cell in this circuit? 

b. What should the load be to obtain maximum power transfer from the solar cell to the load at 

800 W m“2 illumination? What is this load at 500 W m-2? 

c. Consider using a number of such solar cells to drive a calculator that needs a minimum of 3 V and 

draws 50 mA at 3-4 V. It is tO\be used at a light intensity of about 400 W nf 2 How many solar cells 
would you need and how would you connect them? 

Open circuit voltage A solar cell u^er an illumination of 1000 W m-2 has a short circuit current 7SC 

of 50 mA and an open circuit output voltage V^c of 0.65 V. What are the short circuit current and open 
circuit voltages when the light intensity is halved? 

Maximum power from a solar cell Suppose that the power delivered by a solar cell, P = IV ,is max¬ 

imum when / = Im and V = Vm. Suppose that we define normalized voltage and current for maximum 
power as 

v = 
i]Vt 

and 

where rj is the ideality factor, W = kT/e is called the thermal voltage (0.026 V at 300 K), and 

7SC = — 7ph. Suppose that t\>c = Voc/^Vt) is the normalized open circuit voltage. Under illumination 
with the solar cell delivering power with V > r\ Vt, 

P = IV = +,"expG^). V 

One can differentiate P — IV with respect to V, set it to zero for maximum power, and find expressions 
for Im and Vm for maximum power. One can then use the open circuit condition (7 = 0) to relate Vqc to 

I0. Show that maximum power occurs when 

Maximum power 
delivery 

v = Vqc — In (u + 1) and i = 1 — exp [—(uoc — v)] 

Consider a solar cell with r] = 1.5, Vqc = 0.60 V, and 7ph = 35 mA, with an area of 1 cm2. Find i and v, 
and hence the current Im and voltage Vm for maximum power. (Note: Solve the first equation numeri¬ 

cally or graphically to find v % 12.76.) What is the fill factor? 



Questions and Problems 581 

6.24 Series resistance The series resistance causes a voltage drop when a current is drawn from a solar cell. 

By convention, the positive current is taken to flow into the device. (If calculations yield a negative 

value, it means that, physically, the current is flowing out, which is the actual case under illumination.) 
If Vis the actual voltage across the solar cell output (accessed by the user), then the voltage across the 

diode is V — I Rs. The solar cell equation becomes 

I — ^ph “F Id — ^ph "F lo exp ^ yjJcT J 

Plot I versus V for a Si solar cell that has 77 = 1.5 and I0 = 3 x 10”6 mA, for an illumination such that 

/ph = 10 mA for Rs = 0, 20 and 50 Q. What is your conclusion? 

Solar cell with 
series resistance 

6.25 Shunt resistance Consider the shunt resistance Rp of a solar cell. Whenever there is a voltage V at the 

terminals of the solar cell, the shunt resistance draws a current V/Rp. Thus, the total current as seen at 

the terminals (and flowing in by convention) is 

V ( eV \ V 
/ = —/Ph + /(< + ^ = -/ph + /0exp(—) + — =0 

Plot / versus V for a polycrystalline Si solar cell that has rj = 1.5 and I0 = 3 x 10“6 mA, for an illu¬ 

mination such that 7ph = 10 mA. Use Rp == 00, 1000, 100 £2. What is your conclusion? 

Solar cell with 

shunt resistance 

*6.26 Series connected solar cells Consider two identical solar cells connected in series. There are two Rs 

in series and two pn junctions in series. If / is the total current through the devices, then the voltage 

across one pn junction is Vd = \[V — /(2R5)] so that the current / flowing into the combined solar 

cells is 

y , r rV-/(2*,)l ,, (kT\ 
IH-Ifi + I.'* P[ lriVj J 

where Vj = kT/e is the thermal voltage. Rearranging, for two cells in series, 

V = 2nVT In */ph) + 2RSI 

whereas for one cell, 

V = rjVr In + R*I 

Suppose that the cells have the properties I0 = 25 x 10“6 mA, r) = 1.5, Rs = 20 £2, and both are sub¬ 

jected to the same illumination so that /Ph = 10 mA. Plot the individual I-V characteristics and the I-V 

characteristics of the two cells in series. Find the maximum power that can be delivered by one cell and 
two cells in series. Find the corresponding voltage and current at the maximum power point. 

Two solar 

cells in series 

Two solar 
cells in series 

One solar cell 

6.27 A solar cell used in Eskimo Point The intensity of light arriving at a point on Earth, where the solar 

latitude is a can be approximated by the Meinel and Meinel equation: 

J = 1.353(0.7)(cosec“)0678 kW m-2 

where cosec a = l/(sin a). The solar latitude a is the angle between the sun’s rays and the horizon. 

Around September 23 and March 22, the sun’s rays arrive parallel to the plane of the equator. What is 
the maximum power available for a photovoltaic device panel of area 1 m2 if its efficiency of conver¬ 

sion is 10 percent? 
A manufacturer’s characterization tests on a particular Si pn junction solar cell at 27 °C specifies 

an open circuit output voltage of 0.45 V and a short circuit current of 400 mA when illuminated directly 

with a light of intensity 1 kW m“2. The fill factor for the solar cell is 0.73. This solar cell is to be used 
in a portable equipment application near Eskimo Point (Canada) at a geographical latitude (<f>) of 63°. 

Calculate the open circuit output voltage and the maximum available power when the solar cell is used 

at noon on September 23 when the temperature is around -10 °C. What is the maximum current this 

solar cell can supply to an electronic equipment? What is your conclusion? (Note: a -f <p = n/2) 



A selection of ultrasonic transducers (piezoelectric effect devices). 

I SOURCE: Courtesy of Valpey Fisher. 

An HV capacitor bushing being subjected to mains- 
frequency overvoltage. The photo is one of prolonged 
exposure, recording multiple surface flashovers. 

I SOURCE: Courtesy of Dr. Simon Rowland, UMIST, 
I England. 
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The familiar parallel plate capacitor equation with free space as an insulator is given by 

c-5=^ 
d 

where sQ is the absolute permittivity, A is the plate area, and d is the separation between 
the plates. If there is a material medium between the plates, then the capacitance, the 
charge storage ability per unit voltage, increases by a factor of sr, where sr is called 
the dielectric constant of the medium or its relative permittivity. The increase in the 
capacitance is due to the polarization of the medium in which positive and negative 
charges are displaced with respect to their equilibrium positions. The opposite surfaces 
of the dielectric medium acquire opposite surface charge densities that are related to the 
amount of polarization in the material. An important concept in dielectric theory is that 
of an electric dipole moment p, which is a measure of the electrostatic effects of a pair 
of opposite charges + Q and — Q separated by a finite distance a, and so is defined by 

p= Qa 

Although the net charge is zero, this entity still gives rise to an electric field in space 
and also interacts with an electric field from other sources. The relative permittivity is 
a material property that is frequency dependent. Some capacitors are designed to work 
at low frequencies, whereas others have a wide frequency range. Furthermore, even 
though they are regarded as energy storage devices, all practical capacitors exhibit 
some losses when used in an electric circuit. These losses are no different than I2R 
losses in a resistor carrying a current. The power dissipation in a practical capacitor 
depends on the frequency, and for some applications it can be an important factor. A 
defining property of a dielectric medium is not only its ability to increase capacitance 
but also, and equally important, its insulating behavior or low conductivity so that 
the charges are not conducted from one plate of the capacitor to the other through the 
dielectric. Dielectric materials often serve to insulate current-carrying conductors or 
conductors at different voltages. Why can we not simply use air as insulation between 
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high-voltage conductors? When the electric field inside an insulator exceeds a critical 
field called the dielectric strength, the medium suffers dielectric breakdown and a 
large discharge current flows through the dielectric. Some 40 percent of utility gener¬ 
ator failures are linked to insulation failures in the generator. Dielectric breakdown is 
probably one of the oldest electrical engineering problems and that which has been 
most widely studied and never fully explained. 

7.1 MATTER POLARIZATION AND RELATIVE 
PERMITTIVITY 

7.1.1 Relative Permittivity: Definition 

We first consider a parallel plate capacitor with vacuum as the dielectric medium 
between the plates, as shown in Figure 7. la. The plates are connected to a constant volt¬ 
age supply V. Let Q0 be the charge on the plates. This charge can be easily measured. 
The capacitance C0 of the parallel plate capacitor in free space, as in Figure 7.1a, is 
defined by 

Definition of 

capacitance 

The electric field, directed from high to low potential, is defined by the gradient of 
the potential £ = —dV/dx. Thus, the electric field £ between the plates is just V/d 

where d is the separation of the plates. 

Dielectric 

+Q C ~Q 

(a) (b) (c) 

Figure 7.1 

(a) Parallel plate capacitor with free space between the plates. 

(b) As a slab of insulating material is inserted between the plates, there is an external current 

flow indicating that more charge is stored on the plates. 

(c) The capacitance has been increased due to the insertion of a medium between the plates. 
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Consider now what happens when a dielectric slab (a slab of any nonconducting 
material) is inserted into this parallel plate capacitor, as shown in Figure 7.1b and c 
with V kept the same. During the insertion of the dielectric slab, there is an external 
current flow that indicates that there is additional charge being stored on the plates. 
The charge on the electrodes increases from Q0 to Q. We can easily measure the 
extra charge Q — Q0 flowing from the battery to the plates by integrating the ob¬ 
served current in the circuit during the process of insertion, as shown in Figure 7.1b. 
Because there is now a greater amount of charge stored on the plates, the capacitance 
of the system in Figure 7.1c is larger than that in Figure 7.1a by the ratio Q to Qa. 
The relative permittivity (or the dielectric constant) sr is defined to reflect this in¬ 
crease in the capacitance or the charge storage ability by virtue of having a dielectric 
medium. If C is the capacitance with the dielectric medium as in Figure 7.1c, then by 
definition 

Q_ = £_ 
Qo Ca 

[7.2] 

The increase in the stored charge is due to the polarization of the dielectric by the 
applied field, as explained below. It is important to remember that when the dielectric 
medium is inserted, the electric field remains unchanged, provided that the insulator 
fills the whole space between the plates as shown in Figure 7.1c. The voltage V 
remains the same and therefore so does the gradient V/d, which means that £ remains 
constant. 

Definition 

of relative 

permittivity 

7.1.2 Dipole Moment and Electronic Polarization 

An electrical dipole moment is simply a separation between a negative and positive 
charge of equal magnitude Q as shown in Figure 7.2. If a is the vector from the nega¬ 
tive to the positive charge, the electric dipole moment is defined as a vector by Definition 

p = Qst [7.3] of dipole 

moment 
The region that contains the +Q and —Q charges has zero net charge. Unless the 

two charge centers coincide, this region will nonetheless, by virtue of the definition in 
Equation 7.3, contain a dipole moment. 

The net charge within a neutral atom is zero. Furthermore, on average, the center 
of negative charge of the electrons coincides with the positive nuclear charge, which 
means that the atom has no net dipole moment, as indicated in Figure 7.3a. However, 
when this atom is placed in an external electric field, it will develop an induced dipole 
moment. The electrons, being much lighter than the positive nucleus, become easily 
displaced by the field, which results in the separation of the negative charge center 

Figure 7.2 The definition of electric 

dipole moment. 
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Figure 7.3 The origin of electronic 

polarization. 

C x 0 
K-1 

<EH*0 
^induced 

(a) A neutral atom in £ = 0 (b) Induced dipole moment in a field 

Definition of 

polarizability 

Restoring 

force 

from the positive charge center, as shown in Figure 7.3b. This separation of negative 
and positive charges and the resulting induced dipole moment are termed polarization. 
An atom is said to be polarized if it possesses an effective dipole moment, that is, if 
there is a separation between the centers of negative and positive charge distributions. 

The induced dipole moment depends on the electric field causing it. We define a 
quantity called the polarizability a to relate the induced dipole moment ^induced to the 
field £ causing it. 

Pinduced — tX'E [7.4] 

where a is a coefficient called the polarizability of the atom. It depends on the polar¬ 
ization mechanism. Since the polarization of a neutral atom involves the displacement 
of electrons, a is called electronic polarization and denoted as ae. Inasmuch as the 
electrons in an atom are not rigidly fixed, all atoms possess a certain amount of elec¬ 
tronic polarizability. 

In the absence of an electric field, the center of mass of the orbital motions of the 
electrons coincides with the positively charged nucleus and the electronic dipole 
moment is zero. Suppose that the atom has Z number of electrons orbiting the nucleus 
and all the electrons are contained within a certain spherical region. When an electric 
field £ is applied, the light electrons become displaced in the opposite direction to £, 
so their center of mass C is shifted by some distance x with respect to the nucleus 0, 
which we take to be the origin, as shown in Figure 7.3b. As the electrons are “pushed” 
away by the applied field, the Coulombic attraction between the electrons and nuclear 
charge “pulls in” the electrons. The force on the electrons, due to £, trying to separate 
them away from the nuclear charge is Ze'E. The restoring force Fr, which is the 
Coulombic attractive force between the electrons and the nucleus, can be taken to be 
proportional to the displacement x, provided that the latter is small.1 The restoring 
force Fr is obviously zero when C coincides with O (x = 0). We can write 

Fr = - fix 

1 It may be noticed that even if Fr is a complicated function of x, it can still be expanded in a series in terms of 
powers of x, that is, x, x2, x3, and so on, and for small x only the x term is significant, Fr = -fix. 
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where p is a constant and the negative sign indicates that Fr is always directed toward 
the nucleus O (Figure 7.3b). In equilibrium, the net force on the negative charge is 
zero or 

Ze% = Px 

from which x is known. Therefore the magnitude of the induced electronic dipole 
moment pe is given by 

pe = (Ze)x = [7.5] 
Electronic 

polarization 

As expected, pe is proportional to the applied field. The electronic dipole moment 
in Equation 7.5 is valid under static conditions, that is, when the electric field is a dc 
field. Suppose that we suddenly remove the applied electric field polarizing the atom. 
There is then only the restoring force ~Px, which always acts to pull the electrons 
toward the nucleus O. The equation of motion of the negative charge center is then 
(from force = mass x acceleration) 

d2x 
~Px = Zme—— 

Thus the displacement at any time is 

Equation for 

simple 

harmonic 

motion 

x(t) = x0 cos (a>0t) 

where 

/ p \1/2 
[7.6] 

V Z m f> f 

is the oscillation frequency of the center of mass of the electron cloud about the 
nucleus and xQ is the displacement before the removal of the field. After the removal 
of the field, the electronic charge cloud executes simple harmonic motion about the 
nucleus with a natural frequency determined by Equation 7.6; a)0 is called the elec¬ 
tronic polarization resonance frequency.2 It is analogous to a mass on a spring being 
pulled and let go. The system then executes simple harmonic motion. The oscillations 
of course die out with time. In the atomic case, a sinusoidal displacement implies that 
the electronic charge cloud has an acceleration 

Electronic 

polarization 

resonance 

frequency 

d2 x 

It2 
-X0a)l COS {(Dot) 

It is well known from classical electromagnetism that an accelerating charge radiates 
electromagnetic energy just like a radio antenna. Consequently the oscillating charge 

2 The term natural frequency refers to a system's characteristic frequency of oscillation when it is excited. A mass 
attached to a spring and then let go will execute simple harmonic motion with a certain natural frequency coQ. If we 
then decide to oscillate this mass with an applied force, the maximum energy transfer will occur when the applied 
force has the same frequency as coQ; the system will be put in resonance. co0 is also a resonant frequency. Strictly, 
co = 2nf is the angular frequency and / is the frequency. It is quite common to simply refer to co as a frequency 
because the literature is dominated by co; the meaning should be obvious within context. 
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cloud loses energy, and thus its amplitude of oscillation decreases. (Recall that the 
average energy is proportional to the square of the amplitude of the displacement.) 

From the expression derived for pe in Equation 7.5, we can find the electronic 
polarizability ae from Equation 7.4, 

Static 2^2 

electronic ae = -j [7.7] 

polarizability me^>0 

EXAMPLE 7.1 ELECTRONIC POLARIZABILITY Consider the electronic polarizability of inert gas atoms. These 
atoms have closed shells. Their electronic polarizabilities are listed in Table 7.1. For each type 
of atom calculate the electronic polarization resonant frequency f0 = cl>0/2tz , and plot ae and f0 

against the number of electrons Z in the atom. What is your conclusion? 

SOLUTION 

We can use Equation 7.7 to calculate the resonant frequency f0 = (x>0/2iz. Taking Ar, 

r /ion/1 c. Ia-19\2 T 

.46 x 1016 rad s"1 
/ Ze2 y' 

^ ~ 1(17 

(18)(1.6 x 10- 

x 10-40)(9.1 x 10 

)2 \ 
-- = 5 / 
io-31)_ 

Table 7.1 Electronic polarizability ae dependence on Z for the inert element atoms 

Atom 

He Ne Ar Kr Xe Rn* 

z 2 10 18 36 56 

ae x KT40 (Fm2) 0.18 0.45 1.7 2.7 4.4 5.9 

/„ x 1015 (Hz) 8.90 12.6 8.69 9.76 9.36 10.2 

I *Rn (radon) gas is radioactive. 

Figure 7.4 Electronic polarizability and its 

resonance frequency versus the number of electrons 

in the atom (Z). 

The dashed line is the best-fit line. 
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so that 

f0 = — = 8.69 x 1015 Hz 

which is listed in Table 7.1, among other f0 calculations for the other atoms. Such frequencies 

correspond to the field oscillations in UV light, that is, at optical frequencies. For all practical 

purposes, electronic polarization occurs very rapidly, that is, on a time scale \/f0 or 10~15 s, and 

we can take the static polarizability ae to remain the same up to optical frequencies.3 

Figure 7.4 shows the dependence of ae and f0 on the number of electrons Z. It is apparent 

that ae is nearly linearly proportional to Z, whereas f0 is very roughly constant. It is left as an ex¬ 

ercise to show that /J increases with Z, which is reasonable since the restoring force was defined 

as the total force between all the electrons and the nucleus when the electrons are displaced. 

7.1.3 Polarization Vector P 

When a material is placed in an electric field, the atoms and the molecules of the 
material become polarized, so we have a distribution of dipole moments in the mate¬ 
rial. We can visualize this effect with the insertion of the dielectric slab into the par¬ 
allel plate capacitor, as depicted in Figure 7.5a. The placement of the dielectric slab 
into an electric field polarizes the molecules in the material. The induced dipole mo¬ 
ments all point in the direction of the field. Consider the polarized medium alone, as 
shown in Figure 7.5b. In the bulk of the material, the dipoles are aligned head to tail. 
Every positive charge has a negative charge next to it and vice versa. There is there¬ 
fore no net charge within the bulk. But the positive charges of the dipoles appearing 
at the right-hand face are not canceled by negative charges of any dipoles at this face. 
There is therefore a surface charge +QP on the right-hand face that results from the 
polarization of the medium. Similarly, there is a negative charge — QP with the same 
magnitude appearing on the left-hand face due to the negative charges of the dipoles 
at this face. We see that charges +QP and —QP appear on the opposite surfaces of a 
material when it becomes polarized in an electric field, as shown in Figure 7.5c. These 
charges are bound and are a direct result of the polarization of the molecules. They 
are termed surface polarization charges. Figure 7.5c emphasizes this aspect of di¬ 
electric behavior in an electric field by showing the dielectric and its polarization 
charges only. 

We represent the polarization of a medium by a quantity called polarization P, 
which is defined as the total dipole moment per unit volume, 

J 
P = —-[pi + P2 +-H PvJ [7.8a] 

Volume 

where pi, p2, • • •, Pv are the dipole moments induced at Nmolecules in the volume. 
If pav is the average dipole moment per molecule, then an equivalent definition of P is 

P = N pav [7.8b] 

Definition of 

polarization 

vector 

Definition of 

polarization 

vector 

3 Electronic polarization at optical frequencies controls the optical properties such as the refractive index, as will be 
covered in Chapter 9. 



590 chapter 7 • Dielectric Materials and Insulation 

(a) (b) (c) 

Figure 7.5 

(a) When a dielectric is placed in an electric field, bound polarization charges appear on the 

opposite surfaces. 

(b) The origin of these polarization charges is the polarization of the molecules of the medium. 

(c) We can represent the whole dielectric in terms of its surface polarization charges +Qp 

and —Qp. 

where N is the number of molecules per unit volume. There is an important relation¬ 
ship, given below, between P and the polarization charges Qp on the surfaces of the 
dielectric. It should be emphasized for future discussions that if polarization arises 
from the effect of the applied field, as shown in Figure 7.5a, which is usually the case, 
pav must be the average dipole moment per atom in the direction of the applied field. 
In that case we often also denote pav as the induced average dipole moment per mole¬ 
cule Pinduced* 

To calculate the polarization P for the polarized dielectric in Figure 7.5b, we need 
to sum all the dipoles in the medium and divide by the volume Ad, as in Equation 
7.8a. However, the polarized medium can be simply represented as in Figure 7.5c in 
terms of surface charge +Qp and —Qp, which are separated by the thickness dis¬ 
tance d. We can view this arrangement as one big dipole moment ptotai from —QP to 
+QP. Thus 

Ptotal = Qpd 

Since the polarization is defined as the total dipole moment per unit volume, the mag¬ 
nitude of P is 

p _ P total _ Qpd _ Qp 

Volume Ad A 

But Qp/A is the surface polarization charge density oP, so 

P = op 

Polarization 

and bound 

surface 

charge 

density [7.9a] 
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External field 

Figure 7.6 Polarization charge density on the surface of a 
polarized medium is related to the normal component of the 
polarization vector. 

Polarization is a vector and Equation 7.9a only gives its magnitude. For the rec¬ 
tangular slab in Figure 7.5c, the direction of P is normal to the surface. For +crp 
(right face), it comes out from the surface and for —aP (left face), it is directed into the 
surface. Although Equation 7.9a is derived for one specific geometry, the rectangular 
slab, it can be generalized as follows. The charge per unit area appearing on the sur¬ 
face of a polarized medium is equal to the component of the polarization vector nor¬ 
mal to this surface. If Pnorma] is the component of P normal to the surface where the 
polarization charge density is o>, as shown in Figure 7.6, then, 

^normal == &p [7.9b] 

The polarization P induced in a dielectric medium when it is placed in an electric 
field depends on the field itself. The induced dipole moment per molecule within the 
medium depends on the electric field by virtue of Equation 7.4. To express the depen¬ 
dence of P on the field £, we define a quantity called the electric susceptibility Xe by 

P = XeSoE 17.10] 

Equation 7.10 shows an effect P due to a cause £ and the quantity Xe relates the 
effect to its cause. Put differently, Xe acts as a proportionality constant. It may depend 
on the field itself, in which case the effect is nonlinearly related to the cause. Further, 
electronic polarizability is defined by 

Polarization 

and bound 

surface 

charge 
density 

Definition of 

electric 
susceptibility 

P induced — CCe £ 

SO 

P Np induced N OLgTL 

where N is the number of molecules per unit volume. Then from Equation 7.10, Xe and 
ae are related by 

Xe = —Ncte [7.11] 
&0 

Electric 

susceptibility 

and 
polarization 
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It is important to recognize the difference between free and polarization (or bound) 
charges. The charges stored on the metal plates in Figure 7.5a are free because they 
result from the motion of free electrons in the metal. For example both Q0 and Q, be¬ 
fore and after the dielectric insertion in Figure 7.1, are free charges that arrive on the 
plates from the battery. The polarization charges +Q P and —Q />, on the other hand, are 
bound to the molecules. They cannot move within the dielectric or on its surface. 

The field £ before the dielectric was inserted (Figure 7.1a) is given by 

d Cgd A £q 

where o0 = Q0/A is the free surface charge density without any dielectric medium 
between the plates, as in Figure 7.1a. 

After the insertion of the dielectric, this field remains the same V/d, but the free 
charges on the plates are different. The free surface charge on the plates is now Q. In ad¬ 
dition there are bound polarization charges on the dielectric surfaces next to the plates, 
as shown in Figure 7.5a. It is apparent that the flow of current during the insertion of the 
dielectric, Figure 7.1b, is due to the additional free charges Q — Q0 needed on the ca¬ 
pacitor plates to neutralize the opposite polarity polarization charges Qp appearing on 
the dielectric surfaces. The total charge (see Figure 7.5a) due to that on the plate plus that 
appearing on the dielectric surface, Q — Qp, must be the same as before, Q0, so that the 
field, as given by Equation 7.12, does not change inside the dielectric, that is, 

Q - Qp = Qo 
or 

Q = Qo + Qp 

Dividing by A, defining o = Q/A as the free surface charge density on the plates 
with the dielectric inserted, and using Equation 7.12, we obtain 

a — sfE + oP 

Since oP — P and P = Equations 7.9 and 7.10, we can eliminate oP to 
obtain 

Relative 

permittivity 

and electric 
susceptibility 

Relative 

permittivity 

and 

polarizability 

o = e0(\ + xe)£ 

From the definition of the relative permittivity in Equation 7.2 we have 

e _ Q_ _ 

Qo <*o 

so substituting for o and using Equation 7.12 we obtain 

= 1 “I" Xe 

In terms of electronic polarization, from Equation 7.11, this is 

[7.13] 

[7.14] 

The significance of Equation 7.14 is that it relates the microscopic polarization 
mechanism that determines ae to the macroscopic property £r. 
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Figure 7.7 The electric field inside a polarized 
dielectric at the atomic scale is not uniform. 

The local field is the actual field that acts on a 
molecule. It can be calculated by removing that 
molecule and evaluating the field at that point from 
the charges on the plates and the dipoles 
surrounding the point. 

7.1.4 Local Field £ioc and Clausius-Mossotti Equation 

Equation 7.14, which relates er to electronic polarizability ae is only approximate 
because it assumes that the field acting on an individual atom or molecule is the field 
£, which is assumed to be uniform within the dielectric. In other words, the induced 
polarization, /Educed oc £. However, the induced polarization depends on the actual 
field experienced by the molecule. It is apparent from Figure 7.5a that there are polar¬ 
ized molecules within the dielectric with their negative and positive charges separated 
so that the field is not constant on the atomic scale as we move through the dielectric. 
This is depicted in Figure 7.7. The field experienced by an individual molecule is 
actually different than tE, which represents the average field in the dielectric. As soon 
as the dielectric becomes polarized, the field at some arbitrary point depends not only 
on the charges on the plates (Q) but also on the orientations of all the other dipoles 
around this point in the dielectric. When averaged over some distance, say a few thou¬ 
sand molecules, this field becomes £, as shown in Figure 7.7. 

The actual field experienced by a molecule in a dielectric is defined as the local 

field and denoted by <E\0C. It depends not only on the free charges on the plates but also 
on the arrangement of all the polarized molecules around this point. In evaluating ‘E\oc 

we simply remove the molecule from this point and calculate the field at this point 
coming from all sources, including neighboring polarized molecules, as visualized in 
Figure 7.7. £]0C will depend on the amount of polarization the material has experi¬ 
enced. The greater the polarization, the greater is the local field because there are big¬ 
ger dipoles around this point. depends on the arrangement of polarized molecules 
around the point of interest and hence depends on the crystal structure. In the simplest 
case of a material with a cubic crystal structure, or a liquid (no crystal structure), the 
local field <E\oc acting on a molecule increases with polarization as4 

2 Lorentz local 
£loc = £ + -—P [7.15] field in 

0 • dielectrics 

4 This field is called the Lorentz field and the proof, though not difficult, is not necessary for the present introductory 
treatment of dielectrics. This local field expression does not apply to dipolar dielectrics discussed in Section 7.3.2. 
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Clausius- 

Mossotti 

equation 

Equation 7.15 is called the Lorentz field. The induced polarization in the mole¬ 
cule now depends on this local field £ioc rather than the average field £. Thus 

/^induced = #e^loc 

The fundamental definition of electric susceptibility by the equation 

P = XetoZ 

is unchanged, which means that er = l + Xe, Equation 7.13, remains intact. The 
polarization is defined by P = Npinduced, and ^induced can be related to £ioc and hence to 
£ and P. Then 

P = (er ~ 1 )e0‘E 

can be used to eliminate £ and P and obtain a relationship between er and ae. This is 
the Clausius-Mossotti equation, 

er — 1 Note 

er + 2 3s0 
[7.161 

This equation allows the calculation of the macroscopic property er from micro¬ 
scopic polarization phenomena, namely, ae. 

EXAMPLE ELECTRONIC POLARIZABILITY OF A VAN DER WAALS SOLID The electronic polarizability of 
the Ar atom is 1.7 x 10-40 F m2. What is the static dielectric constant of solid Ar (below 84 K) 
if its density is 1.8 g cm-3? 

SOLUTION 

To calculate er we need the number of Ar atoms per unit volume N from the density d. If 
Mat = 39.95 is the relative atomic mass of Ar and NA is Avogadro’s number, then 

Kr_NAd _ (6.02 x 1023 mor‘)(1.8gcm-3) * ^ 

(39.95 g mol"1) 

with N = 2.71 x 1028 m 3 and = 1.7 x 10 40 F m2, we have 

, , Nae t , (2.71 x 1028)(1.7 x 10"40) , 
£r = 1 + - = 1 + -- = L52 

(8.85 x 10"12) 

If we use the Clausius-Mossotti equation, we get 

= 1.63 

The two values are different by about 7 percent. The simple relationship in Equation 7.14 
underestimates the relative permittivity. 



7. 2 Electronic Polarization: Covalent Solids 595 

7.2 ELECTRONIC POLARIZATION: 
COVALENT SOLIDS 

When a field is applied to a solid substance, the constituent atoms or molecules 
become polarized, as we visualized in Figure 7.5a. The electron clouds within each 
atom become shifted by the field, and this gives rise to electronic polarization. This 
type of electronic polarization within an atom, however, is quite small compared with 
the polarization due to the valence electrons in the covalent bonds within the solid. 
For example, in crystalline silicon, there are electrons shared with neighboring Si 
atoms in covalent bonds, as shown in Figure 7.8a. These valence electrons form 
bonds (i.e., become shared) between the Si atoms because they are already loosely 
bound to their parent atoms. If this were not the case, the solid would be a van der 
Waals solid with atoms held together by secondary bonds (e.g., solid Ar below 83.8 K). 
In the covalent solid, the valence electrons therefore are not rigidly tied to the ionic 
cores left in the Si atoms. Although intuitively we often view these valence electrons 
as living in covalent bonds between the ionic Si cores, they nonetheless belong to the 
whole crystal because they can tunnel from bond to bond and exchange places with 
each other. We refer to their wavefunctions as delocalized, that is, not localized to any 
particular Si atom. When an electric field is applied, the negative charge distribution 
associated with these valence electrons becomes readily shifted with respect to the 
positive charges of the ionic Si cores, as depicted in Figure 7.8b and the crystal ex¬ 
hibits polarization, or develops a polarization vector. One can appreciate the greater 
flexibility of electrons in covalent bonds compared with those in individual ionic 
cores by comparing the energy involved in freeing each. It takes perhaps 1-2 eV to 
break a covalent bond to free the valence electron, but it takes more than 10 eV to free 
an electron from an individual ionic Si core. Thus, the valence electrons in the bonds 
readily respond to an applied field and become displaced. This type of electronic po¬ 
larization, due to the displacement of electrons in covalent bonds, is responsible for 
the large dielectric constants of covalent crystals. For example er = 11.9 for the Si 
crystal and er = 16 for the Ge crystal. 

Si ionic core 

Negative charge cloud of valence 
electrons 

(a) 

► P 

(b) 

Figure 7.8 

(a) Valence electrons in covalent bonds in the 

absence of an applied field. 

(b) When an electric field is applied to a 

covalent solid, the valence electrons in the 

covalent bonds are shifted very easily with 

respect to the positive ionic cores. The whole 

solid becomes polarized due to the collective 

shift in the negative charge distribution of 

the valence electrons. 
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EXAMPLE 7.3 ELECTRONIC POLARIZABILITY OF COVALENT SOLIDS Consider a pure Si crystal that has 
er = 11.9. 

a. What is the electronic polarizability due to valence electrons per Si atom (if one could por¬ 
tion the observed crystal polarization to individual atoms)? 

b. Suppose that a Si crystal sample is electroded on opposite faces and has a voltage applied 
across it. By how much is the local field greater than the applied field? 

c. What is the resonant frequency fQ corresponding to coj! 

From the density of the Si crystal, the number of Si atoms per unit volume, N, is given as 
5 x 1028m~3. 

SOLUTION 

a. Given the number of Si atoms, we can apply the Clausius-Mossotti equation to find ae 

3e0 er — l 3(8.85 x 10“12) 11.9-1 

N er + 2 (5 x 1028) 11.9 + 2 
= 4.17 x 10-4° F m2 

This is larger, for example, than the electronic polarizability of an isolated Ar atom, which 
has more electrons. If we were to take the inner electrons in each Si atom as very roughly 
representing Ne, we would expect their contribution to the overall electronic polarizability 
to be roughly the same as the Ne atom, which is 0.45 x 10-40 F m2. 

b. The local field is 

But, by definition, 

Substituting for P, 

£ioc = £ + — P 

P — — (®r 1 

Eioc =‘E+-(er - 1)£ 

so the local field with respect to the applied field is 

^r = j(e,+2) = 4.63 

The local field is a factor of 4.63 greater than the applied field. 

c. Since polarization is due to valence electrons and there are four per Si atom, we can use 
Equation 7.7, 

j _ (z*2 V/2_ [ 
"" \meae) (9.1 

4(1.6 x 10-'9)2 

x 10—31 )(4.17 x 10-40) ]“-■ 65 x 10 6 rad s' 

The corresponding resonant frequency is co0/2n or 2.6 x 1015 Hz, which is typically asso¬ 
ciated with electromagnetic waves of wavelength in the ultraviolet region. 
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7.3 POLARIZATION MECHANISMS 

In addition to electronic polarization, we can identify a number of other polarization 
mechanisms that may also contribute to the relative permittivity. 

7.3.1 Ionic Polarization 

This type of polarization occurs in ionic crystals such as NaCl, KC1, and LiBr. The 
ionic crystal has distinctly identifiable ions, for example, Na+ and Cl~, located at well- 
defined lattice sites, so each pair of oppositely charged neighboring ions has a dipole 
moment. As an example, we consider the one-dimensional NaCl crystal depicted as a 
chain of alternating Na+ and Cl~ ions in Figure 7.9a. In the absence of an applied field, 
the solid has no net polarization because the dipole moments of equal magnitude are 
lined up head to head and tail to tail so that the net dipole moment is zero. The dipole 
moment p+ in the positive x direction has the same magnitude as p- in the negative x 
direction, so the net dipole moment 

Pnet = p+ ~ p- - 0 

In the presence of a field £ along the x direction, however, the Cl~ ions are pushed 
in the — x direction and the Na+ ions in the +x direction about their equilibrium 
positions. Consequently, the dipole moment p+ in the +x direction increases to p’+ 
and the dipole moment p- decreases to p'_, as shown in Figure 7.9b. The net di¬ 
pole moment is now no longer zero. The net dipole moment, or the average dipole 
moment, per ion pair is now (p+ — pi), which depends on the electric field £. 
Thus the induced average dipole moment per ion pair pav depends on the field £. 
The ionic polarizability a, is defined in terms of the local field experienced by the 
ions, 

Ionic 
Pav — Ofj^ioc 7.17 polarizability 

The larger the a,, the greater the induced dipole moment. Generally, a, is larger 
than the electronic polarizability ae by a factor of 10 or more, which leads to ionic 
solids having large dielectric constants. The polarization P exhibited by the ionic solid 

P+ P_ 

£-► 

Figure 7.9 

(a) A NaCl chain in the NaCl crystal without an 
x applied field. Average or net dipole moment per ion 

is zero. 

(b) In the presence of an applied field, the ions 
become slightly displaced, which leads to a net 
average dipole moment per ion. 
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is therefore given by 

P — N i pav — A^/a/Eioc 

where N{ is the number of ion pairs per unit volume. By relating the local field to £ and 
using 

Clausius- 

Mossotti 

equation for 

ionic 

polarization 

P = (er - 1 )e0£ 

we can again obtain the Clausius-Mossotti equation, but now due to ionic polarization, 

er - 1 

£r ~h 2 
[7.18] 

Each ion also has a core of electrons that become displaced in the presence of an 
applied field with respect to their positive nuclei and therefore also contribute to the po¬ 
larization of the solid. This electronic polarization simply adds to the ionic polarization. 
Its magnitude is invariably much smaller than the ionic contribution in these solids. 

7.3.2 Orientational (Dipolar) Polarization 

Certain molecules possess permanent dipole moments. For example, the HC1 molecule 
shown in Figure 7.10a has a permanent dipole moment p0 from the Cl- ion to the 
H+ ion. In the liquid or gas phases, these molecules, in the absence of an electric field, 
are randomly oriented as a result of thermal agitation, as shown in Figure 7.10b. When 
an electric field £ is applied, £ tries to align the dipoles parallel to itself, as depicted 
in Figure 7.10c. The Cl- and H+ charges experience forces in opposite directions. But 
the nearly rigid bond between Cl- and H+ holds them together, which means that the 

Figure 7.10 

(a) A HCI molecule possesses a permanent dipole 
moment p0. 

(b) In the absence of a field, thermal agitation of the 
molecules results in zero net average dipole moment per 
molecule. 

(c) A dipole such as HCI placed in a field experiences a 
torque that tries to rotate it to align p0 with the field £. 

(d) In the presence of an applied field, the dipoles try to 
rotate to align with the field against thermal agitation. 
There is now a net average dipole moment per molecule 
along the field. 

cr h+ 

t'o 

(a) 

Pav = ° 
t \ 

\ / V t/| 

(b) 

(c) (d) 
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molecule experiences a torque r about its center of mass.5 This torque acts to rotate the 
molecule to align p0 with £. If all the molecules were to simply rotate and align with 
the field, the polarization of the solid would be 

P = NPo 

where N is the number of molecules per unit volume. However, due to their thermal 
energy, the molecules move around randomly and collide with each other and with the 
walls of the container. These collisions destroy the dipole alignments. Thus the thermal 
energy tries to randomize the orientations of the dipole moments. A snapshot of the 
dipoles in the material in the presence of a field can be pictured as in Figure 7.10d in 
which the dipoles have different orientations. There is, nonetheless, a net average 
dipole moment per molecule pav that is finite and directed along the field. Thus the 
material exhibits net polarization, which leads to a dielectric constant that is deter¬ 
mined by this orientational polarization. 

To find the induced average dipole moment pav along £, we need to know the 
average potential energy E<ap of a dipole placed in a field £ and how this compares with 
the average thermal energy | kT per molecule as in the present case of five degrees of 
freedom. £dip represents the average external work done by the field in aligning the 
dipoles with the field. If § kT is much greater than E&p, then the average thermal 
energy of collisions will prevent any dipole alignment with the field. If, however, E&p 
is much greater than |kT, then the thermal energy is insufficient to destroy the dipole 
alignments. 

A dipole at an angle 0 to the field experiences a torque r that tries to rotate it, as 
shown in Figure 7.10c. Work done dW by the field in rotating the dipole by dO is r dO 
(as in F dx). This work dW represents a small change dE in the potential energy of 
the dipole. No work is done if the dipole is already aligned with £, when 0 = 0, which 
corresponds to the minimum in PE. On the other hand, maximum work is done when 
the torque has to rotate the dipole from 0 = 180° to 0 = 0° (either clockwise or coun¬ 
terclockwise, it doesn’t matter). The torque experienced by the dipole, according to 
Figure 7.10c, is given by 

r = (Fsin0)a or £posin0 

where 

Po = aQ 

If we take PE = 0 when 0 = 0, then the maximum PE is when 0 = 180°, or 

£max = f Po £ sin 0 do — Ipo'E 
Jo 

The average dipole potential energy is then fFmax or p0£. For orientational polar¬ 
ization to be effective, this energy must be greater than the average thermal energy. 
The average dipole moment pav along £ is directly proportional to the magnitude of p0 
itself and also proportional to the average dipole energy to average thermal energy 

Torque on a 

dipole 

I 5 The oppositely directed forces also slightly stretch the Cl -H+ bond, but we neglect this effect. 
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ratio, that is, 

Average 

dipole 

moment in 

orientational 

polarization 

Dipolar 

orientational 

polarizability 

Pot 
Psv OC Po 

If we were to do the calculation properly using Boltzmann statistics for the distri¬ 
bution of dipole energies among the molecules, that is, the probability that the dipole 
has an energy E is proportional to exp(—E/kT), then we would find that when 
p0E < kT (generally the case), 

P av 
1 P^ 
3 kT 

[7.191 

It turns out that the intuitively derived expression for pav is roughly the same as 
Equation 7.19. Strictly, of course, we should use the local field acting on each mole¬ 
cule, in which case £ is simply replaced by (E\oc. From Equation 7.19 we can define a 
dipolar orientational polarizability ad per molecule by 

lrf. 

ad 3 kT 
[7.20] 

It is apparent that, in contrast to the electronic and ionic polarization, dipolar 
orientational polarization is strongly temperature dependent. ad decreases with tem¬ 
perature, which means that the relative permittivity er also decreases with temperature. 
Dipolar orientational polarization is normally exhibited by polar liquids {e.g., water, 
alcohol, acetone, and various electrolytes) and polar gases (e.g., gaseous HC1 and 
steam). It can also occur in solids if there are permanent dipoles within the solid struc¬ 
ture, even if dipolar rotation involves a discrete jump of an ion from one site to another, 
such as in various glasses. 

7.3.3 Interfacial Polarization 

Interfacial polarization occurs whenever there is an accumulation of charge at an 
interface between two materials or between two regions within a material. The simplest 
example is interfacial polarization due to the accumulation of charges in the dielectric 
near one of the electrodes, as depicted in Figure 7.1 la and b. Invariably materials, how¬ 
ever perfect, contain crystal defects, impurities, and various mobile charge carriers such 
as electrons {e.g., from donor-type impurities), holes, or ionized host or impurity ions. 
In the particular example in Figure 7.1 la, the material has an equal number of positive 
ions and negative ions, but the positive ions are assumed to be far more mobile. For ex¬ 
ample, if present, the H+ ion (which is a proton) and the Li+ ion in ceramics and glasses 
are more mobile than negative ions in the structure because they are relatively small. 
Under the presence of an applied field, these positive ions migrate to the negative elec¬ 
trode. The positive ions, however, cannot leave the dielectric and enter the crystal struc¬ 
ture of the metal electrode. They therefore simply pile up at the interface and give rise 
to a positive space charge near the electrode. These positive charges at the interface at¬ 
tract more electrons to the negative electrode. This additional charge on the electrode, 
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Figure 7.11 

(a) A crystal with equal number of mobile positive ions and fixed negative ions. In the absence of a 
field, there is no net separation between all the positive charges and all the negative charges. 

(b) In the presence of an applied field, the mobile positive ions migrate toward the negative 
electrode and accumulate there. There is now an overall separation between the negative charges 
and positive charges in the dielectric. The dielectric therefore exhibits interfacial polarization. 

(c) Grain boundaries and interfaces between different materials frequently give rise to interfacial 
polarization. 

of course, appears as an increase in the dielectric constant. The term interfacial polar¬ 
ization arises because the positive charges accumulating at the interface and the re¬ 
mainder of negative charges in the bulk together constitute dipole moments that appear 
in the polarization vector P (P sums all the dipoles within the material per unit volume). 

Another typical interfacial polarization mechanism is the trapping of electrons 
or holes at defects at the crystal surface, at the interface between the crystal and the 
electrode. In this case we can view the positive charges in Figure 7.11a as holes and 
negative charges as immobile ionized acceptors. We assume that the contacts are 
blocking and do not allow electrons or holes to be injected, that is, exchanged between 
the electrodes and the dielectric. In the presence of a field, the holes drift to the nega¬ 
tive electrode and become trapped in defects at the interface, as in Figure 7.11b. 

Grain boundaries frequently lead to interfacial polarization as they can trap charges 
migrating under the influence of an applied field, as indicated in Figure 7.11c. Dipoles 
between the trapped charges increase the polarization vector. Interfaces also arise in 
heterogeneous dielectric materials, for example, when there is a dispersed phase 
within a continuous phase. The principle is then the same as schematically illustrated in 
Figure 7.11c. 

7.3.4 Total Polarization 

In the presence of electronic, ionic, and dipolar polarization mechanisms, the average 
induced dipole moment per molecule will be the sum of all the contributions in terms 
of the local field, 

Pa\ — ^e^loc ”1“ ^i^loc “1“ loc 

Total induced. 

dipole 

moment 



602 chapter 7 • Dielectric Materials and Insulation 

Table 7.2 Typical examples of polarization mechanisms 

Example Polarization Static sr Comment 

Ar gas Electronic 1.0005 Small N in gases: sr ^ 1 

Ar liquid (T < 87.3 K) Electronic 1.53 van der Waals bonding 

Si crystal Electronic polarization 

due to valence electrons 

11.9 Covalent solid; bond 

polarization 

NaCl crystal Ionic 5.90 Ionic crystalline solid 

CsCl crystal Ionic 7.20 Ionic crystalline solid 

Water Orientational 80 Dipolar liquid 

Nitromethane (27 °C) Orientational 34 Dipolar liquid 

PVC (polyvinyl 

chloride) 

Orientational 7 Dipole orientations partly 

hindered in the solid 

Clausius- 

Mossotti 

equation 

Each effect adds linearly to the net dipole moment per molecule, a fact verified by 
experiments. Interfacial polarization cannot be simply added to the above equation as 
cty Eioc because it occurs at interfaces and cannot be put into an average polarization per 
molecule in the bulk. Further, the fields are not well defined at the interfaces. In addition, 
we cannot use the simple Lorentz local field approximation for dipolar materials. That is, 
the Clausius-Mossotti equation does not work with dipolar dielectrics and the calcula¬ 
tion of the local field is quite complicated. The dielectric constant er under electronic and 
ionic polarizations, however, can be obtained from 

Sr - 1 1 
-- = -—(Neae + Nm) [7.211 
er + 2 3 s0 

Table 7.2 summarizes the various polarization mechanisms and the corresponding 
static (or very low frequency) dielectric constant. Typical examples where one mecha¬ 
nism dominates over others are also listed. 

EXAMPLE 7.4 IONIC AND ELECTRONIC POLARIZABILITY Consider the CsCl crystal which has one Cs+-Cl~ 
pair per unit cell and a lattice parameter a of 0.412 nm. The electronic polarizability of Cs+ and 
Cl- ions is 3.35 x 10-40 F m2 and 3.40 x 10-40 F m2, respectively, and the mean ionic polariz¬ 
ability per ion pair is 6 x 10-40 F m2. What is the dielectric constant at low frequencies and that 
at optical frequencies? 

SOLUTION 

The CsCl structure has one cation (Cs+) and one anion (Cl-) in the unit cell. Given the lattice pa¬ 
rameter a = 0.412 x 10-9 m, the number of ion pairs N, per unit volume is 1/a3 = 1 /(0.412x 
10-9m)3 = 1.43 x 1028 m-3. Nt is also the concentration of cations and anions individually. 
From the Clausius-Mossotti equation, 

gr ~ 1 

sr + 2 
r—[Af;ae(Cs+) + ty«e(CT) + N,a{] 
3e0 
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That is, 

er - 1 _ (1.43 x 1028 m~3)(3.35 x 10"40 + 3.40 x 10"40 + 6 x 10"40 F m2) 

er +2 ~ 3(8.85 x 10~12 Fm'1) 

Solving for er, we find sr = 7.56. 
At high frequencies—that is, near-optical frequencies—the ionic polarization is too slug¬ 

gish to allow ionic polarization to contribute to er. Thus, erop, relative permittivity at optical fre¬ 
quencies, is given by 

= J_[iWCs+) + W.-MCl-)] 
£rop "F 2 3 £0 

That is, 

grop - 1 _ (1.43 x 1028 m-3)(3.35 x 10"40 + 3.40 x 10"40 F m2) 

erop + 2 3(8.85 x 10~12 F m_I) 

Solving for erop, we find erop = 2.71. Note that experimental values are er — 7.20 at low fre¬ 
quencies and erop = 2.62 at high frequencies, very close to calculated values. 

7.4 FREQUENCY DEPENDENCE: DIELECTRIC 
CONSTANT AND DIELECTRIC LOSS 

7.4.1 Dielectric Loss 

The static dielectric constant is an effect of polarization under dc conditions. When 
the applied field, or the voltage across a parallel plate capacitor, is a sinusoidal sig¬ 
nal, then the polarization of the medium under these ac conditions leads to an ac di¬ 
electric constant that is generally different than the static case. As an example we will 
consider orientational polarization involving dipolar molecules. The sinusoidally 
varying field changes magnitude and direction continuously, and it tries to line up the 
dipoles one way and then the other way and so on. If the instantaneous induced dipole 
moment p per molecule can instantaneously follow the field variations, then at any 
instant 

P = [7.221 

and the polarizability ad has its expected maximum value from dc conditions, that is, 

ad = [7.231 

There are two factors opposing the immediate alignment of the dipoles with the 
field. First is that thermal agitation tries to randomize the dipole orientations. Colli¬ 
sions in the gas phase, random jolting from lattice vibrations in the liquid and solid 
phases, for example, aid the randomization of the dipole orientations. Second, the mol¬ 
ecules rotate in a viscous medium by virtue of their interactions with neighbors, which 
is particularly strong in the liquid and solid states and means that the dipoles cannot 
respond instantaneously to the changes in the applied field. If the field changes too 
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Figure 7.12 The applied dc field is suddenly 
changed from E0 to E at time t= 0. 

The induced dipole moment p has to decrease 
from a^0)Eo to a final value of ad|0)£. The 
decrease is achieved by random collisions of 
molecules in the gas. 

P 

rapidly, then the dipoles cannot follow the field and, as a consequence, remain ran¬ 
domly oriented. At high frequencies, therefore, ad will be zero as the field cannot 
induce a dipole moment. At low frequencies, of course, the dipoles can respond rapidly 
to follow the field and ad has its maximum value. It is clear that ad changes from its 
maximum value in Equation 7.23 to zero as the frequency of the field is increased. We 
need to find the behavior of ad as a function of frequency to so that we can determine 
the dielectric constant er by the Clausius-Mossotti equation. 

Suppose that after a prolonged application, corresponding to dc conditions, the 
applied field across the dipolar gaseous medium is suddenly decreased from £«, to £ 
at a time we define as zero, as shown in Figure 7.12. The field £ is smaller than £«,, : 
so the induced dc dipole moment per molecule should be smaller and given by ad(0)£ \ 
where a</(0) is ad at to = 0, dc conditions. Therefore, the induced dipole moment per 
molecule has to decrease, or relax, from ad(0)T:o to ad(0)E. In a gas medium the mol¬ 
ecules would be moving around randomly and their collisions with each other and the 
walls of the container randomize the induced dipole per molecule. Thus the decrease, 
or the relaxation process, in the induced dipole moment is achieved by random col¬ 
lisions. Assuming that r is the average time, called the relaxation time, between mol¬ 
ecular collisions, then this is the mean time it takes per molecule to randomize the 
induced dipole moment. If p is the instantaneous induced dipole moment, then 
p — a!j(0)£ is the excess dipole moment, which must eventually disappear to zero 
through random collisions as t -> oo. It would take an average r seconds to eliminate : 
the excess dipole moment p — ad (0)£. The rate at which the induced dipole moment ' 
is changing is then — [p — a£/(0)£]/r, where the negative sign represents a decrease. 
Thus, 

dp_ _ P ~ (*d(0)£ 

dt x 
[7.24] 

Dipolar 

relaxation 

equation 

Although we did not derive Equation 7.24 rigorously, it is nonetheless a good 
first-order description of the behavior of the induced dipole moment per molecule in 
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a dipolar medium. Equation 7.24 can be used to obtain the dipolar polarizability 
under ac conditions. For an ac field, we would write 

£ = £0 sin (cot) 

and solve Equation 7.24, but in engineering we prefer to use an exponential represen¬ 
tation for the field 

£ = £0 exp(jtot) Applied field 

as in ac voltages. In this case the impedance of a capacitor C and an inductor L become 
1/jcoC and jtoL, where j represents a phase shift of 90°. With £ = £0 exp(jtot) in 
Equation 7.24, we have 

dp 

dt 

P &d( 0) 
-1-<E0exp(jtot) 

r r 

Solving this we find the induced dipole moment as 

[7.25] 

Dipole 

relaxation 

equation 

p = expO'wr) 

where ad(co) is given by 

ad(co) = 
ad( 0) 

1 + jcor 
[7.26] 

and represents the orientational polarizability under ac field conditions. Polarizabil¬ 
ity ad{to) is a complex number that indicates that p and £ are out of phase.6 Put 
differently, if N is the number of molecules per unit volume, P = Np and £ are out of 
phase, as indicated in Figure 7.13a. At low frequencies, tor 1, ctd(to) is nearly 
0^(0), and p is in phase with £. The rate of relaxation 1 /r is much faster than the fre¬ 
quency of the field or the rate at which the polarization is being changed; p then closely 
follows £. At very high frequencies, cor 1, the rate of relaxation 1 / r is much slower 
than the frequency of the field and p can no longer follow the variations in the field. 

We can easily obtain the dielectric constant sr from otd(to) by using Equation 7.14, 
which then leads to a complex number for er since ad itself is a complex number. By 
convention, we generally write the complex dielectric constant as 

sr = e'r - js"r [7.27] 

where e'r is the real part and s"r is the imaginary part, both being frequency dependent, 
as shown in Figure 7.13b. The real part s’r decreases from its maximum value s'r (0), cor¬ 
responding to ad(0), to 1 at high frequencies when ad = 0 as to -+ oo in Equation 7.26. 
The imaginary part s”{to) is zero at low and high frequencies but peaks when cor = 1 
or when to = 1 / r. The real part e'r represents the relative permittivity that we would use 
in calculating the capacitance, as for example in C = srs0A/d. The imaginary part 
e"r (o>) represents the energy lost in the dielectric medium as the dipoles are oriented 
against random collisions one way and then the other way and so on by the field. Consider 

Orientational 

polarizability 

and frequency 

Complex 

relative 

permittivity 

I 6 The polarization P lags behind £ by some angle <j>, that is determined by Equation 7.26 as shown in Figure 7.13. 
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P = PQ sin(&w-<p) 

£ = £0 sin cot 

e'r and e" 

(b) 

Figure 7.13 

(a) An ac field is applied to a dipolar medium. The polarization P (P = Np) is out of phase with 
the ac field. 

(b) The relative permittivity is a complex number with real (fir) and imaginary (e?) parts that exhibit 
relaxation at co 1 /r. 

Figure 7.14 The dielectric medium behaves 
like an ideal (lossless) capacitor of capacitance 
C, which is in parallel with a conductance Cp. 

P = PQ sin(GM- <f>) 

the capacitor in Figure 7.14, which has this dielectric medium between the plates. Then 
the admittance 7, i.e., the reciprocal of impedance of this capacitor, with sr given in 
Equation 7.27 is 

Admittance of 

a parallel 

plate 

capacitor 

Y - 
j(oAe0er(co) 

d 

j(joAe0e'r{cL)) (oAE0e"(oL>) 

d + d 

which can be written as 

Y = jcoC + Gp [7.28] 
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where 

As0s'r 

d 

and 

Gp 
ooAs0e" 

d 

[7.29] 

[7.30] 

is a real number just as if we had a conductive medium with some conductance Gp or 
resistance 1 /Gp. The admittance of the dielectric medium according to Equation 7.28 
is a parallel combination of an ideal, or lossless, capacitor C, with a relative permittiv¬ 
ity e'r, and a resistance of Rp = l/GP as indicated in Figure 7.14. Thus the dielectric 
medium behaves as if CQ and Rp were in parallel. There is no real electric power dissi¬ 
pated in C, but there is indeed real power dissipated in Rp because 

V2 
Input power = IV = YV2 = jcoCV2 H- 

Rp 

and the second term is real. Thus the power dissipated in the dielectric medium is 
related to e" and peaks when co = 1/r. The rate of energy storage by the field is de¬ 
termined by co whereas the rate of energy transfer to molecular collisions is 
determined by 1/r. When co = 1/r, the two processes, energy storage by the field 
and energy transfer to random collisions, are then occurring at the same rate, and 
hence energy is being transferred to heat most efficiently. The peak in e" versus co 
is called a relaxation peak, which is at a frequency when the dipole relaxations are 
at the right rate for maximum power dissipation. This process is known as dielectric 
resonance. 

According to Equation 7.28, the magnitude of Gp and hence the energy loss is 
determined by e". In engineering applications of dielectrics in capacitors, we would 
like to minimize e" for a given s'r. We define the relative magnitude of e" with respect 
to s'r through a quantity, tan 5, called the loss tangent (or loss factor), as 

sff 
tan 5 = — [7.31] 

£r 

which is frequency dependent and peaks just beyond co = 1/r. The actual value of 1 /r 
depends on the material, but typically for liquid and solid media it is in the gigahertz 
range, that is, microwave frequencies. We can easily find the energy per unit time— 
power—dissipated as dielectric loss in the medium. The resistance Rp represents the 
dielectric loss, so 

Power loss V2 1 V2 1 V2 
V^vol = - = - x - S= -:- x — = —— coe0sr 

Volume Rp dA d dA d2 

coAe0s" 

Using Equation 7.31 and £ = V/d, we obtain 

Wvoi = co<E2s0s>r tan <5 [7.32] 

Equivalent 

ideal 

capacitance 

Equivalent 

parallel 

conductance 

Loss tangent 

Dielectric 

loss per unit 

volume 
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Radio Infrared Ultraviolet light 

Figure 7.15 The frequency dependence of the real and imaginary parts of the dielectric constant 
in the presence of interfacial, orientational, ionic, and electronic polarization mechanisms. 

Equation 7.32 represents the power dissipated per unit volume in the polarization 
mechanism: energy lost per unit time to random molecular collisions as heat. It is clear 
that dielectric loss is influenced by three factors: co, £, and tan S. 

Although we considered only orientational polarization, in general a dielectric 
medium will also exhibit other polarization mechanisms and certainly electronic 
polarization since there will always be electron clouds around individual atoms, or 
electrons in covalent bonds. If we were to consider the ionic polarizability in ionic 
solids, we would also find a / to be frequency dependent and a complex number. In this 
case, lattice vibrations in the crystal, typically at frequencies a>/ in the infrared region 
of the electromagnetic spectrum, will dissipate the energy stored in the induced dipole 
moments just as energy was dissipated by molecular collisions in the gaseous dipolar 
medium. Thus, the energy loss will be greatest when the frequency of the polarizing 
field is the same as the lattice vibration frequency, co = co{, which tries to randomize 
the polarization. 

We can represent the general features of the frequency dependence of the real and 
imaginary parts of the dielectric constant as in Figure 7.15. Although the figure shows 
distinctive peaks in e" and transition features in e'r, in reality these peaks and various 
features are broader. First, there is no single well-defined lattice vibration frequency 
but instead an allowed range of frequencies just as in solids where there is an allowed 
range of energies for the electron. Moreover, the polarization effects depend on the 
crystal orientation. In the case of polycrystalline materials, various peaks in different 
directions overlap to exhibit a broadened overall peak. At low frequencies the interfa¬ 
cial or space charge polarization features are even broader because there can be a num¬ 
ber of conduction mechanisms (different species of charge carriers and different 
carrier mobilities) for the charges to accumulate at interfaces, each having its own i 
speed. Orientational polarization, especially in many liquid dielectrics at room tem¬ 
perature, typically takes place at radio to microwave frequencies. In some polymeric j 
materials, this type of polarization involves a limited rotation of dipolar side groups j 
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Frequency (Hz) 

(a) 

Frequency ( x 1012 Hz) 

(b) 

Figure 7.16 Real and imaginary parts of the dielectric constant, e'r and e", versus frequency for (a) a 
polymer, PET, at 115 °C and (b) an ionic crystal, KCI, at room temperature. 

Both exhibit relaxation peaks but for different reasons. 
SOURCE: Data for (a) from author's own experiments using a dielectric analyzer (DEA), (b) from C. Smart, G. R. Wilkinson, 
A. M. Karo, and J. R. Hardy, International Conference on Lattice Dynamics, Copenhagen, 1963, as quoted by D. H. Martin, 
"The Study of the Vibration of Crystal Lattices by Far Infra-Red Spectroscopy," Advances in Physics, 14, no. 53-56, 1965, 
pp. 39-100. 

attached to the polymeric chain and can occur at much lower frequencies depending on 
the temperature. Figure 7.16 shows two typical examples of dielectric behavior, e'r and 
e" as a function of frequency, for a polymer (PET) and an ionic crystal (KCI). Both ex¬ 
hibit loss peaks, peaks in e" versus frequency, but for different reasons. The particular 
polymer, PET (a polyester), exhibits orientational polarization due to dipolar side 
groups, whereas KCI exhibits ionic polarization due to the displacement of K+ and Cl- 
ions. The frequency of the loss peak in the case of orientational polarization is highly 
temperature dependent. For the PET example in Figure 7.16 at 115 °C, the peak occurs 
at around 400 Hz, even below typical radio frequencies. 

DIELECTRIC LOSS PER UNIT CAPACITANCE AND THE LOSS ANGLE 8 Obtain the dielectric loss 
per unit capacitance in a capacitor in terms of the loss tangent. Obtain the phase difference 
between the current through the capacitor and that through Rp. What is the significance of 5? 

EXAMPLE 7.5 

SOLUTION 

We consider the equivalent circuit in Figure 7.14. The power loss in the capacitor is due to Rp. 

If V is the rms value of the voltage across the capacitor, then the power dissipated per unit 
capacitance Wcap is 

W vr cap 

V2 1 ,a>e0e’;A d 1/2a< 
— x — = V --— x -= V—- 
Rp C d e0e'rA s'r 

Wcap = V2a> tan 5 

or 



610 chapter 7 • Dielectric Materials and Insulation 

Table 7.3 Dielectric properties of three insulators 

/ = 60 Hz /= 1 MHz 

Material tan <5 (t>tan<5 Sf tan 8 co tan 8 

Polycarbonate 3.17 9 x t()-4 0.34 2.96 i x 10“2 6.2 x 104 

Silicone rubber 3.7 2.25 x 10“2 8.48 3.4 4 x 10“3 2.5 x 104 

Epoxy with mineral 

filler 

5 4.7 x 10~2 17.7 3.4 3 x 10"2 18 x 104 

As tan 8 is frequency dependent and peaks at some frequency, so does the power dissipated 
per unit capacitance. A clear design objective would be to keep Wcap as small as possible. Fur¬ 
ther, for a given voltage, Wcap does not depend on the dielectric geometry. For a given voltage 1 
and capacitance, we therefore cannot reduce the power dissipation by simply changing the 
dimensions of the dielectric. 

Consider the rms currents through Rp and C, /ioss and 7cap respectively, and their ratio,7 

1 

7loss V jd)C 0)6oS A d 
-= — x --= --— x -= -; tan S 
leap Rp V d jo)e0e'rA 

As expected, the two are 90° out of phase (—j) and the loss current (through RP) is a factor, 
tan 8, of the capacitive current (through C). The ratio of 7cap and the total current, 7,otai = 
7cap "I" 7ioss, is 

7cap _ 7cap _ 1 _ 1 

7totai 7cap -f- 7]0SS j ^ioss 1 j tan 8 
/ 
icap 

The phase angle between 7cap and 7totai is determined by the negative of the phase of the 
denominator term (1 - j tan <5). Thus the phase angle between 7cap and 7totai is 8, where 7cap leads 
7(0tai by 8. 8 is also called the loss angle. When the loss angle is zero, 7cap and 7,otai are equal and 
there is no loss in the dielectric. 

EXAMPLE 7.6 DIELECTRIC LOSS PER UNIT CAPACITANCE Consider the three dielectric materials listed in 
Table 7.3 with their dielectric constant e'r (usually simply stated as er ) and loss factors tan 8. At 
a given voltage, which dielectric will have the lowest power dissipation per unit capacitance at 
60 Hz? Is this also true at 1 MHz? 

SOLUTION 

The power dissipated at a given voltage per unit capacitance depends only on co tan 5, so we do 
not need to use e'r. Calculating co tan 8 or (2n f) tan 5, we find the values listed in the table at 
60 Hz and 1 MHz. At 60 Hz, polycarbonate has the lowest power dissipation per unit capaci¬ 
tance, but at 1 MHz it is silicone rubber. 

I 7 These currents are phasors, each with a rms magnitude and phase angle. 
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Table 7.4 Dielectric loss per unit volume for two insulators (/c is the thermal conductivity) 

/= 60 Hz /= 1 MHz 

Material e; 
Loss 

tan S (mW cm-3) 4 tan 8 

Loss 
(W cm"3) 

K 

(Wcni-'K-1) 

XLPE 2.3 3 x 10"4 0.230 2.3 4 x 10~4 5.12 0.005 
Alumina 8.5 1 x 10“3 2.84 8.5 1 x 10~3 47.3 0.33 

DIELECTRIC LOSS AND FREQUENCY Calculate the heat generated per second due to dielectric 
loss per cm3 of cross-linked polyethylene, XLPE (typical power cable insulator), and alumina, 
AI2O3 (typical substrate in thin- and thick-film electronics), at 60 Hz and 1 MHz at a field of 
100 kV cm-1. Their properties are given in Table 7.4. What is your conclusion? 

SOLUTION 

The power dissipated per unit volume is 

Wvoi = (2jrf)‘E2e0e'r tan 5 

We can calculate WVOi by substituting the properties of individual dielectrics at the given 
frequency /. For example, for XLPE at 60 Hz, 

Wvol = (2tt60Hz)(100 x 103 x 102 Vm_1)2(8.85 x 10-12 F m-1)(2.3)(3 x 1(T4) 

= 230 W m“3 

We can convert this into per cm3 by 

WL = = 0.230 mW cm-3 
v°i 10e 

which is shown in Table 7.4. 
From similar calculations we can obtain the heat generated per second per cm3 as shown in 

Table 7.4. The heats at 60 Hz are small. The thermal conductivity of the insulation and its con¬ 
necting electrodes can remove the heat without substantially increasing the temperature of the in¬ 
sulation. At 1 MHz, the heats generated are not trivial. One has to remove 5.12 W of heat from 
1 cm3 of XLPE and 47.3 W from 1 cm3 of alumina. The thermal conductivity k of XLPE is about 
0.005 W cm-1 K-1, whereas that of alumina is almost 100 times larger, 0.33 W cm-1 K-1. The 
poor thermal conductivity of polyethylene means that 5.12 W of heat cannot be conducted away 
easily and it will raise the temperature of the insulation until dielectric breakdown ensues. In the 
case of alumina, 47.3 W of heat will substantially increase the temperature. Dielectric loss is the 

mechanism by which microwave ovens heat food. Dielectric heating at high frequencies is used 
in industrial applications such as heating plastics and drying wood. 

7.4.2 Debye Equations, Cole-Cole Plots, 

and Equivalent Series Circuit 

Consider a dipolar dielectric in which there are both orientational and electronic 
polarizations, a a and ae, respectively, contributing to the overall polarizability. Electronic 
polarization ae will be independent of frequency over the typical frequency range of 

EXAMPLE 7.7 
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Dielectric 

constant of a 

dipolar 

material 

Dipolar 

dielectric 

constant 

Debye 

equations for 

real and 

imaginary 

parts 

operation of a dipolar dielectric, well below optical frequencies. At high frequencies, 
orientational polarization will be too sluggish too respond, ad = 0, and the er will be 
sr00. (The subscript “infinity” simply means high frequencies where orientational po¬ 
larization is negligible.) The dielectric constant and polarizabilities are generally re¬ 
lated through8 

N N N 
sr = 1 H-ae H-ad(to) = eroo + —ad{to) 

s0 s0 s0 

where we have combined 1 and ae terms to represent the high frequency er as sroo. Fur¬ 
ther Nad(0)/so determines the contribution of orientational polarization to the static 
dielectric constant enjc, so that Nad(0)/eo is simply (srdc — er00). Substituting for the 
frequency dependence of ad(co) from Equation 7.26, and writing sr in terms of real and 
imaginary parts, 

S'r ~ js" = Sr(X) + 
N MO) 

S0 1 + j(OT 
= Sroo + 

(Srdc &roo) 

1 + jcot 
[7.33] 

We can eliminate the complex denominator by multiplying both the denominator 
and numerator of the right-hand side by 1 - jcor and equate real and imaginary parts 
to obtain what are known as Debye equations: 

/ , Srdc Sroo 
er = [7.34a] 

Debye 

equations for 

real and 

imaginary 

parts 

and 
//   (,Srdc Sroo)(wt') 

r 1 + (cor)2 
[7.34b] 

Equations 7.34a and b reflect the behavior of s'r and e" as a function of frequency 
shown in Figure 7.13b. The imaginary part s"r that represents the dielectric loss ex¬ 
hibits a peak at a> = l/r which is called a Debye loss peak. Many dipolar gases and 
some liquids with dipolar molecules exhibit this type of behavior. In the case of solids 
the peak is typically much broader because we cannot represent the losses in terms of 
just one single well-defined relaxation time r; the relaxation in the solid is usually 
represented by a distribution of relaxation times. Further, the simple relaxation 
process that is described in Equation 7.25 assumes that the dipoles do not influence 
each other either through their electric fields or through their interactions with the 
lattice; that is, they are not coupled. In solids, the dipoles can also couple, which com¬ 
plicates the relaxation process. Nonetheless, there are also many solids whose dielectric 
relaxation can be approximated by a nearly Debye relaxation or by slightly modifying 
Equation 7.33. 

In dielectric studies of materials it is quite common to find a plot of the imaginary 
part (s") versus the real part (s'r) as a function of frequency to. Such plots are called 
Cole-Cole plots after their originators. The Debye equations 7.34a and b obviously 

8 This simple relationship is used because the Lorentz local field equation does not apply in dipolar dielectrics and 
the local field problem is particularly complicated in these dielectrics. 
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Figure 7.17 Cole-Cole plot is a plot of e" 

versus s[ as a function of frequency to. 

As the frequency is changed from low to high, the 
plot traces out a semicircle. 

Figure 7.18 A capacitor with a 
dipolar dielectric and its equivalent 
circuit in terms of an ideal Debye 
relaxation. 

provide the necessary values for e' and e" to be plotted for the present simple dipolar 
relaxation mechanism that has only a single relaxation time r. In fact, by simply 
putting in r = 1 second, we can calculate and plot e" versus s'r for co = 0 (dc) to 
at —> oo as shown in Figure 7.17. The result is a semicircle. While for certain sub¬ 
stances, such as gases and some liquids, the Cole-Cole plots do indeed generate a 
semicircle, for many dielectrics, the curve is typically flattened and asymmetric, and 
not a semicircle.9 

The Debye equations lead to a particular RC circuit representation of a dielectric 
material that is quite useful. Suppose that we have a resistance Rs in series with a ca¬ 
pacitor Cs, both of which are in parallel with the capacitor as in Figure 7.18. If we 
were to write down the equivalent admittance of this circuit, we would find that it cor¬ 
responds to Equation 7.33, that is, the Debye equation. (The circuit mathematics is 
straightforward and is not reproduced here.) The reader may wonder why this circuit is 
different than the general model shown in Figure 7.14. Any series Rs and Cs circuit can 
be transformed to be equivalent to a parallel Rp and Cp (or Gp and C in Figure 7.14) 
circuit as is well known in circuit theory; the relationships between the elements de¬ 
pend on the frequency. Many electrolytic capacitors are frequently represented by an 
equivalent series Rs and Cs circuit as in Figure 7.18. If A is the area and d is the thick¬ 
ness of a parallel plate capacitor with a dipolar dielectric, then 

Coo = 
&o&roo A cx = 

&o(.£rdc £roo)A 

and R< = [7.351 

Notice that in this circuit model, Rs, Cs, and Coo do not depend on the fre¬ 
quency, which is only true for an ideal Debye dielectric, that with a single relax¬ 
ation time r. 

Equivalent 

circuit of a 

Debye 

dielectric 

9 The departure is simply due to the fact that a simple relaxation process with a single relaxation time cannot 
describe the dielectric behavior accurately. (A good overview of non-Debye relaxations is given by Andrew Jonscher 
inj. PhysD, 32, R57, 1999.) 
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EXAMPLE 7.8 

Non-Debye 

relaxation 

Gauss’s law 

NEARLY DEBYE RELAXATION There are some dielectric solids that exhibit nearly Debye re¬ 

laxation. One example is the Lao.7Sro.3Mn03 ceramic whose relaxation peak and Cole-Cole 

plots are similar to those shown in Figures 7.13b and 7.17,10 especially in the high-frequency 

range past the resonance peak. Lao.7Sro.3Mn03’s low frequency (er(jc) and high frequency (sr00) 

dielectric constants are 3.6 and 2.58, respectively, where low and high refer, respectively, to fre¬ 

quencies far below and above the Debye relaxation peak, i.e., erdc and eroo. The Debye loss 
peak occurs at 6 kHz. Calculate s'r and the dielectric loss factor tan S at 29 kHz. 

SOLUTION 

The loss peak occurs when a>0 = I/r, so that r = 1 /co0 = 1/(2tt6000) = 26.5 ps. We can now 
calculate the real and imaginary parts of er at 29 kHz, 

< = + TTT^ = 2-58 + 7-- 6 ~ 2'58_ 
1 + {cot)2 1 + [(2jt)(29 X 103)(26.5 x 10"6)]2 

„ _ (grdc ~ eroo)(cQT) _ (3.6 - 2.58)[(2tt)(29 x 103)(26.5 x 10~6)] 

1 + (cor)2 ~ 1 + [(2tt)C29 x 103)(26.5 x 10'6)]2 

and hence 

= 2.62 

= 0.202 

tan S — 
K 

0.202 

2.62 
= 0.077 

which is close to the experimental value of 0.084. 

This example was a special case of nearly Debye relaxation. Debye equations have been 

modified over the years to account for the broad relaxation peaks that have been observed, par¬ 

ticularly in polymeric dielectric, by writing the complex er as 

sr — £roo + 
grdc 

[l + {jcoxYY 
[7.36] 

where a and are constants, typically less than unity (setting a — fi = 1 generates the Debye 

equations). Such equations are useful in engineering for predicting er at any frequency from a 

few known values at various frequencies, as highlighted in this simple nearly Debye example. 

Further, if r dependence on the temperature T is known (often r is thermally activated), then 

we can predict er at any co and T. 

7.5 GAUSS’S LAW AND BOUNDARY CONDITIONS 
An important fundamental theorem in electrostatics is Gauss’s law, which relates the inte¬ 

gration of the electric field over a surface to the total charge enclosed. It can be derived 

from Coulomb’s law, or the latter can be derived from Gauss’s law. Suppose £n is the elec¬ 

tric field normal to a small surface area dA on a closed surface, as shown in Figure 7.19; 

then summing £„ dA products over the whole surface gives total net chqrgeGtotai inside it, 

<f ‘L,dA = ^ 
J Surface 

[7.37] 

10 Z. C. Xia et a/., J. Phys. Cond. Matter, 13, 4359, 2001. The origin of the dipolar activity in this ceramic is quite 
complex and involves an electron hopping (jumping) from a Mn3+ to Mn4+ ion; we do not need the physical details 
in the example. 
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Charges inside 

Figure 7.19 Gauss's law. 

The surface integral of the electric field normal to the surface is the 

total charge enclosed. The field is positive if it is coming out, 

negative if it is going into the surface. 

Gauss surface 

la) (c) 

Figure 7.20 

(a) The Gauss surface is a very thin rectangular surface just surrounding the positive electrode and enclosing the 

positive charges Q0. The field cuts only the face just inside the capacitor. 

(b) A solid dielectric occupies part of the distance between the plates. The vacuum (air)—dielectric boundary is 

parallel to the plates and normal to the fields £i and £2- 

(c) A thin rectangular Gauss surface at the boundary encloses the negative polarization charges. 

where the circle on the integral sign represents integrating over the whole surface (any 
shape) enclosing the charges constituting <2totai as shown in Figure 7.19. The total 
charge £?totai includes all charges, both free charges and bound polarization charges. 
Gauss’s law is one of the most useful laws for calculating electric fields in electrostat¬ 
ics, more so than the Coulomb law with whidV'thifreader is probably more familiar. 
The surface can be of any shape as long as it contains the charges. We generally choose 
convenient surfaces to simplify the integral in Equation 7.37, and these convenient sur¬ 
faces are called Gauss surfaces. It should be noted from Figure 7.19 that the field £„ is 
coming out from the surface. 

As an example, we can consider the field in the parallel plate capacitor in Fig¬ 
ure 7.20a with no dielectric medium. We draw a thin rectangular Gauss surface (a hy¬ 
pothetical surface) just enclosing the positive electrode that contains the free charges 
+Q0 on the plate. The field £0 is normal to the inner face (area A) of the Gauss surface. 
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Further, we can assume that £0 is uniform across the plate surface, which means that 
the integral of £„ dA in Equation 7.37 over the surface is simply £0A. There is no field 
on the other faces of this rectangular Gauss surface. Then from Equation 7.37, 

£0A = 
Qo 

which gives 

Oo_ 

So 

[7.38] 

where 

o0 
Qo 

A 

is the free surface charge density. This is the same as the field we calculated using 
£0 = V/d and Q„ = CV. 

An important application of Gauss’s law is determining what happens at boundaries 
between dielectric materials. The simplest example is the insertion of a dielectric slab to 
only partially fill the distance between the plates, as shown in Figure 7.20b. The applied 
voltage remains the same, but the field is no longer uniform between the plates. There 
is an air-dielectric boundary. The field is different in the air and dielectric regions. 
Suppose that the field is £i in the air region and £2 in the dielectric region. Both these 
fields are normal to the boundary by the choice of the dielectric shape (faces parallel to 
the plates). As a result of polarization, bound surface charges +AoP and —AaP appear 
on the surfaces of the dielectric slab, as shown in Figure 7.20b, where aP = P, the po¬ 
larization in the dielectric. We draw a very narrow rectangular Gauss surface that en¬ 
compasses the air-dielectric interface and hence the surface polarization charges -AoP 
as shown in Figure 7.20c. The field coming in at the left face in air is £1 (taken as neg¬ 
ative) and the field coming out at the right face in the dielectric is £2. The surface inte¬ 
gral £„ dA and Gauss’s law become 

or 

£2A - £j A = 
— (Ag/>) 

s0 

£ 1 = £2 + 
P 

So 

The polarization P and the field £2 in the dielectric are related by 

Z' P = S0Xe2*E,2 
or 

P = s0(sr 2 1)£”2 

where Xe2 is the electrical susceptibility and er2 is the relative permittivity of the 
inserted dielectric. Then, substituting for P, we can relate £1 and £2, 

£1 = £2 + (sr2 ~ m2 
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Boundary 

Figure 7.21 

(a) Boundary conditions 
between dielectrics. 

(b) The case for X,\ = Xa. 

or 

£i = er 2^2 

The field in the air part is £[ and the relative permittivity is 1. The example in Fig¬ 
ure 7.20b involved a boundary between air (vacuum) and a dielectric solid, and the 
boundary was parallel to the plates and hence normal to the fields £i and £2. A more 
general expression can be shown to relate the normal components of the electric field, 
shown as £„i and £„2 in Figure 7.21a, on either side of a boundary by 

^rl^nl = [7.39] 

There is a second boundary condition that relates the tangential components of the 
electric field, shown as £,i and £,2 in Figure 7.21a, on either side of a boundary. These 
tangential fields must be equal. 

£/1 = £,2 [7.40] 

We can readily appreciate this boundary condition by examining the fields in a 
parallel plate capacitor, which has two dielectrics longitudinally filling the space 
between the plates but with a boundary parallel to the field, as shown in Figure 7.21b. 
The field in each, £,i and £,2, is parallel to the boundary. The voltage across each lon¬ 
gitudinal dielectric slab is the same, and since £ = dV/dx, the field in each is the 
same, £,j = £,2 = V/d. 

The above boundary conditions are widely used in explaining dielectric behavior 
when boundaries are involved. For example, consider a small disk-shaped cavity within 
a solid dielectric between two electrodes, as depicted in Figure 7.22. The disk-shaped 
cavity has its face perpendicular to the electric field. Suppose that the dielectric length d 

is 1 cm and the cavity size is on the scale of micrometers. The average field within the 
dielectric will still be close to V/d because in integrating the field £(jt) to find the volt¬ 
age across the dielectric, the contribution from a tiny distance of a few microns will be 
negligible compared with contributions coming over the rest of the 1 cm. But the field 
within the cavity will not be the same as the average field £i in the dielectric. If er\ = 5 
for the dielectric medium and the cavity has air, then at the cavity face we have 

®r2^2 = Sfl^l 

General 

boundary 

condition 

General 

boundary 

condition 
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Figure 7.22 Field in the cavity is 

higher than the field in the solid. 

which gives 

Air insulation in a 100 micron (0.1 mm) thick cavity breaks down when £2 is typically 
100 kV cm-1. From £2 = 5( V/d)> a voltage of 20 kV will result in the breakdown of air 
in the cavity and hence a discharge current. This is called a partial discharge as only a 
partial breakdown of the insulation, that in the cavity, has occurred between the electrodes. 
Under an ac voltage, the discharge in the cavity can often be sustained by the capacitive 
current through the surrounding dielectric. Without this cavity, the dielectric would accept 
a greater voltage across it, which in this case is typically greater than 100 kV. 

EXAMPLE 7.9 FIELD INSIDE A THIN DIELECTRIC WITHIN A SECOND DIELECTRIC When the dielectric fills the 
whole space between the plates of a capacitor, the net field within the dielectric is the same as 
before, £ = V/d. Explain what happens when a dielectric slab of thickness t <£ d is inserted in 
the middle of the space between the plates, as shown in Figure 7.23. What is the field inside the 
dielectric? 

SOLUTION 

The problem is illustrated in Figure 7.23 and has symmetry in that the field in air on either side 
of the dielectric is the same and £1. The boundary conditions give 

Sri'Ei = 8r 2£2 

Figure 7.23 A thin slab of dielectric is placed in the middle of a 

parallel plate capacitor. 

The field inside the thin slab is £2. 

d 

erl Er2' £rl 
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Further, the integral of the field from one plate to the other must be V because dV/dx = £. 
Examining Figure 7.23, we see that the integration is 

Ey(d - t) + E21 = V 

We now have to eliminate £| between the previous two equations and obtain E2, which can 
be done by algebraic manipulation, 

£2 
Sr 1 

Sr2-~(Sr2 ~ ®rl) 
a 

[7.41] 

If t <?C d, then this approximates to 

£2 and £ 1 (r « d) [7.42] 

Clearly 'Ey in the air space remains the same as the applied field V jd. Since ery = 1 (air) 
and er2 > l,E2 in the thin dielectric slab is smaller than the applied field V/d. On the other 
hand, if we have air space between two dielectric slabs, then the field in this air space will be 
greater than the field inside the two dielectric slabs. Indeed, if the applied voltage is sufficiently 
large, the field in the air gap can cause dielectric breakdown of this region. 

GAUSS'S LAW WITHIN A DIELECTRIC AND FREE CHARGES Gauss’s law in Equation 7.37 
contains the total charge Q,otai, enclosed within the surface. Generally, these enclosed 
charges are free charges gfree, due to the free carriers on the electrode, and bound charges Qp, 

due to polarization charges on the dielectric surface. Apply Gauss’s law using a Gaussian rec¬ 
tangular surface enclosing the left electrode and the dielectric surface in Figure 7.24. Show 
that the electric field E in the dielectric can be expressed in terms of free charges only, <7free, 

through 

<f EndA = [7.43] 
•'Surface S0Sr 

where er is the relative permittivity of the dielectric medium. 

+Q\ 
~Qf 

free .Gauss surface 

'+ 1; — 

+ + — 
+ • £ . 

+ 1 

+ ""I + — 

+ 1 

! \ 
' Dielectric 

I- 

Figure 7.24 A convenient Gauss surface for calculating the 

field inside the dielectric is a very thin rectangular surface 

enclosing the surface of the dielectric. 

The total charges enclosed are the free charges on the 

electrodes and the polarization charges on the surface of the 

dielectric. 

EXAMPLE 7.10 

Free charges 

and field in 

a dielectric 
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SOLUTION 

We apply Gauss’s law to a hypothetical rectangular surface enclosing the left electrode and the 
dielectric surface. The field £ in the dielectric is normal and outwards at the Gauss surface in 
Figure 7.24. Thus £„ = £ in the left-hand side of Equation 7.37. 

SqA'E — Q total = 2 free Q P — 2 free AP — 2 free As0(Sr 1)£ 

where we have used P = e0(er — 1)£. Rearranging, 

S0SrA<E' — 2free 

Since A£ is effectively the surface integral of £„, the above corresponds to writing Gauss’s 
law in a dielectric in terms of free charges as 

<f %ndA = 
"Surface ea8r 

The above equation assumes that polarization P and £ are linearly related, 

P = e0(er - 1)£ 

We note that if we only use free charges in Gauss’s law, then we simply multiply s0 by the 
dielectric constant of the medium. The above proof is by no means a rigorous derivation. 

7.6 DIELECTRIC STRENGTH AND 
INSULATION BREAKDOWN 

7.6.1 Dielectric Strength: Definition 

A defining property of a dielectric medium is not only its ability to increase capacitance 
but also, and equally important, its insulating behavior or low conductivity so that the 
charges are not simply conducted from one plate of the capacitor to the other through 
the dielectric. Dielectric materials are widely used as insulating media between conduc¬ 
tors at different voltages to prevent the ionization of air and hence current flashovers be¬ 
tween conductors. The voltage across a dielectric material and hence the field within it 
cannot, however, be increased without limit. Eventually a voltage is reached that 
causes a substantial current to flow between the electrodes, which appears as a short be¬ 
tween the electrodes and leads to what is called dielectric breakdown. In gaseous and 
many liquid dielectrics, the breakdown does not generally permanently damage the ma¬ 
terial. This means that if the voltage causing breakdown is removed, then the dielectric 
can again sustain voltages until the voltage is sufficiently high to cause breakdown 
again. In solid dielectrics the breakdown process invariably leads to the formation of 
a permanent conducting channel and hence to permanent damage. The dielectric 
strength £br is the maximum field that can be applied to an insulating medium without 
causing dielectric breakdown. Beyond ‘Ebr, dielectric breakdown takes place. The di¬ 
electric strength of solids depends on a number of factors besides simply the molecular 
structure, such as the impurities in the material, microstructural defects (e.g., microvoids), 
sample geometry, nature of the electrodes, temperature, and ambient conditions (e.g., 
humidity), as well as the duration and frequency of the applied field. Dielectric strength 
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Table 7.5 Dielectric strength; typical values at room temperature and 1 atm 

Dielectric Medium Dielectric Strength Comments 

Atmosphere at 1 atm pressure 31.7 kV cm-1 at 60 Hz 1 cm gap. Breakdown by electron 

avalanche by impact ionization. 

SF6 gas 79.3 kV cm-' at 60 Hz Used in high-voltage circuit 

breakers to avoid discharges. 

Polybutene > 138 kV cm-1 at 60 Hz Liquid dielectric used as oil filler 

and HV pipe cables. 

Transformer oil 128 kV cm-1 at 60 Hz 

Amorphous silicon dioxide 10 MV cm-1 dc Very thin oxide films without 

(SiC>2) in MOS technology defects. Intrinsic breakdown limit. 

Borosilicate glass 10 MV cm-1 duration of 10 ills Intrinsic breakdown. 

6 MV cm-1 duration of 30 s Thermal breakdown. 

Polypropylene 295-314 kV cm"1 Likely to be thermal breakdown 

or electrical treeing. 

is different under dc and ac conditions. There are also aging effects that slowly degrade 
the properties of the insulator and reduce the dielectric strength. For engineers involved 
in insulation, the dielectric strength of solids is therefore one of the most difficult para¬ 
meters to interpret and use. For example, the breakdown field also depends on the 
thickness of the insulation because thicker insulators have more volume and hence a 
greater probability of containing a microstructural defect (e.g., a microcavity) that can 
initiate a dielectric breakdown. Table 7.5 shows some typical dielectric strengths for 
various dielectrics used in electrical insulation. Unpressurized gases have lower break¬ 
down strengths than liquids and solids. 

7.6.2 Dielectric Breakdown and Partial Discharges: Gases 

Due to cosmic radiation, there are always a few free electrons in a gas. If the field is 
sufficiently large, then one of these electrons can be accelerated to sufficiently large 
kinetic energies to impact ionize a neutral gas molecule and produce an additional free 
electron and a positively charged gas ion. Both the first and liberated electrons are now 
available to accelerate in the field again and further impact ionize more neutral gas 
molecules, and so on. Thus, an avalanche of impact ionization processes creates many 
free electrons and positive gas ions in the gas, which give rise to a discharge current be¬ 
tween the electrodes. The process is similar to avalanche breakdown in a reverse- 
biased pn junction. The breakdown in gases depends on the pressure. The concentration 
of gas molecules is greater at higher pressures. This means that the mean separation be¬ 
tween molecules, and, hence, the mean free path of a free electron, is shorter. Shorter 
mean free paths inhibit the free electrons from accelerating to reach impact ionization en¬ 
ergies unless the field is increased. Thus, generally, £br increases with the gas pressure. 
The 60 Hz breakdown field for an air gap of 1 cm at room temperature and at atmospheric 
pressure is about 31.7 kV cm-1. On the other hand, the gas sulfurhexafluoride, SF6, has 
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High voltage conductor 

1 
Gas 

Ground 

Void in dielectric 
Crack (or defect) at dielectric- 

fa) (b) (c) 

Figure 7.25 

(a) The field is greatest on the surface of the cylindrical conductor facing the ground. If the voltage 

is sufficiently large, this field gives rise to a corona discharge. 

(b) The field in a void within a solid can easily cause partial discharge. 

(c) The field in the crack at the solid-metal interface can also lead to a partial discharge. 

a dielectric strength of 79.3 kV cm-1 and an even higher strength when pressurized. 
SF<5 is therefore used instead of air in high-voltage circuit breakers. 

A partial discharge occurs when only a local region of the dielectric is exhibiting 
discharge, so the discharge does not directly connect the two electrodes. For example, 
for the cylindrical conductor carrying a high voltage above a grounded plate, as in Fig¬ 
ure 7.25a, the electric field is greatest on the surface of the conductor facing the ground. 
This field initiates discharge locally in this region because the field is sufficiently high 
to give rise to an electron avalanche effect. Away from the conductor, however, the 
field is not sufficiently strong to continue the electron avalanche discharge. This type 
of local discharge in high field regions is termed corona discharge. Voids and cracks 
occurring within solid dielectrics and discontinuities at the dielectric-electrode inter¬ 
face can also lead to partial discharges as the field in these voids is higher than the 
average field in the dielectric, and, further, the dielectric strength in the gas (e.g., atmo¬ 
sphere) in the void is less than that of the continuous solid insulation. Figure 7.25b and 
c depict two examples of partial discharges occurring in voids, one inside the solid 
(perhaps an air or gas bubble introduced during the processing of the dielectric) and the 
other (perhaps in the form of a crack) at the solid-electrode interface. In practice, a 
variety of factors can lead to microvoids and microcavities inside solids as well as at 
interfaces. Partial discharges in these voids physically and chemically erode the sur¬ 
rounding dielectric region and lead to an overall deterioration of the dielectric strength. 
If uncontrolled, they can eventually give rise to a major breakdown. 

7.6.3 Dielectric Breakdown: Liquids 

The processes that lead to the breakdown of insulation in liquids are not as clear as 
the electron avalanche effect in gases. In impure liquids with small conductive parti¬ 
cles in suspension, it is believed that these impurities coalesce end to end to form a 
conducting bridge between the electrodes and thereby give rise to discharge. In some 
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liquids, the discharge initiates as partial discharges in gas bubbles entrapped in the liq¬ 
uid. These partial discharges can locally raise the temperature and vaporize more of the 
liquid and hence increase the size of the bubble. The eventual discharge can be a series 
of partial discharges in entrapped gas bubbles. Moisture absorption and absorption of 
gases from the ambient generally deteriorate the dielectric strength. Oxidation of cer¬ 
tain liquids, such as oils, with time produces more acidic and hence higher conductiv¬ 
ity inclusions or regions that eventually give discharge. In some liquids, the discharge 
involves the emission of a large number of electrons from the electrode into the liquid 
due to field emission at high fields. This is a discharge process by electrode injection. 

7.6.4 Dielectric Breakdown: Solids 

There are various major mechanisms that can lead to dielectric breakdown in solids. 
The most likely mechanism depends on the dielectric material’s condition and some¬ 
times on extrinsic factors such as the ambient conditions, moisture absorption being a 
typical example. 

Intrinsic Breakdown or Electronic Breakdown The most common type of 
electronic breakdown is an electron avalanche breakdown. A free electron in the 
conduction band (CB) of a dielectric in the presence of a large field can be accelerated 
to sufficiently large energies to collide with and ionize a host atom of the solid. The 
electron gains an energy e£br£ when it moves a distance i under an applied field £br. 
If this energy is greater than the bandgap energy Eg> then the electron, as a result of a 
collision with the lattice vibrations, can excite an electron from the valence band to the 
conduction band, that is, break a bond. Both the primary and the released electron can 
further impact ionize other host atoms and thereby generate an electron avalanche 
effect that leads to a substantial current. The initial conduction electrons for the 
avalanche are either present in the CB or are injected from the metal into the CB as a 
result of field-assisted thermal emission from the Fermi energy in the metal to the CB 
in the dielectric. Taking typical values, Eg ^ 5 eV and t to be of the order of the mean 
free path for lattice scattering, say ~50 nm, one finds £br % 1 MV cm-1. Obviously, 
£br depends on the choice of i, but its order of magnitude indicates voltages that are 
quite large. This type of breakdown represents an upper theoretical limit that is proba¬ 
bly approached by only certain dielectrics—those that have practically no defects. 
Usually, microstructural defects lead to a lower dielectric strength than the limit indi¬ 
cated by intrinsic breakdown. Silicon dioxide (Si02) films with practically no struc¬ 
tural defects in present MOS (metal-oxide-semiconductor) capacitors (as in the gates 
of MOSFETs) probably exhibit an intrinsic breakdown. 

If dielectric breakdown does not occur by an electron avalanche effect (perhaps 
due to short mean free paths in the insulator), then another insulation breakdown 
mechanism is the enormous increase in the injection of electrons from the metal elec¬ 
trode into the insulator at very high fields as a result of field-assisted emission.11 It has 

11 The emission of electrons by tunneling from an electrode in the presence of a large field was treated in Chapter 4 
as Fowler-Nordheim field emission. 



624 chapter 7 • Dielectric Materials and Insulation 

been proposed that insulation breakdown under short durations in some thin polymer 
films is due to tunneling injection. 

Thermal Breakdown Finite conductivity of the insulation means that there is Joule 
heat crT,2 being released within the solid. Further, at high frequencies, the dielectric loss, 
V2co tan S, becomes especially significant. For example, the work done by the external 
field in rotating the dipoles is transferred more frequently to random molecular colli¬ 
sions as heat as the frequency of the field increases. Both conduction and dielectric 
losses therefore generate heat within the dielectric. If this heat cannot be removed from 
the solid sufficiently quickly by thermal conduction (or by other means), then the tem¬ 
perature of the dielectric will increase. The increase in the temperature invariably in¬ 
creases the conductivity of an insulator. The increase in the conductivity then leads to 
more Joule heating and hence further rises in the temperature and so on. If the heat can¬ 
not be conducted away to limit the temperature, then the result is a thermal runaway 
condition in which the temperature and the current increase until a discharge occurs 
through various sections of the solid. As a consequence of sample inhomogeneities, fre¬ 
quently thermal runaway is severe in certain parts of the solid that become hot spots and 
suffer local melting and physical and chemical erosion. Hot spots are those local regions 
or inhomogeneities where a or e" is larger or where the thermal conductivity is too poor 
to remove the heat generated. Local breakdown at various hot spots eventually leads to 
a conducting channel connecting the opposite electrodes and hence to a dielectric 
breakdown. Since it takes time to raise the temperature of the dielectric, due to the heat 
capacity, this breakdown process has a marked thermal lag. The time to achieve thermal 
breakdown depends on the heat generated, and hence on £2. Conversely, this means that 
the dielectric strength *Ebr depends on the duration of application of the field. For exam¬ 
ple, at 70 °C, pyrex has an £br of typically 9 MV cm-1 if the applied field duration is kept 
short, not more than 1 ms or so. If the field is kept for 30 s, then the breakdown field is 
only 2.5 MV cm-1. Dielectric breakdown in various ceramics and glasses at high fre¬ 
quencies has been attributed directly to thermal breakdown. A characteristic feature of 
thermal breakdown is not only the thermal lag, the time dependence, but also the tem¬ 
perature dependence. Thermal breakdown is facilitated by increasing the temperature of 
the dielectric, which means that £br decreases with temperature. 

Electromechanical Breakdown and Electrofracture A dielectric medium 
between oppositely charged electrodes experiences compressional forces because 
the opposite charges + Q and - Q on the plates attract each other, as depicted in Fig¬ 
ure 7.26. As the voltage increases, so does the compressive load, and the dielectric 
becomes squeezed, or the thickness d gets smaller. At each stage, the increase in the j 
compressive load is normally balanced by the elastic deformation of the insulation to ; 
a new smaller thickness. However, if the elastic modulus is sufficiently small, then j 
compressive loads cannot be simply balanced by the elasticity of the solid, and there is 
a mechanical runaway for the following reasons. The decrease in d, due to the com- * 
pressive load, leads to a higher field (£ = Vfd) and also to more charges on the 
electrodes (Q = CV, C = e0£rA/d). This in turn leads to a greater compressive 
load, which further decreases d, and so on, until the shear stresses within the insula- . 
tion cause the insulation to flow plastically (for example, by viscous deformation). . 
Eventually, the insulation breaks down. In addition, the increase in £ as d gets ! 
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Figure 7.26 An exaggerated schematic illustration of a soft dielectric 

medium experiencing strong compressive forces due to the applied 

voltage. 

smaller results in more Joule (cr£2) and dielectric-loss heating (co'E2 tan 5) in the di¬ 
electric, which increases the temperature and hence lowers the elastic modulus and 
viscosity, thereby further deteriorating the mechanical stability. It is also possible for 
the field during the mechanical deformation of the dielectric to reach the thermal 
breakdown field, in which case the dielectric failure is not truly a mechanical break¬ 
down mechanism though initiated by mechanical deformations. Another possibility 
is the initiation and growth of internal cracks (perhaps filamentary cracks) by inter¬ 
nal stresses around inhomogeneous regions inside the dielectric. For example, an 
imperfection or a tiny cavity experiences shear stresses and also large local electric 
fields. Combined effects of both large shear stresses and large electric fields eventu¬ 
ally lead to crack propagation and mechanical and, hence, dielectric failure. This 
type of process is sometimes called electrofracture. It is generally believed that cer¬ 
tain thermoplastic polymers suffer from electromechanical dielectric breakdown, 
especially close to their softening temperatures. Polyethylene and polyisobutylene 
have been cited as examples. 

Internal Discharges These are partial discharges that take place in microstructural 
voids, cracks, or pores within the dielectric where the gas atmosphere (usually air) has 
lower dielectric strength. A porous ceramic, for example, would experience partial 
discharges if the applied field is sufficiently large. The discharge current in a void, 

Electrical breakdown by treeing 
(formation of discharge channels) in a 
low-density polyethylene insulation 
when a 50 Hz, 20 kV (rms) voltage is 
applied for 200 minutes to an 
electrode embedded in the insulation. 

SOURCE: J. W. Billing and D. J. 
Groves, Proceedings of the Institution 
of Electrical Engineers, 212, 1451, 
1974. 
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Outer electrode 

Dielectric insulator 
(e.gpolyethylene) 

Inner electrode 
Tiny pore or crack 

Electrical treeing 

Semiconducting 
polymer sheaths 

Cable jacket 

(a) 

Figure 7.27 

(a) A schematic illustration of electrical treeing breakdown in a high-voltage coaxial cable that was 

initiated by a partial discharge in the void at the inner conductor-dielectric interface. 

(b) A schematic diagram of a typical high-voltage coaxial cable with semiconducting polymer layers 

around the inner conductor and around the outer surface of the dielectric. 

such as those in Figure 7.25b and c, can be easily sustained under ac conditions, which 
accounts for the severity of this type of breakdown mechanism under ac conditions, j 

Initially, the pore size (or the number of pores) may be small and the partial discharge j 

insignificant, but with time the partial discharge erodes the internal surfaces of the void. | 
Partial discharges can locally melt the insulator and can easily cause chemical transfer- j 
mations. Eventually, and usually, an electrical tree type of discharge develops from a j 
partial discharge that has been eroding the dielectric, as depicted in Figure 7.27a for a j 

high-voltage cable in which there is a tiny void at the interface between the dielectric ■ 
and the inner conductor (generated perhaps by the differential thermal expansion of the : 
electrode and polymeric insulation). The erosion of the dielectric by the partial dis- j 

charge propagates like a branching tree. The “tree branches” are erosion channels— 1 
hollow filaments of various sizes—in which gaseous discharge takes place and forms 
a conducting channel during operation. 

In the case of a coaxial high-voltage cable in Figure 7.27a, the dielectric is usually j 

a polymer, polyethylene (PE) being one of the most popular. The electric field is maxi- ! 
mum at the surface of the inner conductor, which is the reason for the initiation of most j 

electrical trees near this surface. Electrical treeing is substantially controlled by having 
semiconductive polymer layers or sheaths surrounding the inner conductor and the 
outer surface of the insulator, as shown in Figure 7.27b. For flexibility, the inner con¬ 
ductor is frequently multicored, or stranded, rather than solid. Due to the extrusion 
process used to draw the insulation, the semiconductive polymer sheaths are bonded to ! 
the insulation. There are therefore practically no microvoids at the interfaces between 
the insulator and the semiconducting sheath. Further, these semiconducting polymer 
sheaths are sufficiently conductive to become “part of the electrodes.” Both the con- j 

ductor and the adjacent semiconductor are roughly at the same voltage, which means s 
that there is no breakdown in the semiconductor-conductor interfaces. There is nor- i 
mally an outer j acket (e. g., PVC) to protect the cable. 1 
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Some typical water trees found in field aged cables. 
Left: Trees in a cable with tape and graphite insulation. 
Right: Trees in a cable with strippable insulation. 

SOURCE: P. Werellius, P. Tharning, R. Eriksson, 
B. Holmgren. J. Gafvert, "Dielectric Spectroscopy for 
Diagnosis of Water Tree Deterioration in XLPE 
Cables," IEEE Transactions on Dielectrics and 
Electrical Insulation, vol. 8, February 2001, p. 34, 
figure 10 (©IEEE, 2001). 

Insulation Aging It is well recognized that during service, the properties of an 
insulating material become degraded and eventually dielectric breakdown occurs at a 
field below that predicted by experiments on fresh forms of the insulation. Aging is a 
term used to describe, in a general sense, the deterioration in the properties of the in¬ 
sulation. Aging therefore determines the useful life of the insulation. There are many 
factors that either directly or indirectly affect the properties and performance of an in¬ 
sulator in service. Even in the absence of an electric field, the insulation will experi¬ 
ence physical and chemical aging whereby its physical and chemical properties change 
considerably. An insulation that is subjected to temperature and mechanical stress vari¬ 
ations can develop structural defects, such as microcracks, which are quite damaging 
to the dielectric strength, as mentioned above. Irradiation by ionizing radiation such as 
X-rays, exposure to severe ambient conditions such as excessive humidity, ozone, and 
many other external conditions, through various chemical processes, deteriorate the 
chemical structure and properties of an insulator. This is generally much more severe 
for polymers than ceramics, but it is not practical to use a solid ceramic insulation in a 
coaxial power cable. Oxidation of a polymeric insulation with time is another form of 
chemical aging and is well-known to degrade the insulation performance. This is the rea¬ 
son for adding various antioxidants into semicrystalline polymers for use in insulation. 
The chemical aging processes are generally accelerated with temperature. In service, 
the insulation also experiences electrical aging as a result of the effects of the field on 
the properties of the insulation. For example, dc fields can disassociate and transport 
various ions in the structure and thereby slowly change the structure and properties of 
the insulation. Electrical trees develop as a result of electrical aging because, in ser¬ 
vice, the ac field gives rise to continual partial discharges in an internal or surface mi¬ 
crocavity, which then erodes the region around it and slowly grows like a branching 
tree. In well-manufactured insulation systems, electrical treeing has been substantially 
reduced or eliminated from microvoids. A form of electrical aging that is currently in 
vogue is water treeing, which eventually leads to electrical treeing. The definition of 
a water tree, as viewed under an optical microscope, is a diffused bushy (or broccoli) 
type growth that consists of millions of microscopic voids (per mm3) containing water 
or aqueous electrolyte. They invariably occur in moist environments and are relatively 
nonconducting, which means that they do not themselves lead to a direct discharge. 

External Discharges There are many examples where the surface of the insulation 
becomes contaminated by ambient conditions such as excessive moisture, deposition 
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Figure 7.28 Time to 

breakdown and the field at 

breakdown £br are interrelated 

and depend on the mechanism 

that causes the insulation 

breakdown. 

External discharges have been 

excluded. 

SOURCE: Based on L. A. Dissado 
and J. C. Fothergill, Electrical 
Degradation and Breakdown in 
Polymers, United Kingdom: Peter 
Peregrinus Ltd. for IEE, 1992, p. 63 
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of pollutants, dirt, dust, and salt spraying. Eventually the contaminated surface de¬ 
velops sufficient conductance to allow discharge between the electrodes at a field 
below the normal breakdown strength of the insulator. This type of dielectric break¬ 
down over the surface of the insulation is termed surface tracking. 

It is apparent that there are a number of dielectric breakdown mechanisms and the 
one that causes eventual breakdown depends not only on the properties and quality of the 
material but also on the operating conditions, environmental factors being no less im¬ 
portant. Figure 7.28 provides an illustrative diagram showing the relationship between 
the breakdown field and the time to breakdown. An insulation that can withstand large 
fields for a very short duration will break down at a lower field if the duration of the field 
increases. The breakdown mechanism is also likely to change from being intrinsic to j 
being, perhaps, thermal. When insulation breakdown occurs in times beyond a few days, j 
it is generally attributed to the degradation of the insulation, which eventually leads to a 
breakdown through, most probably, electrical treeing. It is also apparent that it is not pos¬ 
sible to clearly identify a specific dielectric breakdown mechanism for a given material. 

EXAMPLE 7.11 DIELECTRIC BREAKDOWN IN A COAXIAL CABLE Consider the coaxial cable in Figure 7.29 
with a and b defining the radii of the inner and outer conductors. 

a. Using Gauss’s law, find the capacitance of the coaxial cable. 

b. What is the electric field at r from the center of the cable (r > a)? Where is the field 
maximum? 

c. Consider two candidate materials for the dielectric insulation: cross-linked polyethylene, 
(XLPE) and silicone rubber. Suppose that the inner conductor diameter is 5 mm and the 
insulation thickness is also 5 mm. What is the voltage that will cause dielectric breakdown 
in each insulator? 
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Gauss surface 

Figure 7.29 A schematic diagram for the calculation of the 

capacitance of a coaxial cable and the field at point r from 

the axis. 

Consider an infinitesimally thin cylindrical shell of radius rand 

thickness dr in the dielectric and concentrically around the 

inner conductor. This surface is chosen as the Gauss surface. 

The voltage across the dielectric thickness dr is dV. The field 

£ = -dV/dr. 

d. What typical voltage will initiate a partial discharge in a small air pore (perhaps formed 
during mechanical and thermal stressing) at the inner conductor-insulator interface? 
Assume that the breakdown field for air at 1 atm and gap spacing around 0.1 mm is about 
100 kV cm-1. 

SOLUTION 

Consider a cylindrical shell of thickness dr of the dielectric as shown in Figure 7.29. Suppose 
that the voltage across the shell thickness is dV. Then the field £ at r is —dV/dr (this is the de¬ 
finition of £). Suppose that (2free is the free charge on the inner conductor. We take a Gauss 
surface that is a cylinder of radius r and concentric with the inner conductor as depicted in Fig¬ 
ure 7.29. The surface area A of this cylinder is 2jt rL where L is the length of the cable. The field 
at the surface, at distance r, is £, which is normal to A and coming out of A. Then from Equa¬ 
tion 7.43 

Thus 

rE{lTcrL) = —- 
BgSr 

[7.44] 

dV   Qfree 

dr e0er2nrL 

This can be integrated from r = a, where the voltage is V, to b, where V = 0. Then 

v = - g*S- Inf i) [7.45] 
£0£r2nL \aj 

Capacitance 

of a coaxial 

cable 

The capacitance per unit length can be calculated using a = 2.5 mm and 

b = a + Thickness = 7.5 mm 

and the appropriate dielectric constants, £r = 2.3 for XLPE and 3.7 for silicone rubber. The val¬ 
ues are around 100-200 pF per meter, as listed in the fourth column in Table 7.6. 

We can obtain the capacitance of the coaxial cable from Cc 

e0er2nL 

= Q free / V, which is 

Gcoax — 

-© 
[7.46] 
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Table 7.6 Dielectric insulation candidates for a coaxial cable 

er 

Strength 

(60 Hz) C (60 Hz) Breakdown Voltage for Partial 

Dielectric (60 Hz) (kV era1) (pFm-1) Voltage (kV) Discharge in a Microvoid (kV) 

XLPE 2.3 217 116 59.6 11.9 

Silicone rubber 3.7 158 187 43.4 7.4 

Field in a 

coaxial cable 

Maximum 

field in a 

coaxial cable 

Breakdown 

voltage 

The electric field £ follows directly when we substitute for Qfrec from Equation 7.45 into 
Equation 7.44, 

£ = [7.47] 

Equation 7.47 is valid for r from a to b (there is no field within the conductors). The field 
is maximum where r = a. 

£ max [7.48] 

The breakdown voltage Vbr is reached when this maximum field £max reaches the dielectric 
strength or the breakdown field £br 

Vbr = In [7.49] 

The breakdown voltages calculated from Equation 7.49 are listed in the fifth column in 
Table 7.6. Although the values are high, it must be remembered that, due to a number of 
other factors such as insulation aging, one cannot expect the cable to withstand these volt¬ 
ages forever. 

If there is an air cavity or bubble at the inner conductor to dielectric surface, then the field 
in this gaseous space will be £air « er£max, where £max is the field at r = a. Air breakdown 
occurs when 

Eair = £air-br = 100 kV Cffl'1 

at 1 atm and 25 °C for a 0.1 mm gap. Then tEmsjL £air-t>r/£r- The corresponding voltage from 
Equation 7.48 is 

The voltages for partial discharges for the two coaxial cables are shown in the sixth 
column of Table 7.6. It should be noted that these voltages will only give partial discharges con¬ 
tained within microvoids and will not normally lead to the immediate breakdown of the insu¬ 
lation. The partial discharges erode the cavities and also release vapor from the polymer that 
accumulates in the cavities. Thus, gaseous content and pressure in a cavity will change as the 
partial discharge continues. For example, the pressure buildup will increase the breakdown 
field and elevate the voltage for partial breakdown. Eventual degradation is likely to lead to 
electrical treeing. 
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We should also note that the actual field in the air cavity depends on the shape of the cavity, 
and the above treatment is only valid for a thin disk-like cavity lying perpendicular to the field 
(see Section 7.9, Additional Topics). 

7.7 CAPACITOR DIELECTRIC MATERIALS 

7.7.1 Typical Capacitor Constructions 

The selection criteria of dielectric materials for capacitors depend on the capacitance 
value, frequency of application, maximum tolerable loss, and maximum working volt¬ 
age, with size and cost being additional external constraints. Requirements for high- 
voltage power capacitors are distinctly different than those used in small integrated 
circuits. Large capacitance values are more easily obtained at low frequencies because 
low-frequency polarization mechanisms such as interfacial and dipolar polarization 
make a substantial contribution to the dielectric constant. At high frequencies, it becomes 
more difficult to achieve large capacitances and at the same time maintain acceptable 
low dielectric loss, inasmuch as the dielectric loss per unit volume is s0e'r(o‘E2 tan 5. 

The bar-chart diagrams in Figures 7.30 and 7.31 provide some typical examples of 
dielectrics for a range of capacitance values and for a range of usable frequencies. For 
example, electrolytic dielectrics characteristically provide capacitances between one 
to thousands of microfarads, but their frequency response is typically limited to below 

Figure 7.30 Examples of dielectrics 

that can be used for various capacitance 

‘1 values. 
&fii 

lpF InF 1 pF 103 |iF 104pF 
Capacitance 

High permittivity ceramic 

_Low-loss ceramic and glass 

Mica film 

Polymer film 

A1 electrolytic 

Ta electrolytic 

1 Hz 1 kHz 1 MHz 1 GHz 
Frequency 

Figure 7.31 Examples of dielectrics that can 

be used in various frequency ranges. 
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Figure 7.32 Single-and multilayer dielectric (a) Single-layer ceramic capacitor (b) Multilayer ceramic capacitor 
capacitors. (e.g., disk capacitors) (stacked ceramic layers) 

10 kHz. On the other hand, polymeric film capacitors typically have values less than 
10 /xF but a frequency response that is flat well into the gigahertz range. 

We can understand the principles utilized in capacitor design from the capacitance 
of a parallel plate capacitor, 

C = 
So^fA 

d 
[7.50] 

where sr infers s'. Large capacitances can be achieved by using high er dielectrics, 
thin dielectrics, and large areas. There are various commercial ceramics, usually a mix¬ 
ture of various oxides or ferroelectric ceramics, that have high dielectric constants, 
ranging up to several thousands. These are typically called high-AT (or high-*:), where 
K (or k) stands for the relative permittivity. A ceramic dielectric with er — 10, d of 
perhaps 10 fim, and an area of 1 cm2 has a capacitance of 885 pF. Figure 7.32a shows 
a typical single-layer ceramic capacitor. The thin ceramic disk or plate has suitable 
metal electrodes, and the whole structure has been encapsulated in an epoxy by dip¬ 
ping it in a thermosetting resin. The epoxy coating prevents moisture from degrading 
the dielectric properties of the ceramic (increasing e" and the loss, tan 8). One way to 
increase the capacitance is to connect N number of these in parallel, and this is done in 
a space-efficient way by using the multilayer ceramic structure shown in Figure 7.32b. 
In this case there are Aelectroded dielectric layers. Each ceramic has offset metal elec¬ 
trodes that align with the opposite sides of the plate and make contact with the metal 
terminations on these sides. The result is N number of parallel plate capacitors. There 
is therefore an effective use of volume as the surface area of the component stays the 
same but the height increases to at least Nd. By using multilayer ceramic structures, 
capacitances up to a few hundred microfarads have been recently obtained. 

Many wide-frequency-range capacitors utilize polymeric thin films for two reasons. 
Although sr is typically 2 to 3 (less than those for many ceramics), it is constant over a 
wide frequency range. The dielectric loss e0£ra)'E2 tan 8 becomes significant at high fre¬ 
quencies and polymers have low tan 8 values. Low er values mean that one has to find a 
space-efficient way of constructing polymer film capacitors. One method is shown in 
Figure 7.33a and b for constructing a metallized film polymer capacitor. Two polymeric 
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Figure 7.33 Two polymer tapes in (a), each with a metallized film electrode on the 

surface (offset from each other), can be rolled together (like a Swiss roll) to obtain a 

polymer film capacitor as in (b). 

As the two separate metal films are lined at opposite edges, electroding is done over the 

whole side surface. 

Figure 7.34 Aluminum 

electrolytic capacitor. 

tapes have metallized electrodes (typically vacuum deposited Al) on one surface, leaving 
a margin on one side. These metal film electrodes have been offset in opposite directions 
so that they line up with the opposite sides of the tapes. The two tapes together are rolled 
up (like a Swiss-roll cake) and the opposite sides are electroded using suitable conducting 
glues or other means. The concept is therefore similar to the multilayer ceramic capacitor 
except that the layers are rolled up to form a circular cross section. It is also possible to 
cut and stack the layers as in the multilayer ceramic construction. 

Electrolytic capacitors provide large values of capacitance while maintaining a tol¬ 
erable size. There are various types of electrolytic capacitors. In aluminum electrolytic 
capacitors, the metal electrodes are two Al foils, typically 50-100 /im thick, that are sep¬ 
arated by a porous paper medium soaked with a liquid electrolyte. The two foils together 
are wound into a cylindrical form and held within a cylindrical case, as shown in Fig¬ 
ure 7.34a. Contrary to intuition, the paper-soaked electrolyte is not the dielectric. The 
dielectric medium is the thin alumina AI2O3 layer grown on the roughened surface of one 
of the foils, as shown in Figure 7.34b. This foil is then called the anode (4- terminal). 
Both Al foils are etched to obtain rough surfaces, which increases the surface area 
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Figure 7.35 Solid electrolyte tantalum capacitor. 

(a) A cross section without fine detail. 

(b) An enlarged section through the Ta capacitor. 

compared with smooth surfaces. The capacitor is called electrolytic because the AI2O3 

layer is grown electrolytically on one of the foils and is typically 0.1 pm in thickness. 
This small thickness and the large surface area are responsible for the large capaci¬ 
tance. The electrolyte is conducting and serves to heal local minor breakdowns in the 
AI2O2 by an electrolytic reaction, provided that the anode has been positively biased. 
The capacitive behavior is due to the Al/(Al203)/electrolyte structure. Furthermore, 
AI/AI2O3 contact is like a metal to p-type semiconductor contact and has rectifying 
properties. It must be reverse-biased to prevent charge injection into the AI2O3 and 
hence conduction through the capacitor. Thus the A1 must be connected to the positive 
terminal, which makes it the anode. When the electrolytic A1 capacitor in Figure 7.34b 
is oppositely biased, it becomes conducting. 

Electrolytic capacitors using liquid electrolytes tend to dry up over a long period, 
which is a disadvantage. Solid electrolyte tantalum capacitors overcome the drying- 
up problem by using a solid electrolyte. The structure of a typical solid Ta capacitor is 
shown in Figure 7.35a and b. The anode (+ electrode) is a porous (sintered) Ta pellet 
that has the surface anodized to obtain a thin surface layer of tantalum pentoxide, Ta20s, 
which is the dielectric medium (with e'r = 28). The Ta pellet with Ta20s is then coated 
with a thick solid electrolyte, in this case MnC>2. Subsequently, graphite and silver paste 
layers are applied. Leads are then attached and the whole construction is molded into a 
resin chip. Solid tantalum capacitors are widely used in numerous electronics applica¬ 
tions due to their small size, temperature and time stability, and high reliability. 

7.7.2 Dielectrics: Comparison 

The capacitance per unit volume Cvoi, which characterizes the volume efficiency of 
a dielectric, can be obtained by dividing C by Ad, 

Cvoi = ^ [7.511 

It is clear that large capacitances require high dielectric constants and thin dielectrics. 
We should note that d appears as d2, so the importance of d cannot be understated. 

Capacitance 

per unit 

volume 
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Table 7.7 Comparison of dielectrics for capacitor applications 

Capacitor Name 

Polypropylene Polyester Mica 

Aluminum, 

Electrolytic 

Tantalum, 

Electrolytic, 

Solid High-K Ceramic 

Dielectric Polymer film Polymer film Mica Anodized Anodized X7R 

AI2O3 film Ta205 film BaTiC>3 base 
er 2.2-2.3 3.2-3.3 6.9 8.5 27 2000 
tan <5 4 x 10-4 4 x 10-3 2 X 10~4 1 0.05-0.1 0.01 0.01 
£br (kV mm-1) dc 100-350 100-300 50-300 400-1000 300-600 10 
d (typical minimum) (pm) 3-4 1 2-3 0.1 0.1 10 
Cvoi (pF cm-3) 2 30 15 7500* 24,000* 180 

RP = l/GpOcfl) 400 40 800 1.5-3 16 16 

for C = 1 pF, 

/ = 1 kHz 

Evoi (mj cm-3)1 10 15 8 1000 1200 100 

Polarization Electronic Electronic and Ionic Ionic Ionic Large ionic 

dipolar displacement 

* Proper volumetric calculations must also consider the volumes of electrodes and the electrolyte necessary for these dielectrics to work; 
hence the number would have to be decreased. 

^Evoi depends very sensitively on £br and the choice of rj; hence it can vary substantially. 

NOTES: Values are typical. Assume 7) = 3. The table is for comparison purposes only. Breakdown fields are typical dc values and can 
vary substantially, by at least an order of magnitude; (Ebr depends on the thickness, material quality, and the duration of the applied voltage. 
Polyester is PET, or polyethylene terephthalate. Mica is potassium aluminosilicate, a muscovite crystal. X7R is the name of a particular 
BaTiOa-based ceramic solid solution. 

Although mica has a higher sr than polymer films, the latter can be made quite thin, a 
few microns, which leads to a greater capacitance per unit volume. The reason that 
electrolytic aluminum capacitors can achieve large capacitance per unit volume is that 
d can be made very thin over a large surface area by using the liquid electrolyte to heal 
minor local dielectric breakdowns. Table 7.7 shows a selection of dielectric materials 
for capacitor applications and compares the “volume efficiency” Cvoi based on a typi¬ 
cal minimum thickness that a convenient process can handle. It is apparent that, com¬ 
pared with polymeric films, ceramics have substantial volume efficiency as a result of 
large dielectric constants (high-# ceramics) in some cases and as a consequence of a 
thin dielectric thickness in other cases (AI2O3). 

Another engineering consideration in selecting a dielectric is the working voltage. 
Although d can be decreased to obtain large capacitances per unit volume, this also 
decreases the working voltage. The maximum voltage that can be applied to a capaci¬ 
tor depends on the breakdown field of the dielectric medium £br, which itself is a 
highly variable quantity. A safe working voltage must be some safety factor rj less than 
the breakdown voltage £brd. Thus, if Vm is the maximum safe working voltage, then 
the maximum energy that can be stored per unit volume is given by 

E»ol = \CVI X 
1 

Ad 

£oBr 2 

,2 ^br 2 772 
17.52] 

Maximum 

energy per 

unit volume 
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Dielectric 

loss per unit 

volume 

It is clear that both e'r and £br of the dielectric are significant in determining the 
energy storage ability of the capacitor. Moreover, at the maximum working voltage, 
the rate of dielectric loss per unit volume in the capacitor becomes 

<£2 

Wvoi = -%a>e0e'r tan <5 [7.53] 
r 

Those materials that have relatively higher tan 8 exhibit greater dielectric losses. 
Although dielectric losses may be small at low frequencies, at high frequencies they 
become quite significant. Table 7.7 compares the energy storage efficiency Ew\ and 
tan 8 for various dielectrics. It seems that ceramics have a better energy storage effi¬ 
ciency than polymers. High-# ceramics tend to have large tan 8 values and suffer from 
greater dielectric loss. Polystyrene and polypropylene have particularly low tan 8 as 
the polarization mechanism is due to electronic polarization and the dielectric losses 
are the least. Indeed, polystyrene and polypropylene capacitors have found applica¬ 
tions in high-quality audio electronics. Equations 7.52 and 7.53 should be used with 
care, because the breakdown field £br can depend on the thickness d, among many 
other factors, including the quality of the dielectric material. For example, for 
polypropylene insulation, £br is typically quoted as roughly 50 kV mm-1 (500 kV 
cm-1), whereas for thin films (e.g., 25 pm), over short durations, £br can be as high as 
200 kV mm-1. Further, in some cases, £br is more suitably defined in terms of the max¬ 
imum allowable leakage current, that is, a field at which the dielectric is sufficiently 
conducting. 

The temperature stability of a capacitor is determined by the temperature depen¬ 
dences of e'r and tan 8, which are controlled by the dominant polarization mechanism. 
For example, polar polymers have permanent dipole groups attached to the polymer \ 
chains as in polyethyleneterephthalate (PET). In the absence of an applied field, these I 
dipoles are randomly oriented and also restricted in their rotations by neighboring i 
chains, as depicted in Figure 7.36a. In the presence of an applied dc field, as in Fig¬ 
ure 7.36b, some very limited rotation enables partial dipolar (orientational) polariza- j 
tion to take place. Typically, at room temperature, dipolar contribution to er under ac ' 
conditions, however, is small because restricted and hindered rotation prevents the 
dipoles to closely follow the ac field. Close to the softening temperature of the poly¬ 
mer, the molecular motions become easier and, further, there is more volume between 
chains for the dipoles to rotate. The dipolar side groups and polarized chains become 
capable of responding to the field. They can align with the field and also follow the 
field variations, as shown in Figure 7.36c. Dipolar contribution to er is substantial even | 
at high frequencies. Both e' and tan 8 therefore increase with temperature. Thus, polar ■ 
polymers exhibit temperature dependent er and tan 8, which reflect in the properties of I 
the capacitor. 1 

On the other hand, in nonpolar polymers such as polystyrene and polypropylene, 1 
the polarization is due to electronic polarization and er and tan 8 remain relatively a 
constant. Thus polystyrene and polypropylene capacitors are more stable compared m 
with PET (polyester) capacitors. The change in the capacitance with temperature isl 
measured by the temperature coefficient of capacitance (TCC), which is defined as I 
the fractional (or percentage) change in the capacitance per unit temperature change.* 
The temperature controls not only er but also the linear expansion of the dielectric,■ 
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Figure 7.36 

(a) A polymer dielectric that has dipolar side groups attached to the polymer chains. With no 

applied field, the dipoles are randomly oriented. 

(b) In the presence of an applied field, some very limited rotation enables dipolar polarization to 

take place. 

(c) Near the softening temperature of the polymer, the molecular motions are rapid and there is 

also sufficient volume between chains for the dipoles to align with the field. The dipolar 

contribution to sr is substantial, even at high frequencies. 

which changes the dimensions A and d. For example, polystyrene, polycarbonate, and 
mica capacitors are particularly stable with small TCC values. Plastic capacitors are typ¬ 
ically limited to operations well below their melting temperatures, which is one of their 
main drawbacks. The specified operating temperature, for example, from —55 °C to 
125 °C, for many of the ceramic capacitors is often a limitation of the epoxy coating of 
the capacitor rather than the actual limitation of the ceramic material. In many capaci¬ 
tors, the working voltage has to be derated for operation at high temperatures and high 
frequencies because £br decreases with ambient temperature and the frequency of the 
applied field. For example, a 1000 V dc polypropylene capacitor will have a substan¬ 
tially lower ac working voltage, e.g., 100 V at 10 kHz. 

DIELECTRIC LOSS AND EQUIVALENT CIRCUIT OF A POLYESTER CAPACITOR AT 1 kHz Fig¬ 
ure 7.37 shows the temperature dependence of e' and tan 8 for a polyester film. Calculate the 
equivalent circuit at 25 °C at 1 kHz for a 560 pF PET capacitor that uses a 0.5 micron thick poly¬ 
ester film. What happens to these values at 100 °C? 

EXAMPLE 7.12 

SOLUTION 

From Figure 7.37 at 25 °C, s'r — 2.60 and tan 8 ^ 0.002. The capacitance C at 25 °C is given as 
560 pF. The equivalent parallel conductance Gp, representing the dielectric loss, is given by 

a)Ae0e'r tan 8 
GP = 

d 
= coC tan 5 
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Figure 7.37 Real part of the dielectric 

constant s'r and loss tangent, tan 5, at 

1 kHz versus temperature for PET. 

SOURCE: Data obtained by Kasap and 
Maeda (1995) using a dielectric analyzer 
PEA}. 

Substituting 

and tan S = 0.002, we get 

(o = 2nf = 2000tc 

GP = (2000tt)(560 x 10_12)(0.002) = 7.04 x 1CT9 
1 

n 

This is equivalent to a resistance of 142 M£2. The equivalent circuit is an ideal (lossless) capaci¬ 
tor of 560 pF in parallel with a 142 resistance (this resistance value decreases with the 
frequency). 

At 100 °C, e'r = 2.69 and tan S & 0.01, so the new capacitance is 

MlOO °C) 2.69 

c'“>- - = <56° pF)Ii5 - 579 pF 

The equivalent parallel conductance at 100 °C is 

Gp = (2000tt)(579 x 1(T,2)(0.01) = 3.64 x 10"8 — 
O 

This is equivalent to a resistance of 27.5 MS. The equivalent circuit is an ideal (lossless) 
capacitor of 579 pF in parallel with a 27.5 MS resistance. 

7.8 PIEZOELECTRICITY, FERROELECTRICITY, 
AND PYROELECTRICITY 

7.8.1 Piezoelectricity 

Certain crystals, for example, quartz (crystalline SiC>2) and BaTiC>3, become polarized 
when they are mechanically stressed. Charges appear on the surfaces of the crystal, as 
depicted in Figure 7.38a and b. Appearance of surface charges leads to a voltage differ¬ 
ence between the two surfaces of the crystal. The same crystals also exhibit mechanical 
strain or distortion when they experience an electric field, as shown in Figure 7.38c and 
d. The direction of mechanical deformation (e.g., extension or compression) depends on 
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(a) (b) (c) (d) 

Figure 7.38 The piezoelectric effect. 

(a) A piezoelectric crystal with no applied stress or field. 

(b) The crystal is strained by an applied force that induces polarization in the crystal and generates surface 

charges. 

(c) An applied field causes the crystal to become strained. In this case the field compresses the crystal. 

(d) The strain changes direction with the applied field and now the crystal is extended. 

Force 

® .A ® © b._ © 
0^0© © F=o ©^ © ;© r=o 

© '©'' © © e © 

(a) (b) 

Figure 7.39 A NaCI-type cubic unit cell has a 

center of symmetry. 

(a) In the absence of an applied force, the centers of 

mass for positive and negative ions coincide. 

(b) This situation does not change when the crystal is 

strained by an applied force. 

the direction of the applied field, or the polarity of the applied voltage. The two effects 
are complementary and define piezoelectricity. 

Only certain crystals can exhibit piezoelectricity because the phenomenon requires 
a special crystal structure—that which has no center of symmetry. Consider a NaCI-type 
cubic unit cell in Figure 7.39a. We can describe the whole crystal behavior by examin¬ 
ing the properties of the unit cell. This unit cell has a center of symmetry at O because 
if we draw a vector from O to any charge and then draw the reverse vector, we will find 
the same type of charge. Indeed, any point on any charge is a center of symmetry. 
Many similar cubic crystals (not all) possess a center of symmetry. When unstressed, 
the center of mass of the negative charges at the comers of the unit cell coincides with 
the positive charge at the center, as shown in Figure 7.39a. There is therefore no net po- 

I larization in the unit cell and P = 0. Under stress, the unit cell becomes strained, as 
shown in Figure 7.39b, but the center of mass of the negative charges still coincides 
with the positive charge and the net polarization is still zero. Thus, the strained crystal 
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(a) (b) (c) 

Figure 7.40 A hexagonal unit cell has no center of symmetry. 

(a) In the absence of an applied force, the centers of mass for positive and negative ions coincide. 

(b) Under an applied force in the y direction, the centers of mass for positive and negative ions are shifted, which 

results in a net dipole moment, P, along y. 

(c) When the force is along a different direction, along x, there may not be a resulting net dipole moment in that 

direction though there may be a net P along a different direction (y). 

still has P = 0. This result is generally true for all crystals that have a center of sym¬ 
metry. The centers of mass of negative and positive charges in the unit cell remain 
coincident when the crystal is strained. 

Piezoelectric crystals have no center of symmetry. For example, the hexagonal 
unit cell shown in Figure 7.40a exhibits no center of symmetry. If we draw a vector 
from point O to any charge and then reverse the vector, we will find an opposite charge. 
The unit cell is said to be noncentrosymmetric. When unstressed, as shown in Fig- 

jo ^. ure 7.40a, the center of mass of the negative charges coincides with the center of mass 
of the positive charges, both at O. However, when the unit cell is stressed, as shown in 

. Figure 7.40b, the positive charge at A and the negative charge at B both become dis¬ 
placed inwards to A' and B', respectively. The two centers of mass therefore become 
shifted and there is now a net polarization P. Thus, an applied stress produces a net po¬ 
larization P in the unit cell, and in this case P appears to be in the same direction as the 
applied stress, along y. 

The direction of the induced polarization depends on the direction of the applied 
stress. When the same unit cell in Figure 7.40a is stressed along jc, as illustrated in 
Figure 7.40c, there is no induced dipole moment along this direction because there 
is no net displacement of the centers of mass in the jc direction. However, the stress 
causes the atoms A and B to be displaced outwards to A" and B", respectively, and 
this results in the shift of the centers of mass away from each other along y. In this 
case, an applied stress along jc results in an induced polarization along y. Generally, 
an applied stress in one direction can give rise to induced polarization in other crys¬ 
tal directions. Suppose that 7} is the applied mechanical stress along some j direction 
and Pi is the induced polarization along some i direction; then the two are linearly re- 

Piezoelectric lated by 
effect Pi — dij Tj 17.54] 
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Mechanical 

vibrations 

Figure 7.41 Piezoelectric transducers are widely used to generate 

ultrasonic waves in solids and also to detect such mechanical waves. 

The transducer on the left is excited from an ac source and vibrates 

mechanically. These vibrations are coupled to the solid and generate 

elastic waves. When the waves reach the other end, they mechanically 

vibrate the transducer on the right, which converts the vibrations to an 

electrical signal. 

where d{j are called the piezoelectric coefficients. Reversing the stress reverses the 
polarization. Although we did not specifically consider shear stresses in Figure 7.40, 
they, as well as tensile stresses, can also induce a net polarization, which means that T 

in Equation 7.54 can also represent shear stresses. The converse piezoelectric effect is 
that between an induced strain Sj along j and an applied electric field £, along /, 

Sj = dijti [7.55] 

The coefficients dy in Equations 7.54 and 7.55 are the same.12 
As apparent from the foregoing discussions and Figure 7.38, piezoelectric crys¬ 

tals are essentially electromechanical transducers because they convert an electrical 
signal, an electric field, to a mechanical signal, strain, and vice versa. They are used 
in many engineering applications that involve electromechanical conversions, as in 
ultrasonic transducers, microphones, accelerometers, and so forth. Piezoelectric trans¬ 
ducers are widely used to generate ultrasonic waves in solids and also to detect such 
mechanical waves, as illustrated in Figure 7.41. The transducer is simply a piezoelec¬ 
tric crystal, for example, quartz, that is appropriately cut and electroded to generate 
the desired types of mechanical vibrations (e.g., longitudinal or transverse vibrations). 
The transducer on the left is attached to the surface A of the solid under examination, 
as shown in Figure 7.41. It is excited from an ac source, which means that it mechan¬ 
ically vibrates. These vibrations are coupled to the solid by a proper coupling medium 
(typically grease) and generate mechanical waves or elastic waves that propagate 
away from A. They are called ultrasonic waves as their frequencies are typically 
above the audible range. When the waves reach the other end, B, they mechanically 
vibrate the transducer attached to B, which converts the vibrations to an electrical 
signal that can readily be displayed on an oscilloscope. In this trivial example, one 
can easily measure the time it takes for elastic waves to travel in the solid from A to 
B and hence determine the ultrasonic velocity of the waves since the distance AB is 

Converse 

piezoelectric 

effect 

12 The equivalence of the coefficients in Equations 7.54 and 7.55 can be shown by using thermodynamics and is 
not considered in this textbook. For rigorous piezoelectric definitions see IEEE Standard 176-1987 (IEEE Trans, on 
Ultrasonics, Ferroelectrics and Frequency Control, September 1996). 
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Electro¬ 

mechanical 

coupling 

factor 

Electro¬ 

mechanical 

coupling 

factor 

known. From the ultrasonic velocity one can determine the elastic constants (Young’s 
modulus) of the solid. Furthermore, if there are internal imperfections such as cracks 
in the solid, then they reflect or scatter the ultrasonic waves. These reflections can 
lead to echoes that can be detected by suitably located transducers. Such ultrasonic 
testing methods are widely used for nondestructive evaluations of solids in mechani¬ 
cal engineering. 

It is clear that an important engineering factor in the use of piezoelectric transduc¬ 
ers is the electromechanical coupling between electrical and mechanical energies. The 
electromechanical coupling factor k is defined in terms of A2 by 

2 Electrical energy converted to mechanical energy 
k = - [7.56a] 

Input of electrical energy 

or equivalently by 

2 Mechanical energy converted to electrical energy 
k = - [7.56b] 

Input of mechanical energy 

Table 7.8 summarizes some typical piezoelectric materials with some applica¬ 
tions. The so-called PZT ceramics are widely used in many piezoelectric applications. 
PZT stands for lead zirconate titanate and the ceramic is a solid solution of lead zir- 
conate, PbZrC>3, and lead titanate, PbTiC>3, so its composition is PbTii-^Zr^Os where x 
is determined by the extent of the solid solution but typically is around 0.5. PZT piezo¬ 
electric components are manufactured by sintering, which is a characteristic ceramic 
manufacturing process in which PZT powders are placed in a mold and subjected to a 
pressure at high temperatures. During sintering the ceramic powders are fused through 
interdiffusion. The final properties depend not only on the composition of the solid 
solution but also on the manufacturing process, which controls the average grain size 
or polycrystallinity. Electrodes are deposited onto the final ceramic component, which 
is then poled by the application of a temporary electric field to induce it to become 

Table 7.8 Piezoelectric materials and some typical values for d and k 

Crystal d (m V"1) k Comment 

Quartz (crystal S1O2) 2.3 x 10~12 0.1 Crystal oscillators, ultrasonic 

transducers, delay lines, filters 

Rochelle salt (NaKC4H406 • 4H20) 350 x 10~12 0.78 

Barium titanate (BaTiOa) 190 x 10“12 0.49 Accelerometers 

PZT, lead zirconate titanate 

(PbTi,^ Zr/)3) 

480 x 10~12 0.72 Wide range of applications 

including earphones, microphones, 

spark generators (gas lighters, 

car ignition), displacement 

transducers, accelerometers 

Polyvinylidene fluoride (PVDF) 18 x 10~12 Must be poled; heated, put in an 

electric field and then cooled. 

Large area and inexpensive 
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piezoelectric. Poling refers to the application of a temporary electric field, generally at 
an elevated temperature, to align the polarizations of various grains and thereby de¬ 
velop piezoelectric behavior. 

PIEZOELECTRIC SPARK GENERATOR The piezoelectric spark generator, as used in various 
applications such as lighters and car ignitions, operates by stressing a piezoelectric crystal to 
generate a high voltage which is discharged through a spark gap in air as schematically shown 
in Figure 7.42a. Consider a piezoelectric sample in the form of a cylinder as in Figure 7.42a. 
Suppose that the piezoelectric coefficient d = 250 x 10“12 m V-1 and er = 1000. The piezo¬ 
electric cylinder has a length of 10 mm and a diameter of 3 mm. The spark gap is in air and has 
a breakdown voltage of about 3.5 kV. What is the force required to spark the gap? Is this a real¬ 
istic force? 

EXAMPLE 7.13 

SOLUTION 

We need to express the induced voltage in terms of the applied force. If the applied stress is T, 
then the induced polarization P is 

P = dT 

Induced polarization P leads to induced surface polarization charges given by Q = AP. If 
C is the capacitance, then the induced voltage is 

lLf-\ 
AP LP V A) _ dLF 

^e0grA^ g0e, s0sr s0srA 

Therefore, the required force is 

s0srAV (8.85 x 10"12 x 1000)tt(1.5 x 10"3)2(3500) 

“ dL ~ (250 x 10-12)(10 x IQ"3) 

This force can be applied by squeezing by hand an appropriate lever arrangement; it is the 
weight of 9 kg. The force must be applied quickly because the piezoelectric charge generated 

Figure 7.42 The piezoelectric spark 

generator. 
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Piezoelectric 

voltage 

coefficient 

will leak away (or become neutralized) if the charge is generated too slowly; many spark ignit¬ 
ers use mechanical impact. The energy in the spark depends on the amount of charge generated. 
This can increase by using two piezoelectric crystals back to back as in Figure 7.42b, which is 
a more practical arrangement for a spark generator. The induced voltage per unit force V/F is 
proportional to d/(e0er) which is called the piezoelectric voltage coefficient. In general, if an 
applied stress T = F/A induces a field £ = V/L in a piezoelectric crystal, then the effect is 
related to the cause by the piezoelectric voltage coefficient g, 

<E = gT [7.57] 

It is left as an exercise to show that g = d/(e0er). 

7.8.2 Piezoelectricity: Quartz Oscillators and Filters 

Mechanical 

standing 

waves 

One of the most important applications of the piezoelectric quartz crystal in elec¬ 
tronics is in the frequency control of oscillators and filters. Consider a suitably cut 
thin plate of a quartz crystal that has thin gold electrodes on the opposite faces. Sup¬ 
pose that we set up mechanical vibrations in the crystal by connecting the electrodes t 
to an ac source, as in Figure 7.43a. It is possible to set up a mechanical resonance, or I 
mechanical standing waves, in the crystal if the wavelength X of the waves and the : 
length l along which the waves are traveling satisfy the condition for standing : 
waves: 

n = l [7.58] 

where n is an integer. 

Figure 7.43 When a suitably cut quartz crystal with electrodes is excited by an ac voltage as in (a), it 

behaves as if it has the equivalent circuit in (b). 

(c) and (d) The magnitude of the impedance Z and reactance (both between A and B) versus frequency, 

neglecting losses. 
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The frequency of these mechanical vibrations fs is given by fs = v/X, where v is 
the velocity of the waves in the medium and X is the wavelength. These mechanical 
vibrations in quartz experience very small losses and therefore have a high-quality 
factor Q, which means that resonance can only be set up if the frequency of the exci¬ 
tation, the electrical frequency, is close to/s. Because of the coupling of energy between 
the electrical excitation and mechanical vibrations through the piezoelectric effect, me¬ 
chanical vibrations appear like a series LCR circuit to the ac source, as shown in Fig¬ 
ure 7.43b. This LCR series circuit has an impedance that is minimum at the mechanical 
resonant frequency fs, given by 

^' 2n*fLC 
[7.59] 

In this series LCR circuit, L represents the mass of the transducer, C the stiffness, 
and R the losses or mechanical damping. Since the quartz crystal has electrodes at 
opposite faces, there is, in addition, the parallel plate capacitance C0 between the 
electrodes. Thus, the whole equivalent circuit is CQ in parallel with LCR, as in Fig¬ 
ure 7.43b. As far as L is concerned, C0 and C are in series. There is a second higher res¬ 
onant frequency^, called the antiresonant frequency, that is due to L resonating with 
C and C0 in series. 

Mechanical 

resonant 

frequency 

„ 1 r , Antiresonant 
fa = -F= [7.60] , 

IttVlC frequency 

where 

1 _ 1 1 
C7 “ ~C0 + C 

The impedance between the terminals of the quartz crystal has the frequency de¬ 
pendence shown in Figure 7.43c. The two frequencies fs and fa are called the series and 

Various quartz crystal "oscillators." Left 
to right: Raltron 40 MHz; a natural 
quartz crystal (South Dakota); Phillips 
27 MHz; a cutaway view of a typical 
crystal oscillator. 
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parallel resonant frequencies, respectively. It is apparent that around fa, the crystal 
behaves like a filter with a high Q value. If we were to examine the reactance of the 
crystal, whether it is behaving capacitively or inductively, we would find the behavior 
in Figure 7.43d, where positive reactance refers to an inductive and negative reactance 
to a capacitive behavior. Betweenand fa the crystal behaves inductively, and capac¬ 
itively outside this range. Indeed, between fs and fa the response of the transducer is 
controlled by the mass of the crystal. This property has been utilized by electrical 
engineers in designing quartz oscillators. 

In quartz oscillators, the crystal is invariably used in one of two modes. First, it 
can be used at fs where it behaves as a resistance of R without any reactance. The cir¬ 
cuit is designed so that oscillations can take place only when the crystal in the circuit 
exhibits no reactance or phase change—in other words, at fs. Outside this frequency, 
the crystal introduces reactance or phase changes that do not lead to sustained oscilla¬ 
tions. In a different mode of operation, the oscillator circuit is designed to make use of 
the inductance of the crystal just above fs. Oscillations are maintained close to fs 
because even very large changes in the inductance result in small changes in the fre¬ 
quency between fs and fa. 

EXAMPLE 7.14 THE QUARTZ CRYSTAL AND ITS EQUIVALENT CIRCUIT From the following equivalent defini¬ 
tion of the coupling coefficient, 

Mechanical energy stored 

Total energy stored 

show that 

k2 

Given that typically for an X-cut quartz crystal, k = 0.1, what is/a for fs = 1 MHz? What 
is your conclusion? 

SOLUTION 

C represents the mechanical mass where the mechanical energy is stored, whereas C0 is where 
the electrical energy is stored. If V is the applied voltage, then 

Mechanical energy stored 5CV2 C ^ f2 

Total energy stored \CV2 + \C0V2 C + C0 f2 

Rearranging this equation, we find 

fa = 
fs 

Vi - k2 

1 MHz 

Vi - (0.1)2 

1.005 MHz 

Thus, fa — fs is only 5 kHz. The two frequencies fs and fa in Figure 7.43d are very close. 
An oscillator designed to oscillate at fs, that is, at 1 MHz, therefore, cannot drift far (for exam¬ 
ple, a few kHz) because that would change the reactance enormously, which would upset the 
oscillation conditions. 
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QUARTZ CRYSTAL AND ITS INDUCTANCE A typical 1 MHz quartz crystal has the following 
properties: 

fs = 1 MHz fa = 1.0025 MHz C0 = 5 pF R = 20 £2 

What are C and L in the equivalent circuit of the crystal? What is the quality factor Q of the 
crystal, given that 

1 
Q =- 

2?rfsRC 

EXAMPLE 7.15 

SOLUTION 

The expression for fs is 

fs = 
1 

2nVLC 

From the expression for fa, we have 

fa — 
1 1 

2xJl-CC° 
c + c0 

Dividing fa by fs eliminates L, and we get 

fa _ C + C0 

fs~1 C0 

so that C is 

Thus 

= C° “ 1 = (5 pF)(1.00252 - 1) = 0.025 pF 
|_V fs/ J 

L = 
1 1 

= 1.01 H 
C(27r/f)2 0.025 x 10-12(2?r 106)2 

This is a substantial inductance, and the enormous increase in the inductive reactance 
above fs is intuitively apparent. The quality factor 

1 
Q = 

2nfsRC 
= 3.18 x 105 

is very large. 

7.8.3 Ferroelectric and Pyroelectric Crystals 

Certain crystals are permanently polarized even in the absence of an applied field. The 
crystal already possesses a finite polarization vector due to the separation of positive 
and negative charges in the crystal. These crystals are called ferroelectric.13 Barium 

I 13 In analogy with the ferromagnetic crystals that already possess magnetization. 
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(a) BaTi03 cubic crystal structure 
above 130 °C 

(b) BaTi03 cubic structure 
above 130 °C 

*-0-# 

(c) BaTi03 tetragonal structure 
below 130 °C 

Figure 7.44 BaTiOs has different crystal structures above and below 130 °C that lead to different dielectric 

properties. 

titanate (BaTiOs) is probably the best cited example. Above approximately 130 °C, the 
crystal structure of BaTiOs has a cubic unit cell, as shown in Figure 7.44a. The centers . 
of mass of the negative charges (O2-) and the positive charges, Ba2+ and Ti4+, 
coincide at the Ti4+ ion, as shown in Figure 7.44b. There is therefore no net polariza¬ 
tion and P = 0. Above 130 °C, therefore, the barium titanate crystal exhibits no per¬ 
manent polarization and is not ferroelectric. However, below 130 °C, the structure of 
barium titanate is tetragonal, as shown in Figure 7.44c, in which the Ti4+ atom is not 
located at the center of mass of the negative charges. The crystal is therefore polarized 
by the separation of the centers of mass of the negative and positive charges. The crys¬ 
tal possesses a finite polarization vector P and is ferroelectric. The critical temperature 
above which ferroelectric property is lost, in this case 130 °C, is called the Curie 
temperature (7c). Below the Curie temperature, the whole crystal becomes sponta¬ 
neously polarized. The onset of spontaneous polarization is accompanied by the distor¬ 
tion of the crystal structure, as shown by the change from Figure 7.44b to Figure 7.44c. 
The spontaneous displacement of the Ti4+ ion below the Curie temperature elongates 
the cubic structure, which becomes tetragonal. It is important to emphasize that we 
have only described an observation and not the reasons for the spontaneous polar¬ 
ization of the whole crystal. The development of the permanent dipole moment below 
the Curie temperature involves long-range interactions between the ions outside the 
simple unit cell pictured in Figure 7.44. The energy of the crystal is lower when the Ti4+ 
ion in each unit cell is slightly displaced along the c direction, as in Figure 7.44c, ; 
which generates a dipole moment in each unit cell. The interaction energy of these j 
dipoles when all are aligned in the same direction lowers the energy of the whole j 
crystal. It should be mentioned that the distortion of the crystal that takes place when 
spontaneous polarization occurs just below Tc is very small relative to the dimensions 
of the unit cell. For BaTiC>3, for example, c/a is 1.01 and the displacement of the Ti4+ j 
ion from the center is only 0.012 nm, compared with a = 0.4 nm. » 

An important and technologically useful characteristic of a ferroelectric crystal is 
its ability to be poled. Above 130 °C there is no permanent polarization in the crystal. 
If we apply a temporary field £ and let the crystal cool to below 130 °C, we can induce ' 
the spontaneous polarization P to develop along the field direction. In other words, ! 
we would define the c axis by imposing a temporary external field. This process is 
called poling. The c axis is the polar axis along which P develops. It is also called the 
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(a) BaTi03 tetragonal (b) BaTi03 crystal under stress (c) BaTi03 crystal under stress along x 
structure below 130 °C along y 

Figure 7.45 Piezoelectric properties of BaTiOs below its Curie temperature. 

ferroelectric axis. Since below the Curie temperature the ferroelectric crystal already 
has a permanent polarization, it is not possible to use the expression 

P = s0(sr - m 

to define a relative permittivity. Suppose that we use a ferroelectric crystal as a dielec¬ 
tric medium between two parallel plates. Since any change A P normal to the plates 
changes the stored charge, what is of significance to the observer is the change in the 
polarization. We can appreciate this by noting that C = Q/V is not a good definition 
of capacitance if there are already charges on the plates, even in the absence of volt¬ 
age.14 We then prefer a definition of C based on A Q/ A V where A Q is the change in 
stored charge due to a change A V in the voltage. Similarly, we define the relative per¬ 
mittivity sr in this case in terms of the change A P in P induced by A*E in the field £, 

A P = £0(sr — 1) A£ 

An applied field along the a axis can displace the Ti4+ ion more easily than that 
along the c axis, and experiments show that £r « 4100 along a is much greater than 
£r « 160 along c. Because of their large dielectric constants, ferroelectric ceramics are 
used as high-# dielectrics in capacitors. 

All ferroelectric crystals are also piezoelectric, but the reverse is not true: not all 
piezoelectric crystals are ferroelectric. When a stress along y is applied to the BaTiOs 
crystal in Figure 7.45a, the crystal is stretched along y, as a result of which the Ti4+ 
atom becomes displaced, as shown in Figure 7.45b. There is, however, no shift in 
the center of mass of the negative charges, which means that there is a change A P 
in the polarization vector along y. Thus, the applied stress induces a change in the 
polarization, which is a piezoelectric effect. If the stress is along x, as illustrated in 
Figure 7.45c, then the change in the polarization is along y. In both cases, A P is pro¬ 
portional to the stress, which is a characteristic of the piezoelectric effect. 

14 A finite Q on the plates of a capacitor when V= 0 implies an infinite capacitance, C = oo. However, C = dQ/dV 
definition avoids this infinity. 
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Figure 7.46 The heat absorbed by the crystal increases 

the temperature by ST, which induces a change SP in the 

polarization. 

This is the pyroelectric effect. The change SP gives rise to a 

change S V in the voltage that can be measured. 

Temperature change = 8T 

The barium titanate crystal in Figure 7.44 is also said to be pyroelectric because 
when the temperature increases, the crystal expands and the relative distances of ions 
change. The Ti4+ ion becomes shifted, which results in a change in the polarization. 
Thus, a temperature change 8T induces a change 8P'm the polarization of the crystal. 
This is called pyroelectricity, which is illustrated in Figure 7.46. The magnitude of 
this effect is quantized by the pyroelectric coefficient p, which is defined by 

Pyroelectric 

coefficient 

A few typical pyroelectric crystals and their pyroelectric coefficients are listed in 
Table 7.9. Very small temperature changes, even in thousandths of degrees, in the 
material can develop voltages that can be readily measured. For example, for a PZT-type 
pyroelectric ceramic in Table 7.9, taking 8T = 10-3 K and p & 380 x 10-6, we find 
8P = 3.8 x 10-7 C m-2. From 

P = 
dP 

If [7.61] 

8P = e0(er - 1) 8<E 

with er = 290, we find 

= 148 V nT1 

If the distance between the faces of the ceramic where the charges are developed is 
0.1 mm, then 

= 0.0148 V or 15 mV 

Table 7.9 Some pyroelectric (and also ferroelectric) crystals and typical properties 

Material e'r tan S 

Pyroelectric 

Coefficient 

(xlO-6 C m~2 K"1) 

Curie 

Temperature 

(°C) 

BaTiC>3 4100 ± polar 

axis; 160//polar axis 

7 x 10~3 20 130 

LiTa03 47 5 x 10“3 230 610 

PZT modified for 

pyroelectric 

290 2.7 x 10"3 380 230 

PVDF, polymer 12 0.01 27 80 
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Figure 7.47 The pyroelectric detector. 

Radiation is absorbed in the detecting element. A, which generates a pyroelectric voltage that is measured 

by the amplifier. The second element, B, has a reflecting electrode and does not absorb the radiation. It is 

a dummy element that compensates for the piezoelectric effects. Piezoelectric effects generate equal 

voltages in both A and B, which cancel each other across a and b, the input of the amplifier. 

which can be readily measured. Pyroelectric crystals are widely used as infrared 
detectors. Any infrared radiation that can raise the temperature of the crystal even by a 
thousandth of a degree can be detected. For example, many intruder alarms use pyro¬ 
electric detectors because as the human or animal intruder passes by the view of 
detector, the infrared radiation from the warm body raises the temperature of the pyro¬ 
electric detector, which generates a voltage that actuates an alarm. 

Figure 7.47 shows a simplified schematic circuit for a pyroelectric radiation de¬ 
tector. The detecting element, labeled A, is actually a thin crystal or ceramic (or even a 
polymer) of a pyroelectric material that has electrodes on opposite faces. Pyroelectric 
materials are also piezoelectric and therefore also sensitive to stresses. Thus, pressure 
fluctuations, for example, vibrations from the detector mount or sound waves, interfere 
with the response of the detector to radiation alone. These can be compensated for by 
having a second dummy detector B that has a reflecting coating and is subjected to the 
same vibrations (air and mount), as depicted in Figure 7.47. Thus, there are two ele¬ 
ments in the detector, one with an absorbing surface, detecting element A, and the 
other with a reflecting surface, compensating element B. Stress fluctuations give rise 
to the same piezoelectric voltage in both, which then cancel each other between a and 
b at the input of the amplifier. When radiation is incident, then only the detecting ele¬ 
ment absorbs the radiation, becomes warmer, and hence generates a pyroelectric volt¬ 
age. This voltage appears directly across a and b. As the incident radiation warms the 
detecting element and increases its temperature, the pyroelectric voltage increases 
with time. Eventually the temperature reaches a steady-state value determined by heat 
losses from the element. We therefore expect the pyroelectric voltage to reach a con¬ 
stant value as well. However, the problem is that a constant pyroelectric voltage can¬ 
not be sustained because the surface charges slowly become neutralized or leak away. 
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Pyroelectric 

current 

density 

Pyroelectric 

current 

responsivity 

Pyroelectric 

voltage 

responsivity 

The constant radiation is therefore normally chopped to subject the detector to periodic 
bursts of radiation, as shown in Figure 7.47. The pyroelectric voltage is then a chang¬ 
ing function of time, which is readily measured and related to the power in the incident 
radiation. 

Many pyroelectric applications refer to a pyroelectric current that is generated by 
the temperature rise. There is another way to look at the pyroelectric phenomenon in¬ 
stead of considering the induced pyroelectric voltage that is created across the crystal 
(Figure 7.46). The induced polarization 8 P in a small time interval 8t, due to the change 
8T in the temperature, generates an induced polarization charge density 8P on the 
crystal’s surfaces. This charge density 8 P flows in a time interval 8t, and hence gener¬ 
ates an induced polarization current density Jp to flow, i.e.. 

JP — 
dP _ dT 

dt P dt 
[7.62] 

Jp in Equation 7.62 is called the pyroelectric current density and depends on the rate 
of change of the temperature dT/dt brought about by the absorption of radiation. 

Most pyroelectric detectors are characterized by their current responsivity de¬ 
fined as the pyroelectric current generated per unit input radiation power, 

Pyroelectric current generated Jp ^ ^ 

Input radiation power I 

where I is the radiation intensity (W m-2); !Rj is quoted in A W-1. If the pyroelectric 
current generated by the crystal flows into the self-capacitance of the crystal itself (no 
external resistors or capacitors connected, and the voltmeter is an ideal meter), it 
charges the self-capacitance to generate the observed voltage 8 V in Figure 7.46. The 
pyroelectric voltage responsivity is defined similarly to Equation 7.63 but con¬ 
siders the voltage that is developed upon receiving the input radiation: 

Pyroelectric output voltage generated 

Input radiation power 
[7.64] 

The output voltage that is generated depends not only on the pyroelectric crystal’s 
dielectric properties, but also on the input impedance of the amplifier, and can be quite 
complicated. A typical commercial LiTaOs pyroelectric detector has p current respon¬ 
sivity of 0.1-1 pA/W. 

EXAMPLE 7.16 A PYROELECTRIC RADIATION DETECTOR Consider the radiation detector in Figure 7.47 but 
with a single element A. Suppose that the radiation is chopped so that the radiation is passed 
to the detector for a time At seconds every r seconds, where At <£ r. If At is sufficiently 
small, then the temperature rise A T is small and hence the heat losses are negligible during At. 
Using the heat capacity to find the temperature change during At, relate the magnitude of the 
voltage A V to the incident radiation intensity I. What is your conclusion? 

Consider a PZT-type pyroelectric material with a density of about 7 g cm-3 and a specific 
heat capacity of about 380 J K_1 kg-1. If At = 0.2 s and the minimum voltage that can be 
detected above the background noise is 1 mV, what is the minimum radiation intensity that can 
be measured? 
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SOLUTION 

Suppose that the radiation of intensity I is received during a time interval At and delivers an 
amount of energy AH to the pyroelectric detector. This energy AH, in the absence of any heat 
losses, increases the temperature by AT. If c is the specific heat capacity (heat capacity per unit 
mass) and p is the density, 

AH = (ALp)c AT 

where A is the surface area and L the thickness of the detector. The change in the polarization 
AP is 

AP = p AT = 

The change in the surface charge A Q is 

A Q = A AP = 

p AH 

ALpc 

p AH 

This change in the surface charge gives a voltage change A V across the electrodes of the 
detector. If C = e0erA/L is the capacitance of the pyroelectric crystal, 

p AH 
=-x 

Lpc S0Er A 

pAH 

Apce0sr 

The absorbed energy (heat) AH during At depends on the intensity of incident radiation. 
Incident intensity I is the energy arriving per unit area per unit time. In time At, I delivers an 
energy AH = IA At. Substituting forA H in the expression for AV, we find 

A V = 
pi At 

pcers ' = (—) o \ PC&r / 
[7.65] 

The parameters in the parentheses are material properties and reflect the “goodness” of the 
pyroelectric material for the application. We should emphasize that in deriving Equation 7.65 
we did not consider any heat losses that will prevent the rise of the temperature indefinitely. If 
At is short, then the temperature change will be small and heat losses negligible. 

For a PZT-type pyroelectric, we can take p = 380 x 10-6 C m-2 K~\ er = 290, c = 
380 J K-1 kg-1, and p = 7 x 103 kg m-3, and then from Equation 7.65 with/At'-= 0.001 V 
and At — 0.2 s, we have 

-(-2-) \pce0er) 

/ 380 x 10"6 ^ 

_ V (7000)(380)(290)(8.85 x 10~12)J 

= 0.090 W m-2 or 9 pW cm-2 

0.001 

We have assumed that all the incident radiation I is absorbed by the pyroelectric crystal. In prac¬ 
tice, only a fraction rj (called the emissivity of the surface), that is, r) I, will be absorbed instead of 
I. We also assumed that the output voltage A V is developed totally across the pyroelectric element 
capacitance; that is, the amplifier’s input impedance (parallel combination of its input capacitance 
and resistance) is negligible compared with that of the pyroelectric crystal. As stated, we also ne¬ 
glected all heat losses from the pyroelectric crystal so that the absorbed radiation simply increases 
the crystal’s temperature. These simplifying assumptions lead to the maximum signal A V that can 
be generated from a given input radiation signal I as stated in Equation 7.65. It is left as an exer¬ 
cise to show that Equation 7.65 can also be easily derived by starting from Equation 7.62 for the py¬ 
roelectric current density Jp, and have Jp charge up the capacitance C = e0erA/L of the crystal. 

Pyroelectric 

detector 

output 

voltage 
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ADDITIONAL TOPICS 

Electric field 

without 

dielectric 

Gauss’s law 

with 

dielectric 

7.9 ELECTRIC DISPLACEMENT 
AND DEPOLARIZATION FIELD 

Electric Displacement (D) and Free Charges Consider a parallel plate cap¬ 
acitor with free space between the plates, as shown in Figure 7.48a, which has been 
charged to a voltage V0 by connecting it to a battery of voltage V0. The battery has been 
suddenly removed, which has left the free positive and negative charges Qfree on the 
plates. These charges are free in the sense that they can be conducted away. An ideal 
electrometer (with no leakage current) measures the total charge on the positive plate 
(or voltage of the positive plate with respect to the negative plate). The voltage across 
the plates is V0 and the capacitance is CD. The field in the free space between the plates is 

(2free   V0 

ecA d 
[7.66] 

where d is the separation of the plates. 
When we insert a dielectric to fit between the plates, the field polarizes the dielec¬ 

tric and polarization charges -Qp and +QP appear on the left and right surfaces of the 
dielectric, as shown in Figure 7.48b. As there is no battery to supply more free charges, 
the net charge on the left plate (positive plate) becomes QfTee — Qp. Similarly the net 
negative charge on the right plate becomes -<2free + Qp-The field inside the dielectric 
is no longer tE0 but less because induced polarization charges have the opposite polar¬ 
ity to the original free charges and the net charge on each plate has been reduced. The 
new field can be found by applying Gauss’s law. Consider a Gauss surface just enclos¬ 
ing the left plate and the surface region of the dielectric with its negative polarization 
charges, as shown in Figure 7.49. Then Gauss’s law gives 

(j) SoEdA = Ctotal = Qfree Qp [7.67] 
J Surface 

where A is the plate area (same as dielectric surface area) and we take the field £ to be 
normal to the surface area dA, as indicated in Figure 7.49. If the polarization charge is 

Figure 7.48 

(a) Parallel plate capacitor with free space 

between plates that has been charged to a 

voltage VQ. There is no battery to maintain 

the voltage constant across the capacitor. 

The electrometer measures the voltage 

difference across the plates and, in 

principle, does not affect the measurement. 

(b) After the insertion of the dielectric, the 

voltage difference is V, less than Vo, and the 

field in the dielectric is £ less than £c. 
Electrometer Electrometer 

(a) (b) 
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+^free 

-Qp Gauss surface 

\+ rj- 
+ ! dA 

+ 

+ 
i i 

+ I Dielectric 1 Figure 7.49 A Gauss surface just around the left plate and within 

the dielectric, encompassing both +Qfree and —Qp. 

d Q P over a small surface area dA of the dielectric, then the polarization charge den¬ 
sity ap at this point is defined as 

Op = 
dQP 

dA 

For uniform polarization, the charge distribution is Qp/A, as we have used previ¬ 
ously. Since o> = P, where P is the polarization vector, we can write 

P = 
dQP 

dA 

and therefore express QP as 

QP = f PdA 
J Surface 

[7.681 

We can now substitute for Qp in Equation 7.67 and take this term to the left-hand 
side to add the two surface integrals. The right-hand side is left with only Qfree. Thus, 

/ J Surface 

(£<,£ + P) dA = Qfyee [7.69] 

What is important here is that the surface integration of the quantity e0“E + P is 
always equal to the total free charges on the surface. Whatever the dielectric material, 
this integral is always Qfree- It becomes convenient to define efL + P as a usable quan¬ 
tity, called the electric displacement and denoted as Z>, that is, 

D = s0X+ P [7.70] 

Then, Gauss’s law in terms of free charges alone in Equation 7.69 becomes 

(p DdA = Qfree [7.71] 
J Surface 

In Equation 7.71 we take D to be normal to the surface area dA as in the case of 
£ in Gauss’s law. Equation 7.71 provides a convenient way to calculate the electric 
displacement D, from which one should be able to determine the field. We should 
note that, in general, £ is a vector and so is P, so the definition in Equation 7.70 is 

Definition of 

electric 

displacement 

Gauss’s law 

for free 

charges 
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and the field 

Gauss’s law 

for free 
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Gauss’s law 

in an 

isotropic 

dielectric 

strictly in terms of vectors. Inasmuch as the electric displacement depends only on 
free charges, as a vector it starts at negative free charges and finishes on positive free 
charges. 

Equation 7.71 for D defines it in terms of £ and P, but we can express D in terms 
of the field £ in the dielectric alone. The polarization P and £ are related by the defin¬ 
ition of the relative permittivity sr, 

P = s0(er - 1)£ 

Substituting for P in Equation 7.70 and rearranging, we find that D is simply 
given by 

D = e0srE [7.72] 

We should note that this simple equation applies in an isotropic medium where the 
field along one direction, for example, x, does not generate polarization along a differ¬ 
ent direction, for example, y. In those cases, Equation 7.72 takes a tensor form whose 
mathematics is beyond the scope of this book. 

We can now apply Equation 7.71 for a Gauss surface surrounding the left plate, 

D= Qip = ^ [7.731 

where we used Equation 7.66 to replace Q{Ke. Thus D does not change when we insert 
the dielectric because the same free charges are still on the plates (they cannot be con¬ 
ducted away anywhere). The new field £ between the plates after the insertion of the 
dielectric is 

£ = 
So$r 

1 
-£o 
£r 

17.741 

The original field is reduced by the polarization of the dielectric. We should recall 
that the field does not change in the case where the parallel plate capacitor is con¬ 
nected to a battery that keeps the voltage constant across the plates and supplies addi¬ 
tional free charges (A<2free) to make up for the induced opposite-polarity polarization 
charges. 

Gauss’s law in Equation 7.71 in terms of D and the enclosed free charges <2free can 
also be written in terms of the field £, but including the relative permittivity, because 
D and £ are related by Equation 7.72. Using Equation 7.72, Equation 7.71 becomes 

® SfiSfE dA = Qfttt 
J Surface 

For an isotropic medium where er is the same everywhere, 

/ ^ Surface 

Ed A = 
Gfree 

G0Sr 

As before, £ in the surface integral is taken as normal to dA everywhere. Equa¬ 
tion 7.75 is a convenient way of evaluating the field from the free charges alone, given 
the dielectric constant of the medium. 



7.9 Electric Displacement and Depolarization Field 657 

Figure 7.50 The field inside the dielectric can be 

considered to be the sum of the field due to the free 

charges (Qfree) and a field due to the polarization of the 

dielectric, called the depolarization field. 

The Depolarizing Field We can view the field £ as arising from two electric 
fields: that due to the free charges £0 and that due to the polarization charges, denoted 
as £deP- These two fields are indicated in Figure 7.50. £0 is called the applied field 
as it is due to the free charges that have been put on the plates. It starts and ends at free 
charges on the plates. The field due to polarization charges starts and ends at 
these bound charges and is in the opposite direction to the £0. Although £0 polarizes 
the molecules of the medium, £dep, being in the opposite direction, tries to depolarize the 
medium. It is called the depolarizing field (and hence the subscript). Thus the field 
inside the medium is 

£ = £0 - £dep [7.76] 

The depolarizing field depends on the amount of polarization since it is deter¬ 
mined by + Qp and —Qp. For the dielectric plate in Figure 7.50, we know the field £ 
is lE0/sr, so we can eliminate £0 in Equation 7.76 and relate £dep directly to £, 

£"dep "== 'E'i.Sr 1) 

However, the polarization P is related to the field £ by 

P = e0(er - 1)£ 

which means that the depolarization field is 

£dep = —P [7.77] 
So 

As we expected, the depolarizing field is proportional to the polarization P. We 
should emphasize that £dep is in the opposite direction to £ and P and Equation 7.77 is 
for magnitudes only. If we write it a^a vector equation, then we must introduce a neg¬ 
ative sign to give £dep a direction opposite to that of P. Moreover, the relationship in 
Equation 7.77 is special to the dielectric plate geometry in Figure 7.50. In general, the 
depolarizing field is still proportional to the polarization, as in Equation 7.77, but it is 
given by 

Depolarizing 

field in a 

dielectric 

plate 

£deP=— P [7.78] 
So 

where Adep is a numerical factor called the depolarization factor. It takes into account 
the shape of the dielectric and the variation in the polarization within the medium. For 

Depolarizing 

field in a 

dielectric 
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Figure 7.51 

(a) Polarization and the 

depolarizing field in a spherical¬ 

shaped dielectric placed in an 

applied field. 

(b) Depolarization field in a thin 

rod placed in an applied field is 

nearly zero. 

spherical 
dielectric 

(a) 

0 Applied field 

0 \ J 
£dep = ° Thin rod 

dielectric 

(b) 

a dielectric plate placed perpendicularly to an external field, Ndep = 1, as we found in 
Equation 7.77. For the spherical dielectric medium as in Figure 7.51a, /Vdep = For a 
long thin dielectric rod placed with its axis along the applied field, as in Figure 7.51b, 
Ndep % 0 and becomes exactly zero as the diameter shrinks to zero. Ndep is always 
between 0 and 1. If we know TVdep, we can determine the field inside the dielectric, for 
example, in a small spherical cavity within an insulation given the external field. 

7.10 LOCAL FIELD AND THE LORENTZ EQUATION 

When a dielectric medium is placed in an electric field, it becomes polarized and there 
is a macroscopic, or an average, field £ in the medium. The actual field at an atom, 
called the local field £|0C, however, is not the same as the average field as illustrated in 
Figure 7.7. 

Consider a dielectric plate polarized by placing it between the plates of a capaci¬ 
tor as shown in Figure 7.52a. The macroscopic field £ in the dielectric is given by the 
applied field £0 due to the free charges (2 free on the plates, and the depolarization field 
due to P, or polarization charges on the dielectric plate surfaces A. Since we have a plate 

Figure 7.52 

(a) The macroscopic field £ is 

determined by the applied field 

£0 arid the depolarization field 

due to P. 

(b) Calculation of the local field 

involves making a hypothetical 

spherical cavity S inside the 

dielectric. This produces 

polarization surface charges on 

the inside surface S of the cavity. 

The effects of the dipoles inside 

the cavity are treated individually. 

(a) (b) 
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dielectric, the depolarization field is P/s0, so 

1 
£ — £<? £deP — £<? P 

So 

Consider the field at some atomic site, point O, but with the atom itself removed. 
We evaluate the field at O coming from all the charges except the atom at O itself 
since we are looking at the field experienced by this atom (the atom cannot become po¬ 
larized by its own field). We then cut a (hypothetical) spherical cavity S centered at O 
and consider the atomic polarizations individually within the spherical cavity. In other 
words, the effects of the dipoles in the cavity are treated separately from the remaining 
dielectric medium which is now left with a spherical cavity. This remaining dielectric 
is considered as a continuous medium but with a spherical cavity. Its dielectric prop¬ 
erty is represented by its polarization vector P. Because of the cavity, we must now put 
polarization charges on the inner surface S of this cavity as illustrated in Figure 7.52b. 
This may seem surprising, but we should remember that we are treating the effects of 
the atomic dipoles within the cavity individually and separately by cutting out a spher¬ 
ical cavity from the medium and thereby introducing a surface S. 

The field at O comes from four sources: 

1. Free charges <2 free on the electrodes, represented by £0. 

2. Polarization charges on the plate surfaces A, represented by £dep- 

3. Polarization charges on the inner surface of the spherical cavity S, represented 

by £5. 

4. Individual dipoles within the cavity, represented by £dipoies- 

Thus, 

£loc — £0 “b £deP “b £s "b £diPoles 

Since the first two terms make up the macroscopic field, we can write this as 

£loc = £ "b £5 “b £diPoles 

The field from the individual dipoles surrounding O depends on the positions of 
these atomic dipoles which depend on the crystal structure. For cubic crystals, amor¬ 
phous solids (e.g., glasses), or liquids^effects of these dipoles around O cancel each 
other and Eddies = 0. Thus, 

£loc = £ + £5 17.79] 

We are then left with evaluating the field due to polarization charges on the inner 
surface S of the cavity. This field comes from polarization charges on the surface 5. 
Consider a thin spherical shell on surface S as shown in Figure 7.53 which makes an 
angle 9 with O. The radius of this shell is a sin 9, whereas its width (or thickness) is 
a d9. The surface area dS is then (2na sin 9)(a d9). The polarization charge dQp on 
this spherical shell surface is Pn dS where Pn is the polarization vector normal to the 
surface dS. Thus, 

Local field in 

a crystal 

Local field in 

a cubic crystal 

or a non¬ 

crystalline 

material 

dQp = PndS = (P cos 9)(2na sin0)(a d9) 
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Figure 7.53 Calculation of the field due 

to polarization charges on the inner 

surface S of the spherical cavity. 

Consider a spherical shell of radius a. The 

surface area is dS = 2na sin 0 (a d9). 

dS = lira sin 6 (a dfj) 

But the field at O from dQp is given from electrostatics as 

dQp (P cos 9) (2na sin 6) (a d9) 

I 
d*Es = 

4 ne0a2 4 jre„a2 

To find the total field coming from the whole surface S we have to integrate dLs 1 
from $ = 0 to 9 = n, 

ts 
Jo 

(P cos 9) (sin 9) 

2ea 
d9 

which integrates to 

1 
£s = —P [7.80] 

The local field by Equation 7.79 is 

1 
£loc = £+— P [7.81] i 

3e0 j 

Equation 7.81 is the Lorentz relation for the local field in terms of the polariza- j 
tion P of the medium and is valid for cubic crystals and noncrystalline materials, such j] 
as glasseSrTt does not apply to dipolar dielectrics in which the local field can be quite j 
complicated. 'j 

7.11 DIPOLAR POLARIZATION 

Consider a medium with molecules that have permanent dipole moments. Each per¬ 
manent dipole moment is pQ. In the presence of an electric field the dipoles try to align 
perfectly with the field, but random thermal collisions, i.e., thermal agitation, act 
against this perfect alignment. A molecule that manages to rotate and align with the 
field finds itself later colliding with another molecule and losing its alignment. We are 
interested in the mean dipole moment in the presence of an applied field taking into 
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T 

Figure 7.54 In the presence of an 

applied field a dipole tries to rotate to 

align with the field against thermal 

agitation. 

Figure 7.55 The dipole is 

pointing within a solid angle c/£2. 

account the thermal energies of the molecules and their random collisions. We will as¬ 
sume that the probability that a molecule has an energy E is given by the Boltzmann 
factor, exp (—E/kT). 

Consider an arbitrary dipolar molecule in an electric field as in Figure 7.54 with its 
dipole moment pc at an angle 9 with the field £. The torque experienced by the dipole 
is given by r = (F sin 9)a or £p0 sin 9 wherep0 = aQ. The potential energy E at 
an angle $ is given by integrating rdO, 

[6 

E = / p0T, sin 9 dO = —p0rE- cos 9 -|- p0£ 
Jo 

Inasmuch as the PE depends on the orientation, there is a certain probability of 
finding a dipole oriented at this angle as determined by the Boltzmann distribution. 
The fraction / of molecules oriented at 9 is proportional to exp (—E/kT), 

Potential 

energy of a 

dipole at an 

angle 9 

„ (po£cos0\ 
/ a exp — J 17.821 

The initial orientation of the dipole should be considered in three dimensions and 
not as in the two-dimensional illustration in Figure 7.54. In three dimensions we use 
solid angles, and the fraction / then represents the fraction of molecules pointing in 
a direction defined by a small solid angle dQ as shown in Figure 7.55. The whole 
sphere around the dipole corresponds to a solid angle of 4n. Furthermore, we need to 
find the average dipole moment along £ as this will be the induced net dipole moment 
by the field. The dipole moment along £ is pa cos 9. Then from the definition of the 
average 

Boltzmann 

distribution 

Pav — 
fo * (Po cos 9)fdQ. 

C fdt* 
[7.83] 

where / is the Boltzmann factor given in Equation 7.82 and depends on £ and 9. The 
final result of this integration is a special function called the Langevin function which 
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Figure 7.56 The Langevin function. 
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is denoted as L(x) where x is the argument of the function (not the x coordinate). The 
integration of Equation 7.83 then gives 

£ 
Pa\ = Po£(x) and X = — [7.84] 

kT 

The behavior of the Langevin function is shown in Figure 7.56. At the highest 
fields £(x) tends toward saturation at unity. Then, pav = p0, which corresponds to 
nearly all the dipoles aligning with the field, so increasing the field cannot increase pav 
anymore. In the low field region, pav increases linearly with the field. In practice, the 
applied fields are such that all dipolar polarizations fall into this linear behavior region 
where the Langevin functionL(x) % Then Equation 7.84 becomes 

_ 1 pI^ 
P" _ 3 kT 

[7.85] 

The dipolar or orientational polarizability is then simply 

i p; 
Otd =- 

3 kT 
[7.86] 

7.12 IONIC POLARIZATION AND 
DIELECTRIC RESONANCE 

In ionic polarization, as shown in Figure 7.9, the applied field displaces the positive 
and negative ions in opposite directions, which results in a net dipole moment per ion, 
called the induced dipole moment p{ per ion. We can calculate the ionic polarizability 
oti and the ionic contribution to the relative permittivity as a function of frequency by 
applying an ac field of the form £ = £<, exp(jcot). 

Consider two oppositely charged neighboring ions, e.g., Na+ and Cl-, which ex¬ 
perience forces Q*E in opposite directions where Q is the magnitude of the ionic 
charge of each ion as shown in Figure 7.57. The bond between the ions becomes 
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Figure 7.57 Consider a pair of oppositely charged ions. In the presence of an applied field £ along x, the 

Na+ and Cl” ions are displaced from each other by a distance x. The net average (or induced) dipole moment 

is pi. 

stretched, and the two ions become displaced from the equilibrium separation r0 to a 
new separation r0 + x as depicted in Figure 7.57. The force F = QT, of the applied 
field is the polarizing force, which causes the relative displacement. We take F to be 
along the jc direction. The applied force is resisted by a restoring force Fr that is due 
to the stretching of the bond (Hooke’s law) and is proportional to the amount of bond 
stretching, i.e., Fr = —fix where fi is the spring constant associated with the ionic 
bond (easily calculated from the potential energy curve of the bond), and the nega¬ 
tive sign ensures that Fr is directed in the opposite direction to the applied force. 
Thus, the net force acting on the ions is QT, — fix. As the ions are oscillated by the 
applied force, they couple some of the energy in the applied field to lattice vibrations 
and this energy is then lost as heat (lattice vibrations) in the crystal. As in classical 
mechanics, this type of energy loss through a coupling mechanism can be repre¬ 
sented as a frictional force (force associated with losses) Floss that acts against the 
effect of the applied force. This frictional force is proportional to the velocity of the 
ions or dx/dt, so it is written as Fioss = —y(dx/dt) where y is a proportionality 
constant that depends on the exact mechanism for the energy loss from the field, and 
the negative sign ensures that it is opposing the applied field. The total (net) force on 
the ions is 

Ftotal = F + Fr + Fioss = Q<L - fix - y— Total force 
dt 

Normally we would examine the equations of motion (Newton’s second law) 
under forced oscillation for each ion separately, and then we would use the results to 
find the overall extension x. An equivalent procedure (as well known in mechanics) is 
to keep one ion stationary and allow the other one to oscillate with a reduced mass 
Mr, which is Mr — (M+A/_)/(M+ + M_) where M+ and M_ are the masses of Na+ 
and Cl- ions, respectively. For example, we can simply examine the oscillations of 
the Na+ -ion within the reference frame of the Cl- -ion (kept “stationary”) and attach 



664 chapter 7 • Dielectric Materials and Insulation 

Forced 
oscillations of 
Na+-Cl~ ion 
pair 

Forced dipole 
oscillator, 
ionic 
polarization 

Ionic 
polarizability 

a reduced mass Mr to Na+ as depicted in Figure 7.57. Then Newton’s second 
gives 

d2x 
Mr 

dt2 

dx 
QF-px-y — 

dt 
[7.87] 

It is convenient to put Mr and P together into a new constant cot which represents ] 
the resonant or natural angular frequency of the ionic bond, or the natural oscilla¬ 
tions when the applied force is removed. Defining coj = (P/Mr)l/2 and yi as y per 
unit reduced mass, i.e., yi = y/Mr,we have 

d2x dx 0 Q 
—r + Yi~—I" <o]x = — F0exp(jcot) [7.88] 
dt1 dt Mr 

Equation 7.88 is a second-order differential equation for the induced displacement | 
x of a pair of neighboring ions about the equilibrium separation as a result of an ap¬ 
plied force QF. It is called the forced oscillator equation and is well known in me¬ 
chanics. (The same equation would describe the damped motion of a ball attached to a j 
spring in a viscous medium and oscillated by an applied force.) The solution to Equa¬ 
tion 7.88 will give the displacement x = xQ exp(jcot), which will have the same time i 
dependence as F but phase shifted; that is, xa will be a complex number. The relative 1 

displacement of the ions from the equilibrium gives rise to a net or induced polariza- ' 
tion pi = Qx. Thus Equation 7.88 can be multiplied by Q to represent the forced 
oscillations of the induced dipole. Equation 7.88 is also called the Lorentz dipole 

oscillator model. 

The induced dipole p, will also be phase shifted with respect to the applied force 
QF. When we divide pi by the applied field F, we get the ionic polarizability a,, 
given by 

Pi_=Qff____ 
FT, Mr (a)2 — co2 + jyico) 

[7.89] 

It can be seen that the polarizability is also a complex number as we expect; there 
is a phase shift between F and induced It therefore has real aj and imaginary a" 
parts and can be written as a, = aej — jet". We note that, by convention, the imaginary 
part is written with a minus sign to keep a" as a positive quantity. Further, when co = 0, 
under dc conditions, the ionic polarizability a,- (0) from Equation 7.89 is 

DC ionic 
polarizability «/( 0) 

Q2 

Mrcoj 
[7.90] 

The dc polarizability is a real quantity as there can be no phase shift under dc con¬ 
ditions. We can then write the ionic polarizability in Equation 7.89 in terms of the nor¬ 
malized frequency (co/coi) as 

AC ionic 
polarizability 

OCi (co) = 
<*i (0) 

[7.91] 
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Complex polarizability, afafO) 

0 0.5 1.0 1.5 

Figure 7.58 A schematic 

representation of the frequency 

dependence of the real and 

imaginary parts of normalized 

polarizability a,/a,(0) versus 
co/co/. 

The dependences of the real and imaginary parts of on the frequency of the field 
are shown in Figure 7.58 in terms of the normalized frequency (co/ooi) for one 
particular value of the loss factor, yi — 0.1 coj. Note that a" peaks at a frequency very 
close to the ionic bond resonant frequency coj (it is exactly a>i when yj = 0). The sharp¬ 
ness and magnitude of the a." peak depends on the loss factor yj. The peak is sharper and 
higher for smaller yi. Notice that a\ is nearly constant at frequencies lower than coj. In¬ 
deed, in a dc field, aj = a, (0). But, through co/, a- shows a rapid change from positive 
to negative values and then it tends toward zero for frequencies greater than co/. 

Zero or negative a- should not be disconcerting since the actual magnitude of the 
polarizability is |a,| = (a? + a'/2)l/2, which is always positive through cot and maxi¬ 
mum at (oj. The phase of a, however changes through ojj. The phase of a, , and hence 
the phase of the polarization with respect to the field, are zero at low frequencies 
(co <3C a>i). As the frequency increases, the polarization lags behind the field and the 
phase of a, becomes more negative. At co = coj, the polarization lags behind the field 
by 90°. However, the rate of change of polarization is in phase with the field oscilla¬ 
tions, which leads to a maximum energy transfer. At high frequencies, well above co}, 

the ions cannot respond to the rapidly changing field and the coupling between the 
field and the ions is negligible. The peak in the a" versus co behavior around co = coi 

is what is called the dielectric resonance peak, and in this particular case it is called 
the ionic polarization relaxation peak and is due to the strong coupling of the applied 
field with the natural vibrations of the ionic bond at co = cof. 

The resulting relative permittivity er can be found from the Clausius-Mossotti 
equation. But we also have to consider the electronic polarizability ae of the two types 
of ions since this type of polarization operates up to optical frequencies (co » a>/), 
which means that Dielectric 

er(co) — 1 Ni constant of an 

sr(co) + 2 
= — [ai + ae+ + ae_] 

3 e0 
[7.92] ionic solid 
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where Nt is the concentrations of negative and positive ion pairs (assuming an equal 
number of positive and negative ions), and ae+ and ae- are the electronic polarizabilities 
of the negative and positive ion species, respectively. Inasmuch as a, is a complex 
quantity, so is the relative permittivity sr(co). We can express Equation 7.92 differently 
by noting that at very high frequencies, co » coIf at = 0, and the relative permittivity 
is then denoted as erop. Equation 7.92 then becomes 

£r(to) ~ 1 _ £rop - 1 _ NjCti_NjQ2_ 93J 

er(co) + 2 erop + 2 3s0 3s0Mr {co) — of1 + jyi(o) 

This is called the dielectric dispersion relation between the relative permittivity, 
due to ionic polarization, and the frequency of the electric field. Figure 7.16b shows the 
behavior of er(a)) with frequency for KC1 where e"r peaks at co = coj = 2jt(4.5 x 1012) 
rad s"1 and e'r exhibits sharp changes around this frequency. It is clear that as co gets 
close to <w/, there are rapid changes in er(a>). The resonant frequencies {coj) for ionic 
polarization relaxations are typically in the infrared frequency range, and the “applied” 
field in the crystal is then due to a propagating electromagnetic (EM) wave rather than 
an ac applied field between two external electrodes placed on the crystal.15 

It should be mentioned that electronic polarization can also be described by the 
Lorentz oscillator model, and can also be represented by Equation 7.91 if we appro¬ 
priately replace a, by ae and interpret coI and y{ as the resonant frequency and loss 
factor involved in electronic polarization. 

EXAMPLE 7.17 IONIC POLARIZATION RESONANCE IN KCI Consider a KC1 crystal which has the FCC crystal 
structure and the following properties. The optical dielectric constant is 2.19, the dc dielectric 
constant is 4.84, and the lattice parameter a is 0.629 nm. Calculate the dc ionic polarizability 
a, (0). Estimate the ionic resonance absorption frequency and compare the value with the ex¬ 
perimentally observed resonance at 4.5 x 1012 Hz in Figure 7.16b. The atomic masses of K and 
Cl are 39.09 and 35.45 g mol-1, respectively. 

SOLUTION 

At optical frequencies the dielectric constant erop is determined by electronic polarization. At 
low frequencies and under dc conditions, the dielectric constant erdc is determined by both elec¬ 
tronic and ionic polarization. If A, is the concentration of negative and positive ion pairs, then 
equation 7.93 becomes 

£ rdC 1 ^ /"OD 1 1 
—-= -25-+-NiCtti 0) 
srdc + 2 £r0p + 2 3e0 

There are four negative and positive ion pairs per unit cell, and the cell dimension is a. The 
concentration of negative and positive ion pairs Nt is 

Ni = 
4 

a3 

4 

(0.629 x 10-9 m)3 
= 1.61 x 1028 m~3 

15 More rigorous theories of ionic polarization would consider the interactions of a propagating electromagnetic 
wave with various phonon modes within the crystal, which is beyond the scope of this book. 
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Substituting £rdc = 4.84 and £rop = 2.19 and Nt in Equation 7.93 

_ 3e0 r£rdc - 1 £rop - 11 3(8.85 x 10-12) T4.84 - 1 2.19 - 11 

)_ Ni Urdc+2 £r0p + 2j_ 1.61 x 1028 1.4.84 + 2 2.19 -h 2J 

we find 

oil (0) = 4.58 x 10"40 Fm2 

The relationship between a, (0) and the resonance absorption frequency involves the re¬ 
duced mass Mr of the K+-C1" ion pair, 

Mr = 
M+M. (39.09)(35.45)(10-3) 

M+ + M_ “ (39.09 + 35.45)(6.022 x 1023) 
= 3.09 x 10-26 kg 

At co = 0, the polarizability is given by Equation 7.90, so the resonance absorption fre¬ 
quency coi is 

(Oj = 
Q2 ' 

Mr<*i( 0). 

1/2 (1.6 x 10-19)2 

(3.09 x 10~26)(4.58 x lO-40) 

1/2 

= 4.26 x 1013 rad s-1 

or fi — = 6.8 x 10 
2 n 

12 Hz 

This is about a factor of 1.5 greater than the observed resonance absorption frequency of 
4.5 x 1012 Hz. Typically one accounts for the difference by noting that the actual ionic charges 
may not be exactly +e on K+ and —e on Cl-, but Q is effectively 0.76c. Taking Q — 0.76c 
makes // = 5.15 x 1012 Hz, only 14 percent greater than the observed value. A closer agree¬ 
ment can be obtained by refining the simple theory and considering how many effective dipoles 
there are in the unit cell along the direction of the applied field. 

7.13 DIELECTRIC MIXTURES AND 
HETEROGENEOUS MEDIA 

Many dielectrics are composite materials; that is, they are mixtures of two or more dif¬ 
ferent types of dielectric materials with different relative permittivities and loss fac¬ 
tors. The simplest example is a porous dielectric which has small air pores randomly 
dispersed within the bulk of the material as shown in Figure 7.59a (analogous to a ran¬ 
dom raisin pudding). Another example would be a dielectric material composed of two 
distinctly different phases that are randomly mixed, as shown in Figure 7.59b, some¬ 
what like a Swiss cheese that has air bubbles. We often need to find the overall or the 
effective dielectric constant £reff of the mixture, which is not a trivial problem.16 This 
overall £reff can then be used to treat the mixture as if it were one dielectric substance 
with this particular dielectric constant; for example, the capacitance can be calculated 

16 The theories that try to represent a heterogeneous medium in terms of effective quantities are called effective 
medium theories (or approximations). The theory of finding an effective dielectric constant of a mixture has intrigued 
many famous scientists in the past. Over the years, many quite complicated mixture rules have been developed, and 
there is no shortage of formulas in this field. Many engineers however still tend to use simple empirical rules to model 
a composite dielectric. The primary reason is that many theoretical mixture rules depend on the exact knowledge of 
the geometrical shapes, sizes, and distributions of the mixed phases. 
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Figure 7.59 Heterogeneous dielectric media examples. 

(a) Dispersed dielectric spheres in a dielectric matrix. 

(b) A heterogeneous medium with two distinct phases I and II. 

(c) Series mixture rule. 

(d) Parallel mixture rule. 
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from C = s08rCffA/d by simply using ereff- It should be emphasized that if mixing occurs 
at the atomic level so that the material is essentially a solid solution, then, in principle, 
the Clausius-Mossotti equation can be used in which we simply add the polarizabili¬ 
ties of each species of atoms or ions weighted by their concentration. (We did this for 
CsCl in Example 7.4.) The present problem examines heterogeneous materials, and 
hence excludes such solid solutions. 

The theoretical treatment of mixtures can be quite complicated since one has to 
consider not only individual dielectric properties but also the geometrical shapes, sizes, 
and distributions of the two (or more) phases present in the composite material. In many 
cases, empirical rules that have been shown to work have been used to predict ereff. 
Consider a heterogeneous dielectric that has two mixed phases I and II with dielec¬ 
tric constants er\ and er2, and volume fractions v\ and v2, respectively, (i>i + v2 = 1) as 
in Figure 7.59b. One simple and useful mixture rule is 

£reff = v\£nr\ + »2 ^2 I7-94! 

where n is an index (a constant), usually determined empirically, that depends on the 
type of mixture. If we have a parallel stack of plates of I and II in alternating (or in ran¬ 
dom) sequence between the two electrodes, this would be like many series-connected 
dielectrics and n would be — 1. If the phases are in parallel as plates of I and II stacked 
on top of each other, as shown in Figure 7.59d, then n is 1. As n approaches 0, Equa¬ 
tion 7.94 can be shown to be equivalent to a logarithmic mixture rule: 

In £reff = t>2 In eri + v2 In er2 [7.95] 

which is known as the Lichtenecker formula (1926). Although its scientific basis is 
not strong, it has shown remarkable applicability to various heterogeneous media; per¬ 
haps due to the fact that it is a kind of compromise between the two extreme limits of 
series and parallel mixtures. 
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There is one particular mixture rule for dispersed dielectric spheres (with £>i), 
such as air pores, in a continuous dielectric matrix (with sr2), that works quite well for 
volume fractions up to about 20 percent, called the Maxwell-Garnett formula 

^reff &r2 &rl &r2 . , 
--— = vi--— [7.96] 
£reff + 2fir2 £r\ + 2fir2 

The Maxwell-Garnett equation can predict the effective dielectric constant of 
many different types of dielectrics that have dispersed pores. There are other mixture 
rules, but the above are some of the common types. 

Maxwell- 

Garnett 

formula 

LOW-*: POROUS DIELECTRICS FOR MICROELECTRONICS It was mentioned in Chapter 2 that 
today’s high transistor density ICs have multilayers of metal interconnect lines that are separated 
by an interlayer dielectric (ILD). The speed of the chip (as limited by the RC time constant) 
depends on the overall interconnect capacitance, which depends on the relative permittivity 
£riLD of the ILD. The traditional ILD material has been Si02 with er = 3.9. There is much 
research interest in finding suitable low-*- (also called low-k) materials for such ILD applica¬ 
tions, especially in ultralarge-scale integration (ULSI). What is the required porosity in Si02 if 
its effective relative permittivity is to be 2.5? 

EXAMPLE 7.18 

SOLUTION 

The Maxwell-Garnett equation is particularly useful for such porous media calculations. Sub¬ 
stituting er2 = 3.9, er\ = 1 (air pores), and setting eresi = 2.5 in Equation 7.96 we have 

2.5 - 3.9 1 - 3.9 

2.5 + 2(3.9) ~ Vi 1 + 2(3.9) 

and solving gives 

V! = 0.412, or 41% porosity 

Such porosity is achievable but it may have side effects such as poorer mechanical properties and 
lower breakdown voltage. Note that the Lichtenecker formula gives 32.6 percent porosity. As ap¬ 
parent from this example, there is a distinct advantage in starting with a dielectric that has a low 
initial er, and then using porosity to lower sr further. For example, if we start with er = 3, then 
the same 41 percent porosity will yield £reff = 2.05. Many polymeric materials have er values 
~ 2.5 and have been candidate materials for low-* ILD applications in microelectronics. 
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DEFINING TERMS 

Boundary conditions relate the normal and tangen¬ 

tial components of the electric field next to the bound¬ 

ary. The tangential component must be continuous 

through the boundary. Suppose that is the normal 

component of the field in medium 1 at the boundary 

and erl is the relative permittivity in medium 1. Using 

a similar notation for medium 2, then the boundary 

condition is er)!£ni = sr2tE„2. 

Clausius-Mossotti equation relates the dielectric 

constant (er), a macroscopic property, to the polariz¬ 

ability (a), a microscopic property. 

Complex relative permittivity (s' + je") has a real 

part (e') that determines the charge storage ability and 

an imaginary part (s'') that determines the energy 

losses in the material as a result of the polarization 

mechanism. The real part determines the capacitance 

through C = e0e'rA/d and the imaginary part deter¬ 

mines the electric power dissipation per unit volume as 

heat by £2a)e0e". 

Corona discharge is a local discharge in a gaseous 

atmosphere where the field is sufficiently high to cause 

dielectric breakdown, for example, by avalanche 

ionization. 

Curie temperature Tc is the temperature above 

which ferroelectricity disappears, that is, the sponta¬ 

neous polarization of the crystal is lost. 

Debye equations attempt to describe the frequency 

response of the complex relative permittivity e'r + je" 

of a dipolar medium through the use of a single relax¬ 

ation time r to describe the sluggishness of the dipoles 

driven by the external ac field. 

Dielectric is a material in which energy can be stored 

by the polarization of the molecules. It is a material 

that increases the capacitance or charge storage ability 

of a capacitor. Ideally, it is a nonconductor of electri¬ 

cal charge so that an applied field does not cause a flow 

of charge but instead relative displacement of opposite 

charges and hence polarization of the medium. 

Dielectric loss is the electrical energy lost as heat in 

the polarization process in the presence of an applied 

ac field. The energy is absorbed from the ac voltage 

and converted to heat during the polarization of the 

molecules. It should not be confused with conduction 

loss ff£2 or V2/R. 

Dielectric strength is the maximum field (£br) that 

can be sustained in a dielectric beyond which dielectric 

breakdown ensues; that is, there is a large conduction 

current through the dielectric shorting the plates. 

Dipolar (orientational) polarization arises when ran¬ 

domly oriented polar molecules in a dielectric are ro¬ 

tated and aligned by the application of a field so as to 

give rise to a net average dipole moment per molecule. 

In the absence of the field, the dipoles (polar mole¬ 

cules) are randomly oriented and there is no average 

dipole moment per molecule. In the presence of the 

field, the dipoles are rotated, some partially and some 

fully, to align with the field and hence give rise to a net 

dipole moment per molecule. 

Dipolar relaxation equation describes the time re¬ 

sponse of the induced dipole moment per molecule in a 

dipolar material in the presence of a time-dependent 

applied field. The response of the dipoles depends on 

their relaxation time, which is the mean time required 

to dissipate the stored electrostatic energy in the dipole 

alignment to heat through lattice vibrations or molecu¬ 

lar collisions. 

Dipole relaxation (dielectric resonance) occurs 

when the frequency of the applied ac field is such that 

there is maximum energy transfer from the ac voltage 

source to heat in the dielectric through the alternating 

polarization and depolarization of the molecules by the 

ac field. The stored electrostatic energy is dissipated 

through molecular collisions and lattice vibrations (in 

solids). The peak occurs when the angular frequency of 

the ac field is the reciprocal of the relaxation time. 

Electric dipole moment exists when a positive charge 

+Q is separated from a negative charge —Q. Even 

though the net charge is zero, there is nonetheless an 

electric dipole moment p given by p = Qx where x is 

the distance vector from —Q to +Q. Just as two 

charges exert a Coulombic force on each other, two 

dipoles also exert a force on each other that depends on 

the magnitudes of the dipoles, their separation, and 

orientation. 
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Electric susceptibility (x*) is a material quantity that 

measures the extent of polarization in the material per 

unit field. It relates the amount of polarization P at a 

point in the dielectric to the field £ at that point via 

P = x«£<>£- If is the relative permittivity, then 
Xe = sr — 1. Vacuum has no electric susceptibility. 

Electromechanical breakdown and electrofracture 
are breakdown processes that directly or indirectly in¬ 

volve electric field-induced mechanical weakening, 

for example, crack propagation, or mechanical defor¬ 

mation that eventually lead to dielectric breakdown. 

Electronic bond polarization is the displacement of 

valence electrons in the bonds in covalent solids (e.g., 

Ge, Si). It is a collective displacement of the electrons 

in the bonds with respect to the positive nuclei. 

Electronic polarization is the displacement of the 

electron cloud of an atom with respect to the positive 

nucleus. Its contribution to the relative permittivity of 

a solid is usually small. 

External discharges are discharges or shorting cur¬ 

rents over the surface of the insulator when the con¬ 

ductance of the surface increases as a result of surface 

contamination, for example, excessive moisture, depo¬ 

sition of pollutants, dirt, dust, and salt spraying. Even¬ 

tually the contaminated surface develops sufficient 

conductance to allow discharge between the electrodes 

at a field below the normal breakdown strength of the 

insulator. Dielectric breakdown over the surface of an 

insulation is termed surface tracking. 

Ferroelectricity is the occurrence of spontaneous 

polarization in certain crystals such as barium titanate 

(BaTiC>3). Ferroelectric crystals have a permanent 

polarization P as a result of spontaneous polarization. 

The direction of P can be defined by the application of 

an external field. 

Gauss’s law is a fundamental law of physics that 

relates the surface integral of the electric field over a 

closed (hypothetical) surface to the sum of all the 

charges enclosed within the surface. If £„ is the field 

normal to a small surface area dA and (2 total is the 
enclosed total charge, then over the whole closed sur¬ 

face S0 “£n dA — Q total* 

Induced polarization is the polarization of a mole¬ 

cule as a result of its placement in an electric field. The 

induced polarization is along the direction of the field. 

If the molecule is already polar, then induced polariza¬ 

tion is the additional polarization that arises due to the 

applied field alone and it is directed along the field. 

Insulation aging is a term used to describe the physi¬ 

cal and chemical deterioration in the properties of the 

insulation so that its dielectric breakdown characteris¬ 

tics worsen with time. Aging therefore determines the 

useful life of the insulation. 

Interfacial polarization occurs whenever there is an 

accumulation of charge at an interface between two 

materials or between two regions within a material. 

Grain boundaries and electrodes are regions where 

charges generally accumulate and give rise to this type 

of polarization. 

Internal discharges are partial discharges that take 

place in microstructural voids, cracks, or pores within 

the dielectric where the gas atmosphere (usually air) 

has lower dielectric strength. A porous ceramic, for 

example, would experience partial discharges if the 

field is sufficiently large. Initially, the pore size (or the 

number of pores) may be small and the partial dis¬ 

charge insignificant, but with time the partial discharge 

erodes the internal surfaces of the void. Eventually 

(and usually) an electrical tree type of discharge devel¬ 

ops from a partial discharge that has been eroding the 

dielectric. The erosion of the dielectric by the partial 

discharge propagates like a branching tree. The “tree 

branches” are erosion channels, filaments of various 

sizes, in which gaseous discharge takes place and 

forms a conducting channel during operation. 

Intrinsic breakdown or electronic breakdown com¬ 

monly involves the avalanche multiplication of elec¬ 

trons (and holes in solids) by impact ionization in the 

presence of high electric fields. The large number of 

free carriers generated by the avalanche of impact ion¬ 

izations leads to a runaway current between the elec¬ 

trodes and hence to insulation breakdown. 

Ionic polarization is the relative displacement of 

oppositely charged ions in an ionic crystal that results 

in the polarization of the whole material. Topically, 

ionic polarization is important in ionic crystals below 

the infrared wavelengths. 

Local field (£ioc) is the true field experienced by a 

molecule in a dielectric that arises from the free 

charges on the plates and all the induced dipoles 
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surrounding the molecule. The true field at a molecule 

is not simply the applied field (V/d) because of the 

field of the neighboring induced dipoles. 

Loss tangent or tan 8 is the ratio of the dielectric con¬ 

stant’s imaginary part to the real part, e"/s'r. The angle 

5 is the phase angle between the capacitive current and 

the total current. If there is no dielectric loss, then the 

two currents are the same and 5 = 0. 

Partial discharge occurs when only a local region of 

the dielectric is exhibiting discharge, so the discharge 

does not directly connect the two electrodes. 

Piezoelectric material has a noncentrosymmetric 

crystal structure that leads to the generation of a polar¬ 

ization vector P, or charges on the crystal surfaces, 

upon the application of a mechanical stress. When 

strained, a piezoelectric crystal develops an internal 

field and therefore exhibits a voltage difference 

between two of its faces. 

PLZT, lead lanthanum zirconate titanate, is a PZT- 

type material with lanthanum occupying the Pb site. 

Polarizability (a) is the ability of an atom or mole¬ 

cule to become polarized in the presence of an electric 

field. It is induced polarization in the molecule per unit 

field along the field direction. 

Polarization is the separation of positive and negative 

charges in a system so that there is a net electric dipole 

moment per unit volume. 

Polarization vector (P) measures the extent of polar¬ 

ization in a unit volume of dielectric matter. It is the 

vector sum of dielectric dipoles per unit volume. If p is 

the average dipole moment per molecule and n is the 

number of molecules per unit volume, then P = np. In 

a polarized dielectric matter (e.g., in an electric field), 

the bound surface charge density op due to polarization 

is equal to the normal component of P at that point, 

&p ~ ^normal • 

Poling is the application of a temporary electric field 

to a piezoelectric (or ferroelectric) material, generally 

at an elevated temperature, to align the polarizations of 

various grains and thereby develop piezoelectric 

behavior. 

Pyroelectric material is a polar dielectric (such as 

barium titanate) in which a temperature change A T 

induces a proportional change AP in the polarization, 

that is, AP = p AT, wherep is the pyroelectric coef¬ 

ficient of the crystal. 

PZT is a general acronym for the lead zirconate 

titanate (PbZr03-PbTi03 or PbTio.4sZro.52O3) family of 

crystals. 

0-factor or quality factor for an impedance is the 

ratio of its reactance to its resistance. The Q-factor of 

a capacitor is Xc/Rp where Xc = 1 /coC and Rp is the 

equivalent parallel resistance that represents the di¬ 

electric and conduction losses. The 0-factor of a reso¬ 

nant circuit measures the circuit’s peak response at the 

resonant frequency and also its bandwidth. The 

greater the Q, the higher the peak response and the 

narrower the bandwidth. For a series RLC resonant 

circuit, 

R u>0CR 

where co0 is the resonant angular frequency, co0 = 

1 /VlC. The width of the resonant response curve be¬ 

tween half-power points is Aco = 0)o/Q. 

Relative permittivity (£r) or dielectric constant of 

a dielectric is the fractional increase in the stored 

charge per unit voltage on the capacitor plates due to 

the presence of the dielectric between the plates (the 

whole space between the plates is assumed to be 

filled). Alternatively, we can define it as the fractional 

increase in the capacitance of a capacitor when the 

insulation between the plates is changed from a vac¬ 

uum to a dielectric material, keeping the geometry the 

same. 

Relaxation time (r) is a characteristic time that 

determines the sluggishness of the dipole response to 

an applied field. It is the mean time for the dipole to 

lose its alignment with the field due to its random 

interactions with the other molecules through molecu¬ 

lar collisions, lattice vibrations, and so forth. 

Surface tracking is an external dielectric breakdown 

that occurs over the surface of the insulation. 

Temperature coefficient of capacitance (TCC) is the 

fractional change in the capacitance per unit tempera¬ 

ture change. 
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Thermal breakdown is a breakdown process that 

involves thermal runaway, which leads to a runaway 

current or discharge between the electrodes. If the heat 

generated by dielectric loss, due to e", or Joule heat¬ 

ing, due to finite a, cannot be removed sufficiently 

rapidly, then the temperature of the dielectric rises, 

which increases the conductivity and the dielectric 

loss. The increases in e" and a lead to more heat 

generation and a further rise in the temperature, so 

thermal runaway ensues, followed by either a large 

shorting current or local thermal decomposition of the 

insulation accompanied by a partial discharge in this 

region. 

Transducer is a device that converts electrical energy 

into another form of usable energy or vice versa. For 

example, piezoelectric transducers convert electrical 

energy to mechanical energy and vice versa. 

QUESTIONS AND PROBLEMS 

7.1 Relative permittivity and polarizability 

a. Show that the local field is given by 

Sloe Local field 

b. Amorphous selenium (a-Se) is a high-resistivity semiconductor that has a density of approximately 

4.3 g cm-3 and an atomic number and mass of 34 and 78.96, respectively. Its relative permittivity 

at 1 kHz has been measured to be 6.7. Calculate the relative magnitude of the local field in a-Se. 

Calculate the polarizability per Se atom in the structure. What type of polarization is this? How will 

er depend on the frequency? 

c. If the electronic polarizability of an isolated atom is given by 

ae ** 4tte0r] 

where r0 is the radius of the atom, then calculate the electronic polarizability of an isolated Se atom, 

which has rQ =0.12 nm, and compare your result with that for an atom in a-Se. Why is there a dif¬ 

ference? 

7.2 Electronic polarization and SF6 Because of its high dielectric strength, SF6 (sulfur hexafluoride) gas 

is widely used as an insulator and a dielectric in HV applications such as HV transformers, switches, cir¬ 

cuit breakers, transmission lines, and even HV capacitors. The SF6 gas at 1 atm and at room temperature 

has a dielectric constant of 1.0015. The number of SF6 molecules per unit volume N can be found by 

the gas law, P = (N/Na)RT. Calculate the electronic polarizability ae of the SF6 molecule. How does 

ote compare with the ae versus Z line in Figure 7.4? (Note: The SF6 molecule has no net dipole. Assume 

that the overall polarizability of SF6 is due to electronic polarization.) 

7.3 Electronic polarization in liquid xenon Liquid xenon has been used in radiation detectors. The den¬ 

sity of the liquid is 3.0 g cm-3. What is the relative permittivity of liquid xenon given its electronic po¬ 

larizability in Table 7.1? (The experimental er is 1.96.) 

7.4 Relative permittivity, bond strength, bandgap, and refractive index Diamond, silicon, and germanium 

are .covalent solids with the same crystal structure. Their relative permittivities are shown in Table 7.10. 

a. Explain why sr increases from diamond to germanium. 

b. Calculate the polarizability per atom in each crystal and then plot polarizability against the elastic 

modulus Y (Young’s modulus). Should there be a correlation? 

c. Plot the polarizability from part ib) against the bandgap energy Eg. Is there a relationship? 

d. Show that the refractive index n is ^/iv * When does this relationship hold and when does it fail? 

e. Would your conclusions apply to ionic crystals such as NaCl? 
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Table 7.10 Properties of diamond, Si, and Ge 

Sr M* 

Density 

(g cm-3) 

Y 

cte (GPa) 
Eg 

(eV) n 

Diamond 5.8 12 3.52 827 5.5 2.42 

Si 11.9 28.09 2.33 190 1.12 3.45 

Ge 16 72.61 5.32 75.8 0.67 4.09 

7.5 Dipolar liquids Given the static dielectric constant of water as 80, its high-frequency dielectric con¬ 

stant (due to electronic polarization) as 4, and its density as 1 g cm-3, calculate the permanent dipole 

moment p0 per water molecule assuming that it is the orientational and electronic polarization of indi¬ 

vidual molecules that gives rise to the dielectric constant. Use both the simple relationship in Equation 

7.14 where the local field is the same as the macroscopic field and also the Clausius-Mossotti equation 

and compare your results with the permanent dipole moment of the water molecule which is 

6.1 x 10-30 C m. What is your conclusion? What is sr calculated from the Clausius-Mossotti equation 

taking the true p0 (6.1 x 10”30 C m) of a water molecule? (Note: Static dielectric constant is due to both 

orientational and electronic polarization. The Clausius-Mossotti equation does not apply to dipolar ma¬ 

terials because the local field is not described by the Lorentz field.) 

7.6 Dielectric constant of water vapor or steam The isolated water molecule has a permanent dipole p0 

of 6.1 x 10“30 C m. The electronic polarizability ae of the water molecule under dc conditions is about 

4 x 10"40 C m. What is the dielectric constant of steam at a pressure of 10 atm (10 x 105 Pa) and at a 

temperature of 400 °C? [Note: The number of water molecules per unit volume N can be found from 

the simple gas law, P = (N/Na)RT. The Clausius-Mossotti equation does not apply to orientational 

polarization. Since N is small, use Equation 7.14.] 

7.7 Dipole moment in a nonuniform electric field Figure 7.60 shows an electric dipole moment p in a 

nonuniform electric field. Suppose the gradient of the field is dfE/dx at the dipole p, and the dipole is 

oriented to be along the direction of increasing % as in Figure 7.60. Show that the net force acting on this 

dipole is given by 

Net force on a 

dipole 

Figure 7.60 

Left: A dipole moment in a nonuniform field 

experiences a net force F that depends on the 

dipole moment p and the field gradient d*E/clx. 

Right: When a charged comb (by combing hair) 

is brought close to a water jet, the field from the 

comb polarizes the liquid by orientational 

Polarization. The induced polarization vector P 

and hence the liquid is attracted to the comb 

where the field is higher. 
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Which direction is the force? What happens to this net force when the dipole moment is facing the di¬ 

rection of decreasing field? Given that a dipole normally also experiences a torque as described in Sec¬ 

tion 7.3.2, explain qualitatively what happens to a randomly placed dipole in a nonuniform electric field. 

Explain the experimental observation of bending a flow of water by a nonuniform field from a charged 

comb as shown in the photograph in Figure 7.60? (Remember that a dielectric medium placed in a field 

develops polarization P directed along the field.) 

7.8 Ionic and electronic polarization Consider a CsBr crystal that has the CsCl unit cell crystal structure 

(one Cs+-Br~ pair per unit cell) with a lattice parameter (a) of 0.430 nm. The electronic polarizability 

of Cs+ and Br“ ions are 3.35 x 10-40 F m2 and 4.5 x 10-40 F m2, respectively, and the mean ionic po¬ 

larizability per ion pair is 5.8 x 10-40 F m2. What is the low-frequency dielectric constant and that at 

optical frequencies? 

7.9 Electronic and ionic polarization in KC1 KC1 has the same crystal structure as NaCl. KCl’s lattice 

parameter is 0.629 nm. The ionic polarizability per ion pair (per K+-C1- ion) is 4.58 x 10-40 F m2. 

The electronic polarizability of K+ is 1.26 x 10-40 F m2 and that of Cl- is 3.41 x 10-40 F m2. Calcu¬ 

late the dielectric constant under dc operation and at optical frequencies. Experimental values are 4.84 

and 2.19. 

7.10 Debye relaxation We will test the Debye equations for approximately calculating the real and imagi¬ 

nary parts of the dielectric constant of water just above the freezing point at 0.2 °C. Assume the following 

values in the Debye equations for water: £r&c — 87.46 (dc), eroo = 4.87 (at / = 300 GHz well beyond the 

relaxation peak), and r = \/co0 = (2^9.18 GHz)-1 = 0.017 ns. Calculate the real and imaginary, e'r 

and e", parts of er for water at frequencies in Table 7.11, and plot both the experimental values and your 

calculations on a linear-log plot (frequency on the log axis). What is your conclusion? (Note: It is pos¬ 

sible to obtain a better agreement by using two relaxation times or using more sophisticated models.) 

Table 7.11 Dielectric properties of water at 0.2 °C 

/(GHz) 

03 0.5 1 1.5 3 5 9.18 10 20 40 70 100 300 

4 87.46 87.25 86.61 85.34 76.20 68.19 46.13 42.35 19.69 10.16 7.20 6.14 4.87 

< 2.60 4.50 8.85 13.18 24.28 34.53 40.55 40.24 30.23 17.68 11.15 8.31 3.68 

I SOURCE: Data extracted from R. Buchner et al., Chem. Phys. Letts, 306, 57, 1999. 

*7.11 Debye and non-Debye relaxation and Cole-Cole plots Consider the Debye equation 

Sr Sroo + 
Srdc SrpQ 

1 + jo) X 

Debye 

relaxation 

and also the generalized dielectric relaxation equation, which “stretches” (broadens) the Debye 

function, 

_ , Srdc “ Sroo 

Take t = 1, erdc = 5, er00 = 2, and a = 0.8, and — 1. Plot the real and imaginary parts of er 

versus frequency (on a log scale) for both functions from co = 0, 0.1 /r, 1 /3r, 1 /r, 3/r, and lOr. For the 

same a> values, plot e” versus sfr (Cole-Cole plot) for both functions using a graph in which the x and y 

axes have the same divisions. What is your conclusion? 

Generalized 

dielectric 

relaxation 

7.12 Equivalent circuit of a polyester capacitor Consider a 1 nF polyester capacitor that has a polymer 

(PET) film thickness of 1 pm. Calculate the equivalent circuit of this capacitor at 50 °C and at 120 °C 

for operation at 1 kHz. What is your conclusion? 
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7.13 Student microwaves mashed potatoes A microwave oven uses electromagnetic waves at 2.48 GHz 

to heat food by dielectric loss, that is, making use of e” of the food material, which normally has sub¬ 

stantial water content. An undergraduate student microwaves 10 cm3 of mashed potatoes in 60 seconds. 

The microwave generates an rms field of £rms of 200 V cm”1 in mashed potatoes. At 2.48 GHz, mashed 

potatoes have e" = 21. Calculate the average power dissipated per cm3, and also the total energy dissi¬ 

pated heating the food. (Note: You can use £rms instead of E in Equation 7.32.) 

7.14 Dielectric loss per unit capacitance Consider the three dielectric materials listed in Table 7.12 with 

the real and imaginary dielectric constants e' and e". At a given voltage, which dielectric will have the 

lowest power dissipation per unit capacitance at 1 kHz and at an operating temperature of 50 °C? Is this 

also true at 120 °C? 

Table 7.12 Dielectric properties of three insulators at 1 kHz 

r=50°c r=i20°c 

Material 4 s" 4 e” 

Polycarbonate 2.47 0.003 2.535 0.003 

PET 2.58 0.003 2.75 0.027 

PEEK 2.24 0.003 2.25 0.003 

I SOURCE: Data taken using a DEA by Kasap and Nomura (1995). 

7.15 

Equivalent 

series resistance 

and capacitance 

Equivalent 

series resistance 

and capacitance 

Parallel and series equivalent circuits Figure 7.61 shows simplified parallel and series equivalent 

circuits for a capacitor. The elements Rp and Cp in the parallel circuit and the elements Rs and Cs in the 

series circuit are related. We can write down the impedance Zab between the terminals A and B for both 

the circuits, and then equate Zab (parallel) = Zab (series). Show that 

Rs = 
Rn 

1 + (o)RpCp 
and _c rI+_!_l 

“ P L (<oRpCp)2\ 

and similarly by considering the admittance (1/impedance). 

s'=s'[l+is«k?. ““ C> ~ 1 + (of/tjCf)2 

A 10 nF capacitor operating at 1 MHz has a parallel equivalent resistance of 100 kfi. What are Cs 

and Rs? 

Figure 7.61 An equivalent parallel Rp 
and Cp circuit is equivalent to a series Rs 
and Cs circuit. The elements Rp and Cp in 
the parallel circuit are related to the 
elements Rs and Cs in the series circuit. 

A A A 

Cs 

Rs 

B 

7.16 Tantalum capacitors Electrolytic capacitors tend to be modeled by a series Rs + jcoCs equivalent 

circuit. A nominal 22 uF Ta capacitor (22 pF at low frequencies) has the following properties at 10 kHz: 
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e'r 20 (at this frequency), tan <5 % 0.05, dielectric thickness d = 0.16 pm, effective area A = 150 cm2. 

Calculate Cp, RP,CS, and Rs. 

7.17 Tantalum versus niobium oxide capacitors Niobium oxide (Nb2C>5) is a competing dielectric to 

Ta2C>5 (the dielectric in the tantalum capacitor). The dielectric constants are 41 for Nl^Os and 27 for 

Ta2C>5. For operation at the same voltage, the Ta2C>5 thickness is 0.17 pm, and that of Nb20s is 0.25 pm. 

Explain why the niobium oxide capacitor is superior (or inferior) to the Ta capacitor. (Use a quantitative 

argument, such as the capacitance per unit volume.) What other factors would you consider if you were 

choosing between the two? 

*7.18 TCC of a polyester capacitor Consider the parallel plate capacitor equation 

c _ SpSrXy 

z 

where sr is the relative permittivity (or efr), x and y are the side lengths of the dielectric so that xy is the 

area A, and z is the thickness of the dielectric. The quantities er, x, y, and z change with temperature. By 

differentiating this equation with respect to temperature, show that the temperature coefficient of 

capacitance (TCC) is 

TCC = 
J_dC 

C dT er dT 

where X is the linear expansion coefficient defined by 

X L— 
L dT 

where L stands for any length of the material (x, y, or z). Assume that the dielectric is isotropic and A. is 

the same in all directions. Using e' versus T behavior in Figure 7.62 and taking X = 50 x 10-6 K-1 as 

a typical value for polymers, predict the TCC at room temperature and at 10 kHz. 

Figure 7.62 Temperature 
dependence of e'r at 10 kHz. 
I SOURCE: Data taken by Kasap 
I and Maeda (1995). 

7.19 Dielectric breakdown of gases and Paschen curves Dielectric breakdown in gases typically in¬ 

volves the avalanche ionization of the gas molecules by energetic electrons accelerated by the applied 

field. The mean free path between collisions must be sufficiently long to allow the electrons to gain suf¬ 

ficient energy from the field to impact ionize the gas molecules. The breakdown voltage Vbr between two 

electrodes depends on the distance d between the electrodes as well as the gas pressure P, as shown in 

Figure 7.63. Vbr versus Pd plots are called Paschen curves. We consider gaseous insulation, air and SF6, 

in an HV switch. 

a. What is the breakdown voltage between two electrodes of a switch separated by a 5 mm gap with 

air at 1 atm when the gaseous insulation is air and when it is SF$? 

b. What are the breakdown voltages in the two cases when the pressure is 10 times greater? What is 

your conclusion? 

c. At what pressure is the breakdown voltage a minimum? 

d. What air gap spacing d at 1 atm gives the minimum breakdown voltage? 

e. What would be the reasons for preferring gaseous insulation over liquid or solid insulation? 

Temperature 

coefficient of 

capacitance 
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Rate of heat 

generation 

Figure 7.63 Breakdown voltage versus 
(pressure x electrode spacing) (Paschen 
curves). 

*7.20 Capacitor design Consider a nonpolarized 100 nF capacitor design at 60 Hz operation. Note that there 

are three candidate dielectrics, as listed in Table 7.13. 

a. Calculate the volume of the 100 nF capacitor for each dielectric, given that they are to be used 

under low voltages and each dielectric has its minimum fabrication thickness. Which one has the 

smallest volume? 

b. How is the volume affected if the capacitor is to be used at a 500 V application and the maximum 

field in the dielectric must be a factor of 2 less than the dielectric strength? Which one has the 

smallest volume? 

c. At a 500 V application, what is the power dissipated in each capacitor at 60 Hz operation? Which 

one has the lowest dissipation? 

Table 7.13 Comparison of dielectric properties at 60 Hz (typical values) 

Polymer Film 

PET 

Ceramic 

Ti02 

High-X Ceramic 

(BaTi03 based) 

Name Polyester Polycrystalline 

titania 

X7R 

e'r 3.2 90 1800 

tan S 5 x 10~3 4 x 10~4 5 x 10~2 

£br(kV cm-1) 150 50 100 

Typical minimum thickness 1-2 pm 10 pm 10 pm 

*7.21 Dielectric breakdown in a coaxial cable Consider a coaxial underwater high-voltage cable as in 

Figure 7.64a. The current flowing through the inner conductor generates heat, which has to flow through 

the dielectric insulation to the outer conductor where it will be carried away by conduction and convec¬ 

tion. We will assume that steady state has been reached and the inner conductor is carrying a dc current /. 

Heat generated per unit second Qf = dQ/dt by Joule heating of the inner conductor is 

Q> = Ri^=eHl [7.97] 
naz 

where p is the resistivity, a the radius of the conductor, and L the cable length. 

This heat flows radially out from the inner conductor through the dielectric insulator to the outer 

conductor, then to the ambient. This heat flow is by thermal conduction through the dielectric. The rate 

of heat flow Qf depends on the temperature difference 7} — T0 between the inner and outer conductors; 
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(b) 

Figure 7.64 

(a) The Joule heat generated in the 

core conductor flows outward 

radially through the dielectric 

material. 

(b) Typical temperature dependence 

of the dielectric strength of a 

polyethylene-based polymeric 

insulation. 

on the sample geometry (a, b, and L); and on the thermal conductivity k of the dielectric. From elemen¬ 

tary thermal conduction theory, this is given by 

Q! = (Tt To) 
2ttkL 

KI) 
[7.98] 

Rate of heat 

conduction 

7.22 

The inner core temperature 7/ rises until, in the steady state, the rate of Joule heat generation by the 

electric current in Equation 7.97 is just removed by the rate of thermal conduction through the dielectric 

insulation, given by Equation 7.98. 

a. Show that the inner conductor temperature is 

Ti T0 + 
pi2 

2 n2a2K 
[7.99] 

b. The breakdown occurs at the maximum field point, which is at r = a, just outside the inner con¬ 

ductor and is given by (see Example 7.11). 

7 max [7.100] 

The dielectric breakdown occurs when 7max reaches the dielectric strength £br- However the di¬ 

electric strength £t>r for many polymeric insulation materials depends on the temperature, and gen¬ 

erally it decreases with temperature, as shown for a typical example in Figure 7.64b. If the load 

current I increases, then more heat Q! is generated per second and this leads to a higher inner core 

temperature 7t by virtue of Equation 7.99. The increase in 7, with I eventually lowers £br so much 

that it becomes equal to 7max and the insulation breaks down (thermal breakdown). Suppose that a 

certain coaxial cable has an aluminum inner conductor of diameter 10 mm and resistivity 27 nQ m. 

The insulation is 3 mm thick and is a polyethylene-based polymer whose long-term dc dielectric 

strength is shown in Figure 7.64b. Suppose that the cable is carrying a voltage of 40 kV and the 

outer shield temperature is the ambient temperature, 25 °C. Given that the thermal conductivity of 

the polymer is about 0.3 W K_1 m""1, at what dc current will the cable fail? 

c. Rederive 7; in Equation 7.99 by considering that p depends on the temperature as p = p0[\ + 

ot0(T — T0)] (Chapter 2). Recalculate the maximum current in b given that ota = 3.9 x 10~3 °C~l 

at 25 °C. 

Piezoelectricity Consider a quartz crystal and a PZT ceramic filter both designed for operation at 

fs = 1 MHz. What is the bandwidth of each? Given Young’s modulus (7), density (p) for each, and that 

the filter is a disk with electrodes and is oscillating radially, what is the diameter of the disk for each 

material? For quartz, 7 — 80 GPa and p — 2.65 g cm-3. For PZT, 7 = 70 GPa and p = 7.7 g m-3. 

Steady-state 

inner conductor 

temperature 

Maximum field 

in a coaxial 

cable 
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Piezoelectric 

voltage 

coefficient 

Piezoelectric 

effects 

Piezoelectric 

bending 

Assume that the velocity of mechanical oscillations in the crystal is v = y/Y/p and the wavelength 

k = v/fs. Consider only the fundamental mode (n = 1). 

7.23 Piezoelectric voltage coefficient The application of a stress T to a piezoelectric crystal leads to a 

polarization P and hence to an electric field *E in the crystal such that 

tE = gT 

where g is the piezoelectric voltage coefficient. If £0£r is the permittivity of the crystal, show that 

£0&r 

A BaTiC>3 sample, along a certain direction (called 3), has d = 190 pC N_1, and its er ^ 1900 along this 

direction. What do you expect for its g coefficient for this direction and how does this compare with the 

measured value of approximately 0.013 m2 C_1 ? 

7.24 Piezoelectricity and the piezoelectric bender 

a. Consider using a piezoelectric material in an application as a mechanical positioner where the 

displacements are expected to be small (as in a scanning tunneling microscope). For the piezo¬ 

electric plate shown in Figure 7.65a, we will take L — 20 mm, W = 10 mm, and D (thickness) = 

0.25 mm. Under an applied voltage of V, the plate changes length, width, and thickness accord¬ 

ing to the piezoelectric coefficients dij, relating the applied field along i to the resulting strain 

along;. 

Suppose we define direction 3 along the thickness D and direction 1 along the length L, as shown 

in Figure 7.65a. Show that the changes in the thickness and length are 

SD = dn V 

Given d33 500 x 10 12 m V 1 and d^\ « —250 x 10 12 m V *, calculate the changes in the 

length and thickness for an applied voltage of 100 V. What is your conclusion? 

b. Consider two oppositely poled and joined ceramic plates, A and B, forming a bimorph, as shown 

in Figure 7.65b. This piezoelectric bimorph is mounted as a cantilever; one end is fixed and the 

other end is free to move. Oppositely poled means that the electric field elongates A and contracts 

B, and the two relative motions bend the plate. The displacement h of the tip of the cantilever is 

given by 

What is the deflection of the cantilever for an applied voltage of 100 V? What is your conclusion? 

Figure 7.65 

(a) A mechanical positioner using a piezoelectric plate 

under an applied voltage of V. 

(b) A cantilever-type piezoelectric bender. An applied 

voltage bends the cantilever. 

.1* 
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7.25 Piezoelectricity The wavelength k of mechanical oscillations in a piezoelectric slab satisfies 

“ G*)=l 
where n is an integer, L is the length of the slab along which mechanical oscillations are set up, and the 

wavelength k is determined by the frequency / and velocity v of the waves. The ultrasonic wave veloc¬ 

ity v depends on Young's modulus Y as 

■-er 
where p is the density. For quartz, Y = 80 GPa and p = 2.65 g cm 3. Considering the fundamental 

mode (n = 1), what are practical dimensions for crystal oscillators operating at 1 kHz and 1 MHz? 

7.26 Pyroelectric detectors Consider two different radiation detectors using PZT and PVDF as pyro¬ 

electric materials whose properties are summarized in Table 7.14. The receiving area is 4 mm2. The 

thicknesses of the PZT ceramic and the PVDF polymer film are 0.1 mm and 0.005 mm, respectively. 

In both cases the incident radiation is chopped periodically to allow the radiation to pass for a dura¬ 

tion of 0.05 s. 

a. Calculate the magnitude of the output voltage for each detector if both receive a radiation of inten¬ 

sity 10 pW cm”2. What is the corresponding current in the circuit? In practice, what would limit 

the magnitude of the output voltage? 

b. What is the minimum detectable radiation intensity if the minimum detectable signal voltage is 10 nV? 

Table 7.14 Properties of PZT and PVDF 

Pyroelectric 

Coefficient 

(xlO-6C m-2 K-‘) 

Density 

(g cm-3) 

Heat Capacity 

(J K-> g-‘) 

PZT 290 380 7.7 0.3 

PVDF 12 27 1.76 1.3 

7.27 LiTa(>3 pyroelectric detector LiTaC>3 (lithium tantalate) detectors are available commercially. 

LiTaC>3 has the following properties: pyroelectric coefficient p % 200 x 10“6 nC m“2 K”1, density 

p = 7.5 g cm”3, specific heat capacity cs — 0.43 J K”1 g“1. A particular detector has a cylindrical crys¬ 

tal with a diameter of 10 mm and thickness of 0.2 mm. Suppose we chop the input radiation and allow 

the radiation to fall on the detector for short periods of time. Each input radiation pulse has a duration of 

Af = 10 ms. (The time between the radiation pulses is long, so consider only the response of the detec¬ 

tor to a single pulse of radiation.) Suppose that all the incident radiation is absorbed. If the input radia¬ 

tion has an intensity of 10 pW cm”2, calculate the pyroelectric current, and the maximum possible output 

voltage that can be generated assuming that the input impedance of the amplifier is sufficiently large to 

be negligible. What is the current responsivity of this detector? What are the major assumptions in your 

calculation of the voltage signal? 

*7.28 Pyroelectric detectors Consider a typical pyroelectric radiation detector circuit as shown in Fig¬ 

ure 7.66. The FET circuit acts as a voltage follower (source follower). The resistance R\ represents the 

input resistance of the FET in parallel with a bias resistance that is usually inserted between the gate and 

source. C\ is the overall input capacitance of the FET including any stray capacitance but excluding the 

capacitance of the pyroelectric detector. Suppose that the incident radiation intensity is constant and 

equal to J. Emissivity r) of a surface characterizes what fraction of the incident radiation that is ab¬ 

sorbed? 7)1 is the energy absorbed per unit area per unit time. Some of the absorbed energy will increase 
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Figure 7.66 A pyroelectric detector with 

an FET voltage follower circuit. 

the temperature of the detector and some of it will be lost to surroundings by thermal conduction and 

convection. Let the detector receiving area be A, thickness be L, density be p, and specific heat capacity 

(heat capacity per unit mass) be c. The heat losses will be proportional to the temperature difference be¬ 

tween the detector temperature T and the ambient temperature Ta, as well as the surface area A (much 

greater than L). Energy balance requires that 

Rate of increase in the internal energy (heat content) of the detector 

= Rate of energy absorption — Rate of heat losses 

that is, 

Detector 

temperature 

Pyroelectric 

current 

Pyroelectric 

detector output 

voltage 

dT 
(ALp)c— = Ar)I 

dt 
- KA(T - T0) 

where K is a constant of proportionality that represents the heat losses and hence depends on the thermal 

conductivity k. If the heat loss involves pure thermal conduction from the detector surface to the detec¬ 

tor base (detector mount), then K = k/L, In practice, this is generally not the case and K = k/L is an 

oversimplification. 

a. Show that the temperature of the detector rises exponentially as 

r_r. + £[i-«p(-£)] 

where is a thermal time constant defined by rth = Lpc/K. Further show that for very small K, 

this equation simplifies to 

„ _ r]I 
T = To + y-1 

Lpc 

b. Show that temperature change dT in time dt leads to a pyroelectric current ip given by 

, dT Aprjl 
ip = Ap— = —-exp 
F dt Lpc (-i) 

where p is the pyroelectric coefficient. What is the initial current? 

c. The voltage across the FET and hence the output voltage u(r) is given by 

where VQ is a constant and rei is the electrical time constant given by R\Ct, where Cu total capac¬ 

itance, is (Ci + Cdet), where Cdet is the capacitance of the detector. Consider a particular PZT py¬ 

roelectric detector with an area of 1 mm2 and a thickness of 0.05 mm. Suppose that this PZT has 

er — 250, p— in % cm-3, c = 0.3 J K”1 g”1, and k — 1.5 W K“1 m“1. The detector is connected 

to an FET circuit that has R\ = 10 MQ and Ci = 3 pF. Taking the thermal conduction loss con¬ 

stant K as k/L, and rj = 1, calculate and rei. Sketch schematically the output voltage. What is 

your conclusion? 
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7.29 Spark generator design Design a PLZT piezoelectric spark generator using two back-to-back PLZT 

crystals that provide a 60 pj spark in an air gap of 0.5 mm from a force of 50 N. At 1 atm in an air gap 

of 0.5 mm, the breakdown voltage is about 3000 V. The design will need to specify the dimensions of 

the crystal and the dielectric constant. Assume that the piezoelectric voltage coefficient is 0.023 V m N~l. 

7.30 Ionic polarization resonance in CsCl Consider a CsCl crystal which has the following properties. 

The optical dielectric constant is 2.62, the dc dielectric constant is 7.20, and the lattice parameter a is 

0.412 nm. There is only one ion pair (Cs+-Cl“) in the cubic-type unit cell. Calculate (estimate) the ionic 

resonance absorption frequency and compare the value with the experimentally observed resonance at 

3.1 x 1012 Hz. What effective value of Q would bring the calculated value to within 10 percent of the 

experimental value? 

7.31 Low-k porous dielectrics for microelectronics Interconnect technologies need lower er interlayer di¬ 

electrics (ILDs) to minimize the interconnect capacitances. These materials are called low-/c dielectrics. 

a. Consider fluorinated silicon dioxide, also known as fluorosilicate glass (FSG). Its er is 3.2. What 

would be the effective dielectric constant if the DLD is 40 percent porous? 

b. What should be the starting er if we need an effective er less than 2 and the porosity cannot exceed 

40 percent? 

Tree and bush type electrical discharge structures, (a) Voltage V = 
160 kV, gap spacing d = 0.06 m at various times, (b) Dense bush 
discharge structure, V = 300 kV, d = 0.06 m at various times. 

SOURCE: V. Lopatin, M. D. Noskov, R. Badent, K. Kist, A. J. Swab, 
"Positive Discharge Development in Insulating Oil: Optical 
Observation and Simulation," IEEE Trans, on Dielec, and Elec. 
Insulation, vol. 5, no. 2, 1998, p. 251, figure 2. (© IEEE, 1998) 

Coaxial cable connector with traces of corona discharge; electrical 
treeing. 

SOURCE: M. Mayer and G. H. Schroder, "Coaxial 30 kV 
Connectors for the RG220/U Cable: 20 Years of Operational 
Experience," IEEE Electrical Insulation Magazine, vol. 16, March/ 
April 2000, p. 11, figure 6. (© IEEE, 2000) 



This small neodymium-iron-boron permanent magnet (diameter 
about the same as one-cent coin) is capable of lifting up to 
/onE0™ magnets typically have large (BH)max values 
[ZQQ-275 kj m-J). 

In 1986 J. George Bednorz (right) and K. Alex Muller, at IBM 
Research Laboratories in Zurich, discovered that a copper oxide 
based ceramic-type compound (La-Ba-Cu-O which normally has 
high resistivity becomes superconducting when cooled below 35 K. 
This Nobel prize winning discovery opened a new era of high- 
temperature-superconductivity research; now there are various 
ceramic compounds that are superconducting above the liquid 
nitrogen (an inexpensive cryogen) temperature [77 K). 

I SOURCE: IBM Zurich Research Laboratories. 



Magnetic Properties 
and Superconductivity 

Many electrical engineering devices such as inductors, transformers, rotating ma¬ 
chines, and ferrite antennas are based on utilizing the magnetic properties of materi¬ 
als. There are many instances where permanent magnets are also used either on their 
own or as part of a device such as a rotating machine or a loud speaker. The majority 
of engineering devices make use of the ferromagnetic and ferrimagnetic properties, 
which are therefore treated in much more detail than other magnetic properties such 
as diamagnetism and paramagnetism. Although superconductivity involves the van¬ 
ishing of the resistivity of a conductor at low temperatures and is normally explained 
within quantum mechanics, we treat the subject in this chapter because all supercon¬ 
ductors are perfect diamagnets and, further, they have present or potential uses that 
involve magnetic fields. The advent of high-Tc superconductivity, discovered in 1986 
by George Bednorz and Alex Muller at IBM Research Laboratories in Zurich, is un¬ 
doubtedly one of the most significant discoveries over the last 50 years, as popular¬ 
ized in various magazines. High-Tc superconductors are already finding applications 
in such devices as superconducting solenoids, sensitive magnetometers, and high-Q 
microwave filters. 

8.1 MAGNETIZATION OF MATTER 

8.1.1 Magnetic Dipole Moment 

Magnetic properties of materials involve concepts based on the magnetic dipole mo¬ 
ment. Consider a current loop, as shown in Figure 8.1, where the circulating current is /. 
This may, for example, be a coil carrying a current. For simplicity we will assume that 
the current loop lies within a single plane. The area enclosed by the current is A. Sup¬ 
pose that u„ is a unit vector coming out from the area A. The direction of u„ is such that 
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B 

B 

Figure 8.1 Definition 

of a magnetic dipole 

moment. 

Figure 8.2 A magnetic dipole 

moment in an external field 

experiences a torque. 

Figure 8.3 A magnetic dipole moment creates a magnetic field just like a bar 
magnet. 

The field B depends on p.m. 

Definition of 

magnetic 

moment 

looking along it, the current circulates clockwise. Then the magnetic dipole moment, 
or simply the magnetic moment p.m, is defined by1 

= IAun [8.11 

When a magnetic moment is placed in a magnetic field, it experiences a torque 
that tries to rotate the magnetic moment to align its axis with the magnetic field, as de¬ 
picted in Figure 8.2. Moreover, since a magnetic moment is a current loop, it gives rise 
to a magnetic field B around it, as shown in Figure 8.3, which is similar to the mag¬ 
netic field around a bar magnet. We can find the field B from the current I and its 
geometry, which are treated in various physics textbooks. For example, the field B at a 
point P at a distance r along the axis of the coil from the center, as shown in Figure 8.3, 
is directly proportional to the magnitude of the magnetic moment but inversely pro¬ 
portional to r3, that is, B oc p,m/r3. 

' The symbol p for the magnetic dipole moment should not be confused with the permeability. Absolute and relative 
permeabilities will be denoted by /x0 and /xr. 
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8.1.2 Atomic Magnetic Moments 

An orbiting electron in an atom behaves much like a current loop and has a magnetic 
dipole moment associated with it, called the orbital magnetic moment (/ii0rbX as il¬ 
lustrated in Figure 8.4. If co is the angular frequency of the electron, then the current I 

due to the orbiting electron is 

e eco 
/ = Charge flowing per unit time =-=- 

Period 2 tt 

If r is the radius of the orbit, then the magnetic dipole moment is 

2 ecor2 
fi orb = I(xr ) =-— 

But the velocity v of the electron is cor and its orbital angular momentum is 

L = (mev)r = mecor2 

Using this in /zorb, we get 

e 
(A orb = I ^ [8.2] 

2m e 

We see that the magnetic moment is proportional to the orbital angular momentum 
through a factor that has the charge to mass ratio of the electron. The numerical factor, 
in this case ej2me, relating the angular momentum to the magnetic moment, is called 
the gyromagnetic ratio. The negative sign in Equation 8.2 indicates that (xot\> is in the 
opposite direction to L and is due to the negative charge of the electron. 

The electron also has an intrinsic angular momentum S, that is, spin. The spin of 
the electron has a spin magnetic moment, denoted by fxspm, but the relationship be¬ 
tween /uspin and S is not the same as that in Equation 8.2. The gyromagnetic ratio is a 
factor of 2 greater, 

M spin — $ [8.31 
me 

The overall magnetic moment of the electron consists of porb and p,spin appropri¬ 
ately added. We cannot simply add them numerically as they are vector quantities. 
Furthermore, the overall magnetic moment patom of the atom itself depends on the 

Orbital 

magnetic 

moment of the 

electron 

Spin 

magnetic 

moment of the 

electron 

^orb Figure 8.4 An orbiting electron is 

equivalent to a magnetic dipole moment 
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Figure 8.5 The spin magnetic moment precesses about an 

external magnetic field along z and has a value jxz along z. 

Z 

Magnetic 

moment 

along the 

field 

orbital motions and spins of all the electrons. Electrons in closed subshells, however, 
do not contribute to the overall magnetic moment because for every electron with a 
given L (or S), there is another one with an opposite L (or S). The reason is that 
the direction of L is space quantized by mt and all negative and positive values of mt 

are occupied in a closed shell. Similarly, there are as many electrons spinning up 
as there are spinning down, so there is no net electron spin in a closed shell and no 
net jxspin. Thus, only unfilled subshells contribute to the overall magnetic moment 
of an atom. 

Consider an atom that has closed inner shells and a single electron in an s orbital 
(£ = 0). This means that the orbital magnetic moment is zero and the atom has a mag¬ 
netic moment due to the spin of the electron alone, p,atom = |xspin. In the presence of 
an external magnetic field along the z direction, the magnetic moment cannot simply 
rotate and align with the field because quantum mechanics requires the spin angular 
momentum to be space quantized, that is, Sz (the component of S along z) must be 
msfi where ms = ±| is the spin magnetic quantum number. The torque experienced 
by the spinning electron causes the spin magnetic moment to precess about the exter¬ 
nal magnetic field, as shown in Figure 8.5. This precession is such that Sz = — \ti and 
leads to an average magnetic moment iiz along the field given by Equation 8.3 with Sz, 

that is, 

6 6 eti 
IXZ =-Sz =-(msh) = -— = £ [8.4] 

me me 2m e 

The quantity ft = eh/2me is called the Bohr magneton and has the value 9.27 x 
10-24 Am2 or JT-1. 

Thus, the spin of a single electron has a magnetic moment of one Bohr magneton 
along the field. 

8.1.3 Magnetization Vector M 

Consider a tightly wound long solenoid, ideally infinitely long, with free space (or vac¬ 
uum) as the medium inside the solenoid, as shown in Figure 8.6a. The magnetic field 
inside the solenoid is denoted by B0 to specifically identify this field as in free space. 
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(a) (b) 

Figure 8.6 

(a) Consider a long solenoid. With free space as the medium inside, the magnetic field is B0. 

(b) A material medium inserted into the solenoid develops a magnetization M. 

This field depends on the current I through the solenoid wire and the number of turns 
per unit length n and is given by2 

B0 = fi0nl = ix0I' [8.5] 

where /' is the current per unit length of the solenoid, that is, V — nl, and fx0 is the ab¬ 
solute permeability of free space in henries per meter, H m-1. 

If we now place a cylindrical material medium to fill the inside of this solenoid, as 
in Figure 8.6b, we find that the magnetic field has changed. The new magnetic field in 
the presence of a medium is denoted as B. We will take B0 to be the applied magnetic 
field into which the material medium is placed. 

Each atom of the material responds to the applied field B0 and develops, or ac¬ 
quires, a net magnetic moment along the applied field. We can view each magnetic 
moment pm as the result of the precession of each atomic magnetic moment about B0. 
The medium therefore develops a net magnetic moment along the field and becomes 
magnetized. The magnetic vector M describes the extent of magnetization of the 
medium. M is defined as the magnetic dipole moment per unit volume. Suppose that 
there are N atoms in a small volume AV and each atom i has a magnetic moment pm(- 
(where i = 1 to N). Then M is defined by 

Free space 

field inside 

solenoid 

M 
1 N 

= ~£y 5Z Pm! ~ 
n atP av 

1 = 1 

ro Magnetiza- 
Lo.oJ 

tion vector 

where nat is the number of atoms per unit volume and pav is the average magnetic mo¬ 
ment per atom. We can assume that each atom acquires a magnetic moment pav along 
B0. Each of these magnetic moments along B0 can be viewed as an elementary current 
loop at the atomic scale, as schematically depicted in Figure 8.6b. These elementary 

I 2 The proof of this comes out from Ampere's law and can be found in any textbook of electromagnetism. 
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Magnetization 

and surface 

currents 

Figure 8.7 Elementary current loops result in surface 

currents. 

There is no internal current, as adjacent currents on 

neighboring loops are in opposite directions. 

Surface currents 
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Surface currents 

current loops are due to electronic currents within the atom and arise from both orbital 
and spin motions of the electrons. Each current loop has its current plane normal to B0. 

Consider a cross section of the magnetized medium, as in Figure 8.7. All the 
elementary current loops in this plane have the current circulation in the same direction 
inasmuch as each atom acquires the same magnetic moment jxav. All neighboring loops in 
the bulk have adjacent currents in opposite directions that cancel each other, as appar¬ 
ent in Figure 8.7. Thus, there are no net bulk currents, or internal currents, within the bulk 
of the material. However, the currents at the surface in the surface loops cannot be can¬ 
celed and this leads to a net surface current, as depicted in Figure 8.7. The surface cur¬ 
rents are induced by the magnetization of the medium by the applied magnetic field and 
therefore depend on the magnetization M of the specimen. 

From the definition of M, the total magnetic moment of the cylindrical specimen 
is 

Total magnetic moment = M (Volume) = MAI 

Suppose that the magnetization current on the surface per unit length of the 
specimen is Im. Then the total circulating surface current is Iml and the total magnetic 
moment of the specimen, by definition, is 

Total magnetic moment = (Total current) x (Cross-sectional area) = lmlA 

Equating the two total magnetic moments, we find 

M = lm [8.71 

We derived this for a particular sample geometry, a cylindrical specimen, in which 
M is along the axis of the cylindrical specimen and Im flows in a plane perpendicular 
to M. The relationship, however, is more general, as derived in more advanced texts. 
It should be emphasized that the magnetization current Im is not due to the flow of free 
charge carriers, as in a current-carrying copper wire, but due to localized electronic 
currents within the atoms of the solid at the surface. Equation 8.7 states that we can 
represent the magnetization of a medium by a surface current per unit length lm that is 
equal to M. 
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8.1.4 Magnetizing Field or Magnetic Field Intensity H 

The magnetized specimen in Figure 8.6b placed inside the solenoid develops magneti¬ 
zation currents on the surface. It therefore behaves like a solenoid. We can now regard 
the solenoid with medium inside, as depicted in Figure 8.8. The magnetic field within 
the medium now arises from not only the conduction current per unit length /' in the 
solenoid wires but also from the magnetization current Im on the surface. The magnetic 
field B inside the solenoid is now given by the usual solenoid expression but with a 
current that includes both /' and Im, as shown in Figure 8.8: 

B = Hoil' + Im) = B0 + fl 0M 

This relationship is generally valid and can be written in vector form as 

B = B0 + /U.0M [8.8] 

The field at a point inside a magnetized material is the sum of the applied field B0 
and a contribution from the magnetization M of the material. The magnetization arises 
from the application of B0 due to the current of free carriers in the solenoid wires, 
called the conduction current, which we can externally adjust. It becomes useful to 
introduce a vector field that represents the effect of the external or conduction current 
alone. In general, B — (i0M at a point is the contribution of the external currents alone 
to the magnetic field at that point inside the material that we called B0. B — fi0M rep¬ 
resents a magnetizing field because it is the field of the external currents that magne¬ 
tize the material. The magnetizing field H is defined as 

H = —B - M [8.9] 
Vo 

or 

H = —B0 
Vo 

The magnetizing field is also known as the magnetic field intensity and is 
measured in A m-1. The reason for the division by fiQ is that the resulting vector field 
H becomes simply related to the external conduction currents (through Ampere’s law). 
Since in the solenoid Bc is /i0nl, we see that the magnetizing field in a solenoid is 

Magnetic 

field in a 
magnetized 

medium 

Definition 

of the 

magnetizing 

field 

Definition 

of the 
magnetizing 

field 

H = nl = Total conduction current per unit length [8.10] 

Figure 8.8 The field B in the material 

inside the solenoid is due to the conduction 

current / through the wires and the 

magnetization current lm on the surface of the 

magnetized medium, or B = B0 + jU,0M. 
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It is generally helpful to imagine H as the cause and B as the effect. The cause H 
depends only on the external conduction currents, whereas the effect B depends on the 
magnetization M of matter. 

8.1.5 Magnetic Permeability and Magnetic Susceptibility 

Definition of 

magnetic 

permeability 

Definition of 

relative 

permeability 

Definition of 

magnetic 

susceptibility 

Relative 

permeability 

and 

susceptibility 

Suppose that at a point P in a material, the magnetic field is B and the magnetizing 
field is H. We let B0 be the magnetic field at P in the absence of any material (i.e., in 
free space). The magnetic permeability of the medium at P is defined as the magnetic 
field per unit magnetizing field. 

It relates the effect B to the cause H at the same point P inside a material. In sim¬ 
ple qualitative terms, p represents to what extent a medium is permeable by magnetic 
fields. Relative permeability pr of a medium is the fractional increase in the magnetic 
field with respect to the field in free space when a material medium is introduced. For 
example, suppose that the field in a solenoid with free space in it is B0 but with mate¬ 
rial inserted it is B. Then pr is defined by 

B _ B 

^r~T0~ 

From Equations 8.11 and 8.12, clearly, 

[8.12] 

P = HoHr 

The magnetization M produced in a material depends on the net magnetic field B. 
It would be natural to proceed as in dielectrics by relating M to B analogously to re¬ 
lating P (polarization) to £ (electric field). However, for historic reasons, M is related 
to H, the magnetizing field. Suppose that the medium is isotropic (same properties in 
all directions), then magnetic susceptibility Xm of the medium is defined simply by 

M = X/«H [8.13] 

This relationship is not obeyed by all magnetic materials. For example, as we will 
see later, ferromagnetic materials do not obey Equation 8.12. Since the magnetic field 

B = Po( H + M) 

we have 

and 

B = p0H + p0M = p0H + PoXmH = /Ml + Xm)H 

Hr = 1 + Xm [8.14] 

The presence of a magnetizable material is conveniently accounted for by using the 
relative permeability pr, or (1 -I- Xm), to simply multiply p0. Alternatively, one can 
simply replace p0 with p = p0pr. For example, the inductance of the solenoid with a 
magnetic medium inside increases by a factor of pr. 

Table 8.1 provides a summary of various important magnetic quantities, their def¬ 
initions, and units. 
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Table 8.1 Magnetic quantities and their units 

Magnetic Quantity Symbol Definition Units Comment 

Magnetic field; 

magnetic induction 

B F = q\ x B T = tesla = 

webers m~2 

Produced by moving charges 

or currents, acts on moving 

charges or currents. 

Magnetic flux cj> Ad> — Bnormai A A Wb = weber Ad> is flux through A A and 

^normal ^ normal to AA. 
Total flux through any 

closed surface is zero. 

Magnetic dipole 

moment 
Urn Hm = IA Am2 Experiences a torque in 

B and a net force in a 

nonuniform B, 

Bohr magneton P ft — efi/2me Am2 or 

J T-1 

Magnetic moment due to the 

spin of the electron. 

j3 = 9.27 x 10~24 A m2 

Magnetization 

vector 

M Magnetic moment 

per unit volume 

Am-1 Net magnetic moment in a 

material per unit volume. 

Magnetizing field; 

magnetic field 

intensity 

H H = Bfp0 - M Am-' H is due to external 

conduction currents only 

and is the cause of B in a 

material. 

Magnetic 

susceptibility 
Xm M = xmH None Relates the magnetization of 

a material to the 

magnetizing field H. 

Absolute 

permeability 
Ho C - [SolloT112 Hr1 = 

Wb nr1 A-1 

A fundamental constant in 

magnetism. In free space, 

Ho = B/H. 
Relative 

permeability 
Hr Hr = B/HoH None 

Magnetic 

permeability 
H [X = Hod-r Hr1 Not to be confused with 

magnetic moment. 

Inductance L L = i'unal// H (henries) Total flux threaded per unit 

current. 

Magnetostatic 

energy density 
Ey0\ dEV0\ — H dB Jr3 dEyoi is the energy required 

per unit volume 

in changing B by dB. 

AMPERE'S LAW AND THE INDUCTANCE OF A TOROIDAL COIL Ampere s law provides a 
relationship between the conduction current I and the magnetic field intensity H threading this 
current. The conduction current / is the current due to the flow of free charge carriers through a 
conductor and not due to the magnetization of any medium. Consider an arbitrary closed path C 
around a conductor carrying a current /, as shown in Figure 8.9. The tangential component of H 

to the curve C at point P is H,. If dl is an infinitesimally small path length of C at P, as shown 
in Figure 8.9, then the summation of H, dl around the path C gives the conduction current en¬ 
closed within C. This is Ampere’s law, 

EXAMPLE 8.1 

H,dl = I [8.15] Ampere’s law 
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H 

Consider the toroidal coil with N turns shown in Figure 8.10. First assume that the toroid 
core is air (fir ^ 1). Suppose that the current through the coils is /. By symmetry, the magnetic 
field intensity H inside the toroidal core is the same everywhere and is directed along the cir¬ 
cumference. Suppose that / is the length of the mean circumference C. The current is linked 
N times by the circumference C, so Equation 8.15 is 

j> Htdl = HI = NI 

or 

The magnetic field B0 with air as core material is then simply 

B0 = [x0H = 
Ho HI 

l 

Magnetic 

field inside 

toroidal coil 

Inductance of 

toroidal coil 

When the toroidal coil has a magnetic medium with a relative permeability fxr, the mag¬ 
netic field intensity is still H because the conduction current I has not changed. But the magnetic 
field B is now different than B0 and is given by 

B = HoHrH = 
HoHrUI 

l 

If A is the cross-sectional area of the toroid, then the total flux <t> through the core is BA or 
fi0(irNAIft. The current I in Figure 8.10 threads the flux N times. The inductance L of the 
toroidal coil, by definition, is then 

Total flux threaded Nd? fx0ixrN2A 

Current I l 

Having a magnetic material as the toroid core increases the inductance by a factor of Hr in the 
same way a dielectric material increases the capacitance by a factor of er. 

EXAMPLE 8.2 MAGNETOSTATIC ENERGY PER UNIT VOLUME Consider a toroidal coil with N turns that is 
energized from a voltage supply through a rheostat, as shown in Figure 8.11. The core of the 
toroid may be any material. Suppose that by adjusting the rheostat we increase the current i 
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Figure 8.11 Energy required to magnetize a 

toroidal coil. 

supplied to the coil. The current i produces magnetic flux 4> in the core, which is BA, where B 

is the magnetic field and A is the cross-sectional area. We can now use Ampere’s law for H to 
relate the current i to H, as in Example 8.1. If £ is the mean circumference, then 

HI = Ni [8.16] 

The changing current means that the flux is also changing (both increasing). We know from 
Faraday’s law that a changing flux that threads a circuit generates a voltage v in that circuit 
given by the rate of change of total threaded flux, or N<t>. Lenz’s law makes the polarity of the 
induced voltage oppose the applied voltage. Suppose that in a time interval St seconds, the mag¬ 
netic field within the core changes by SB -, then 50 = A SB and 

S (Total flux threaded) 

St 

NS<t> 

St 
[8.17] 

The battery has to supply the current i against this induced voltage t>, which means that it 
has to do electrical work iv every second. In other words, the battery has to do work iv St in a 
time interval St to supply the necessary current to increase the magnetic field by SB. The elec¬ 
tric energy SE that is input into the coil in time St is then, using Equations 8.16 and 8.17, 

SE = iv St = St = (Al)HSB 

This energy SE is the work done in increasing the field in the core by SB. The volume of 
the toroid is At. Therefore, the total energy or work required per unit volume to increase the 
magnetic field from an initial value B\ to a final value J?2 in the toroid is 

£voi = / HdB [8.18] 

where the integration limits are determined by the initial and final magnetic field. This is the ex¬ 
pression for calculating the energy density (energy per unit volume) required to change the 
field from B\ to Z?2- It should be emphasized that Equation 8.18 is valid for any medium. We 
conclude that an incremental energy density of dEv0i = H dB is required to increase the mag¬ 
netic field by dB at a point in any medium including free space. 

We can now consider a core material that we can represent by a constant relative perme¬ 
ability nr. This means we can exclude those materials that do not have a linear relationship 
between B and H, such as ferromagnetic and ferrimagnetic materials, which we will discuss 
later. If the core is free space or air, then ixr =. 1. 

Suppose that we increase the current in Figure 8.11 from zero to some final value I so that 
the magnetic field changes from zero to some final value B. Since the medium has a constant 
relative permeability jxr, we can write 

Work done 

per unit 

volume 

during 

magnetization 

B — p.r p.0H 
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Energy 

density of a 

magnetic 

field 

Magnetostatic 

energy density 

in free space 

Magnetostatic 

energy in a 

linear 

magnetic 

medium 

and use this in Equation 8.18 to integrate and find the energy per unit volume needed to 
establish the field B or field intensity H 

1 2 
£vo. — 

B2 

2 Prl^o 

[8.19] 

This is the energy absorbed from the battery per unit volume of core medium to establish 
the magnetic field. This energy is stored in the magnetic field and is called magnetostatic 
energy density. It is a form of magnetic potential energy. If we were to suddenly remove the 
battery and short those terminals, the current will continue to flow for a short while (deter¬ 
mined by L/R) and do external work in heating the resistor. This external work comes from 
the stored energy in the magnetic field. If the medium is free space, or air, then the energy 
density is 

1 B1 
£voi(air) = —p0H — — 

2 2 fx0 

A magnetic field of 2 T corresponds to a magnetostatic energy density of 1.6 MJ m~3 or 
1.6 J cm-3. The energy in a magnetic field of 2 T in a 1 cm3 volume (size of a thimble) has the 
work ability (potential energy) to raise an average-sized apple by 5 feet. We should note that as 
long as the core material is linear, that is, p,r is independent of the magnetic field itself, magne¬ 
tostatic energy density can also be written as 

1 
.Evol — 2^8 [8.20] 

8.2 MAGNETIC MATERIAL CLASSIFICATIONS 
In general, magnetic materials are classified into five distinct groups: diamagnetic, 
paramagnetic, ferromagnetic, antiferromagnetic, and ferrimagnetic. Table 8.2 provides 
a summary of the magnetic properties of these classes of materials. 

8.2.1 Diamagnetism 

Typical diamagnetic materials have a magnetic susceptibility that is negative and 
small. For example, the silicon crystal is diamagnetic with Xm = —5.2 x 10”6. The 
relative permeability of diamagnetic materials is slightly less than unity. When a dia¬ 
magnetic substance such as a silicon crystal is placed in a magnetic field, the mag¬ 
netization vector M in the material is in the opposite direction to the applied field 
p,0H and the resulting field B within the material is less than /z0H. The negative 
susceptibility can be interpreted as the diamagnetic substance trying to expel the 
applied field from the material. When a diamagnetic specimen is placed in a nonuni¬ 
form magnetic field, the magnetization M of the material is in the opposite direction 
to B and the specimen experiences a net force toward smaller fields, as depicted in 
Figure 8.12. A substance exhibits diamagnetism whenever the constituent atoms in 
the material have closed subshells and shells. This means that each constituent atom 
has no permanent magnetic moment in the absence of an applied field. Covalent 
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Table 8.2 Classification of magnetic materials 

Type 
Xm 

(typical values) Xm versus T Comments and Examples 

Diamagnetic Negative and 

small (—10~"6) 

T independent Atoms of the material have closed 

shells. Organic materials, e.g., 

many polymers; covalent solids, 

e.g., Si, Ge, diamond; some 

ionic solids, e.g., alkalihalides; 

some metals, e.g., Cu, Ag, Au. 

Negative and 
large (-1) 

Below a critical 

temperature 

Superconductors 

Paramagnetic Positive and small 

(io-5-i(r4) 
Independent of T Due to the alignment of spins of 

conduction electrons. Alkali 

and transition metals. 

Positive and Curie or Curie-Weiss Materials in which the constituent 
small (10-5) law, Xm = C/(T ~ Tc) atoms have a permanent magnetic 

moment, e.g., gaseous and liquid 

oxygen; ferromagnets (Fe), 

antiferromagnets (Cr), and 

ferrimagnets (Fe304) at high 

temperatures. 

Ferromagnetic Positive and Ferromagnetic below May possess a large permanent 

very large and paramagnetic 

above the Curie 

temperature 

magnetization even in the 

absence of an applied field. 

Some transition and rare earth 

metals, Fe, Co, Ni, Gd, Dy. 

Anti ferromagnetic Positive and Antiferromagnetic Mainly salts and oxides of 

small below and 

paramagnetic above 

the Neel temperature 

transition metals, e.g., MnO, 

NiO, MnF2, and some 

transition metals, a-Cr, Mn. 

Ferrimagnetic Positive and Ferrimagnetic below May possess a large permanent 

very large and paramagnetic 

above the Curie 

temperature 

magnetization even in the 

absence of an applied field. 

Ferrites. 

Figure 8.12 A diamagnetic material placed in a nonuniform 

magnetic field experiences a force toward smaller fields. 

This repels the diamagnetic material away from a permanent 

magnet. 
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crystals and many ionic crystals are typical diamagnetic materials because the con¬ 
stituent atoms have no unfilled subshells. Superconductors, as we will discuss later, 
are perfect diamagnets with Xm = — 1 and totally expel the applied field from the 
material. 

8.2.2 Paramagnetism 

Paramagnetic materials have a small positive magnetic susceptibility. For example, 
oxygen gas is paramagnetic with Xm = 2.1 x 10-6 at atmospheric pressure and room 
temperature. Each oxygen molecule has a net magnetic dipole moment pmol. In the ab¬ 
sence of an applied field, these molecular moments are randomly oriented due to the 
random collisions of the molecules, as depicted in Figure 8.13a. The magnetization of 
the gas is zero. In the presence of an applied field, the molecular magnetic moments 
take various alignments with the field, as illustrated in Figure 8.13b. The degree of 
alignment of |Amol with the applied field and hence magnetization M increases with the 
strength of the applied field fx0H. Magnetization M typically decreases with increasing 
temperature because at higher temperatures there are more molecular collisions, which 
destroy the alignments of molecular magnetic moments with the applied field. When a 
paramagnetic substance is placed in a nonuniform magnetic field, the induced magne¬ 
tization M is along B and there is a net force toward greater fields. For example, when 
liquid oxygen is poured close to a strong magnet, as depicted in Figure 8.14, the liquid 
becomes attracted to the magnet. 

Many metals are also paramagnetic, such as magnesium with Xm = 1.2 x 10-5.The 
origin of paramagnetism (called Pauli spin paramagnetism) in these metals is due to 
the alignment of the majority of spins of conduction electrons with the field. 

■»<P-► 

(o)|xav= 0 and M = 0 (bhx^OondM^H 

Figure 8.13 

(a) In a paramagnetic material, each individual atom possesses a 

permanent magnetic moment, but due to thermal agitation there 

is no average moment per atom and M = 0. 

(b) In the presence of an applied field, individual magnetic 

moments take alignments along the applied field and M is finite 

and along B. 

Figure 8.14 A paramagnetic 

material placed in a nonuniform 

magnetic field experiences a force 

tdward greater fields. 

This attracts the paramagnetic 

material (e.g., liquid oxygen) 

toward a permanent magnet. 
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8.2.3 Ferromagnetism 

Ferromagnetic materials such as iron can possess large permanent magnetizations 
even in the absence of an applied magnetic field. The magnetic susceptibility Xm is 
typically positive and very large (even infinite) and, further, depends on the applied 
field intensity. The relationship between the magnetization M and the applied mag¬ 
netic field fji0H is highly nonlinear. At sufficiently high fields, the magnetization M of 
the ferromagnet saturates. The origin of ferromagnetism is the quantum mechanical 
exchange interaction (discussed later) between the constituent atoms that results in re¬ 
gions of the material possessing permanent magnetization. Figure 8.15 depicts a region 
of the Fe crystal, called a magnetic domain, that has a net magnetization vector M due 
to the alignment of the magnetic moments of all Fe atoms in this region. This crystal 
domain has magnetic ordering as all the atomic magnetic moments have been aligned 
parallel to each other. Ferromagnetism occurs below a critical temperature called the 
Curie temperature 7c. At temperatures above 7c, ferromagnetism is lost and the mate¬ 
rial becomes paramagnetic. 

8.2.4 Antiferromagnetism 

Antiferromagnetic materials such as chromium have a small but positive suscepti¬ 
bility. They cannot possess any magnetization in the absence of an applied field, in 
contrast to ferromagnets. Antiferromagnetic materials possess a magnetic ordering 
in which the magnetic moments of alternating atoms in the crystals align in opposite 
directions, as schematically depicted in Figure 8.16. The opposite alignments of 
atomic magnetic moments are due to quantum mechanical exchange forces (de¬ 
scribed later in Section 8.3). The net result is that in the absence of an applied field, 
there is no net magnetization. Antiferromagnetism occurs below a critical tempera¬ 
ture called the Neel temperature TN. Above 7#, antiferromagnetic material becomes 
paramagnetic. 

Figure 8.15 In a magnetized region of a 

ferromagnetic material such as iron, all the 

magnetic moments are spontaneously aligned in 

the same direction. 

There is a strong magnetization vector M even 

in the absence of an applied field. 

Figure 8.16 In this 

antiferromagnetic BCC crystal 

(Cr), the magnetic moment of the 

center atom is canceled by the 

magnetic moments of the corner 

atoms (one-eighth of the corner 

atom belongs to the unit cell). 



700 chapter 8 • Magnetic Properties and Superconductivity 

—M 

Figure 8.17 Illustration of magnetic ordering in the 

ferrimagnetic crystal. 

All A atoms have their spins aligned in one direction and 

all B atoms have their spins aligned in the opposite 

direction. As the magnetic moment of an A atom is greater 

than that of a B atom, there is net magnetization M in the 

crystal. 

# .O-* O ► 
.0“*'**8 

• .6—4.6— 
6-—4.6— 

B 

8.2.5 Ferrimagnetism 

Ferrimagnetic materials such as ferrites (e.g., Fe3C>4) exhibit magnetic behavior simi¬ 
lar to ferromagnetism below a critical temperature called the Curie temperature Tc. 
Above Tc they become paramagnetic. The origin of ferrimagnetism is based on mag¬ 
netic ordering, as schematically illustrated in Figure 8.17. All A atoms have their spins 
aligned in one direction and all B atoms have their spins aligned in the opposite direc¬ 
tion. As the magnetic moment of an A atom is greater than that of a B atom, there is 
net magnetization M in the crystal. Unlike the antiferromagnetic case, the oppositely 
directed magnetic moments have different magnitudes and do not cancel. The net ef¬ 
fect is that the crystal can possess magnetization even in the absence of an applied 
field. Since ferrimagnetic materials are typically nonconducting and therefore do not 
suffer from eddy current losses, they are widely used in high-frequency electronics 
applications. 

All useful magnetic materials in electrical engineering are invariably ferromag¬ 
netic or ferrimagnetic. 

8.3 FERROMAGNETISM ORIGIN 
AND THE EXCHANGE INTERACTION 

The transition metals iron, cobalt, and nickel are all ferromagnetic at room tempera¬ 
ture. The rare earth metals gadolinium and dysprosium are ferromagnetic below room 
temperature. Ferromagnetic materials can exhibit permanent magnetization even in the 
absence of an applied field; that is, they possess a susceptibility that is infinite. 

In a magnetized iron crystal, all the atomic magnetic moments are aligned in the 
same direction, as illustrated in Figure 8.15, where the moments in this case have all 
been aligned along the [100] direction, which gives net magnetization along this di¬ 
rection. It may be thought that the reason for the alignment of the moments is the mag¬ 
netic forces between the moments, just as bar magnets will tend to align head to tail in 
an SNSN ... fashion. This is not, however, the cause, as the magnetic potential energy 
of interaction is small, indeed smaller than the thermal energy. 

The iron atom has the electron structure [Ar]3d64.y2. An isolated iron atom has 
only the 3d subshell with four of the five orbitals unfilled. By virtue of Hund’s rule, the 
electrons try to align their spins so that the five 3d orbitals contain two paired electrons 
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Figure 8.18 The isolated Fe 

atom has four unpaired spins and a 

spin magnetic moment of 4/t. 

Figure 8.19 Hund's rule for an atom 

with many electrons is based on the 

exchange interaction. 

and four unpaired electrons, as in Figure 8.18. The isolated atom has four parallel elec¬ 
tron spins and hence a spin magnetic moment of 4/1. 

The origin of Hund’s rule, visualized in Figure 8.19, lies in the fact that when the 
spins are parallel (same ms), as a requirement of the Pauli exclusion principle, the 
electrons must occupy orbitals with different me and hence possess different spatial 
distributions (recall that me determines the orientation of an orbit). Different me val¬ 
ues result in a smaller Coulombic repulsion energy between the electrons compared 
with the case where the electrons have opposite spins (different ms), where they 
would be in the same orbital (same me), that is, in the same spatial region. It is appar¬ 
ent that even though the interaction energy between the electrons has nothing to do 
with magnetic forces, it does depend nonetheless on the orientations of their spins 
(ms), or on their spin magnetic moments, and it is less when the spins are parallel. Two 
electrons parallel their spins not because of the direct magnetic interaction between 
the spin magnetic moments but because of the Pauli exclusion principle and the 
electrostatic interaction energy. Together they constitute what is known as an 
exchange interaction, which forces two electrons to take ms and me values that result 
in the minimum of electrostatic energy. In an atom, the exchange interaction therefore 
forces two electrons to take the same ms but different m£ if this can be done within the 
Pauli exclusion principle. This is the reason an isolated Fe atom has four unpaired 
spins in the 3d subshell. 

In the crystal, of course, the outer electrons are no longer strictly confined to their 
parent Fe atoms, particularly the 45 electrons. The electrons now have wavefunctions 
that belong to the whole solid. Something like Hund’s rule also operates at the crystal 
level for Fe, Co, and Ni. If two 3d electrons parallel their spins and occupy different 
wavefunctions (and hence different negative charge distributions), the resulting mu¬ 
tual Coulombic repulsion between them and also with all the other electrons and the 
attraction to the positive Fe ions result in an overall reduction of potential energy. 
This reduction in energy is again due to the exchange interaction and is a direct 
consequence of the Pauli exclusion principle and the Coulombic forces. Thus, the ma¬ 
jority of 3d electrons spontaneously parallel their spins without the need for the appli¬ 
cation of an external magnetic field. The number of electrons that actually parallel 
their spins depends on the strength of the exchange interaction, and for the iron crys¬ 
tal this turns out to be about 2.2 electrons per atom. Since typically the wavefunctions 
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Figure 8.20 The exchange integral as a function of 

r/rd, where r is the interatomic distance and the radius 

of the d orbit (or the average d subshell radius). 

Cr to Ni are transition metals. For Gd, the x axis is r/rf, 
where ry is the radius of the f orbit. 

of the 3d electrons in the whole iron crystal show localization around the iron ions, 
some people prefer to view the 3d electrons as spending the majority of their time 
around Fe atoms, which explains the reason for drawing the magnetized iron crystal 
as in Figure 8.15. 

It may be thought that all solids should follow the example of Fe and become 
spontaneously ferromagnetic since paralleling spins would result in different spa¬ 
tial distributions of negative charge and probably a reduction in the electrostatic en¬ 
ergy, but this is not generally the case at all. We know that, in the case of covalent 
bonding, the electrons have the lowest energy when the two electrons spin in oppo¬ 
site directions. In covalent bonding in molecules, the exchange interaction does not 
reduce the energy. Making the electron spins parallel leads to spatial negative 
charge distributions that result in a net mutual electrostatic repulsion between the 
positive nuclei. 

In the simplest case, for two atoms only, the exchange energy depends on the in¬ 
teratomic separation between two interacting atoms and the relative spins of the two 
outer electrons (labeled as 1 and 2). From quantum mechanics, the exchange interac¬ 
tion can be represented in terms of an exchange energy Eex as 

£ex = -2Je Si • s2 [8.21] 

where Si and S2 are the spin angular momenta of the two electrons and Je is a numeri¬ 
cal quantity called the exchange integral that involves integrating the wavefunctions 
with the various potential energy interaction terms. It therefore depends on the elec¬ 
trostatic interactions and hence on the interatomic distance. For the majority of solids, 
Je is negative, so the exchange energy is negative if Si and S2 are in the opposite di¬ 
rections, that is, the spins are antiparallel (as we found in covalent bonding). This is the 
antiferromagnetic state. For Fe, Co, and Ni, however, Je is positive. Eex is then nega¬ 
tive if Si and S2 are parallel. Spins of the 3d electrons on the Fe atoms therefore spon¬ 
taneously align in the same direction to reduce the exchange energy. This spontaneous 
magnetization is the phenomenon of ferromagnetism. Figure 8.20 illustrates how Je 
changes with the ratio of interatomic separation to the radius of the 3d subshell (r/rd). 
For the transition metals Fe, Co, and Ni, the r/rd is such that Je is positive.3 In all 
other cases, it is negative and does not produce ferromagnetic behavior. It should be 

3 According to H. P. Myers, Introductory Solid State Physics 2nd ed., London: Taylor and Francis Ltd., 1997, p. 362, 
there have been no theoretical calculations of the exchange integral Je for any real magnetic substance. 
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mentioned that Mn, which is not ferromagnetic, can be alloyed with other elements to 
increase r/rd and hence endow ferromagnetism in the alloy. 

SATURATION MAGNETIZATION IN IRON The maximum magnetization, called saturation 
magnetization Msat, in iron is about 1.75 x 106 Am-1. This corresponds to all possible net spins 
aligning parallel to each other. Calculate the effective number of Bohr magnetons per atom that 
would give Msat, given that the density and relative atomic mass of iron are 7.86 g cm-3 and 
55.85, respectively. 

EXAMPLE 8.3 

SOLUTION 

The number of Fe atoms per unit volume is 

pNA (7.86 x 103 kg m 3)(6.022 x 1023 mol *) 

”at “ ~M^ ~ ’ 55.85 x 10-3 kg mol-1 

= 8.48 x 1028 atoms m~3 

If each Fe atom contributes x number of net spins, then since each net spin has a magnetic 
moment of ff, we have, 

Msat = ttat(;Cj8) 

SO 

v _ Msa, _ 1.75 X 10* ^ 

X nat/3 (8.48 x 1028)(9.27 x 10~24) ~ 

In the solid, each Fe atom contributes only 2.2 Bohr magnetons to the magnetization even 
though the isolated Fe atom has 4 Bohr magnetons. There is no orbital contribution to the mag¬ 
netic moment per atom in the solid because all the outer electrons, 3d and 4s electrons, can be 
viewed as belonging to the whole crystal, or being in an energy band, rather than orbiting 
individual atoms. A 3d electron is attracted by various Fe ions in the crystal and therefore does 
not experience a central force, in contrast to the 3d electron in the isolated Fe atom that orbits 
the nucleus. The orbital momentum in the crystal is said to be quenched. 

We should note that when the magnetization is saturated, all atomic magnetic moments are 
aligned. The resulting magnetic field within the iron specimen in the absence of an applied 
magnetizing field (H = 0) is 

BSat — at = 2.2 T 

84 SATURATION MAGNETIZATION 
AND CURIE TEMPERATURE 

The maximum magnetization in a ferromagnet when all the atomic magnetic moments 
have been aligned as much as possible is called the saturation magnetization Msat. In the 
iron crystal, for example, this corresponds to each Fe atom with an effective spin mag¬ 
netic moment of 2.2 Bohr magnetons aligning in the same direction to give a magnetic 
field //.oA/sat or 2.2 T. As we increase the temperature, lattice vibrations become more en¬ 
ergetic, which leads to a frequent disruption of the alignments of the spins. The spins can¬ 
not align perfectly with each other as the temperature increases due to lattice vibrations 
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Figure 8.21 Normalized saturated 

magnetization versus reduced temperature T/Tc 

where 7c is the Curie temperature (1043 K). 
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randomly agitating the individual spins. When an energetic lattice vibration passes 
through a spin site, the energy in the vibration may be sufficient to disorientate the spin 
of the atom. The ferromagnetic behavior disappears at a critical temperature called the 
Curie temperature, denoted by Tc, when the thermal energy of lattice vibrations in the 
crystal can overcome the potential energy of the exchange interaction and hence destroy 
the spin alignments. Above the Curie temperature, the crystal behaves as if it were para¬ 
magnetic. The saturation magnetization A/sat, therefore, decreases from its maximum 
value Afsat(0) at absolute zero of temperature to zero at the Curie temperature. Figure 8.21 
shows the dependence of Msat on the temperature when Msat has been normalized to 
Msat(0) and the temperature is the reduced temperature, that is, T/Tc. At 7/7c = 1, 
Afsat = 0. When plotted in this way, the ferromagnets cobalt and nickel follow closely 
the observed behavior for iron. We should note that since for iron Tc = 1043 K, at room 
temperature, 7/ Tc = 0.29 and A/sat is very close to its value at Afsat(0). 

Since at the Curie temperature, the thermal energy, of the order of kTc, is suffi¬ 
cient to overcome the energy of the exchange interaction Eex that aligns the spins, we 
can take kTc as an order of magnitude estimate of Eex. For iron, Etx is ~0.09 eV and 
for cobalt this is ~0.1 eV. 

Table 8.3 summarizes some of the important properties of the ferromagnets Fe, 
Co, Ni, and Gd (rare earth metal). 

Table 8.3 Properties of the ferromagnets Fe, Co, Ni, and Gd 

Fe Co Ni Gd 

Crystal structure BCC HCP FCC HCP 
Bohr magnetons per atom 2.22 1.72 0.60 7.1 
M^O) (MAm-') 1.75 1.45 0.50 2.0 
®sat — Msat (T) 2.2 1.82 0.64 2.5 

Tc 770 °C 1127 °C 358 °C 16 °C 
1043 K 1400 K 631 K 289 K 
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8.5 MAGNETIC DOMAINS: 
FERROMAGNETIC MATERIALS 

8.5.1 Magnetic Domains 

A single crystal of iron does not necessarily possess a net permanent magnetization in 
the absence of an applied field. If a magnetized piece of iron is heated to a temperature 
above its Curie temperature and then allowed to cool in the absence of a magnetic 
field, it will possess no net magnetization. The reason for the absence of net magneti¬ 
zation is due to the formation of magnetic domains that effectively cancel each other, 
as discussed below. A magnetic domain is a region of the crystal in which all the spin 
magnetic moments are aligned to produce a magnetic moment in one direction only. 

Figure 8.22a shows a single crystal of iron that has a permanent magnetization as 
a result of ferromagnetism (aligning of all atomic spins). The crystal is like a bar mag¬ 
net with magnetic field lines around it. As we know, there is potential energy (PE), 
called magnetostatic energy, stored in a magnetic field, and we can reduce this energy 
in the external field by dividing the crystal into two domains where the magnetizations 
are in the opposite directions, as shown in Figure 8.22b. The external magnetic field 
lines are reduced and there is now less potential energy stored in the magnetic field. 
There are only field lines at the ends. This arrangement is energetically favorable 
because the magnetostatic energy has been reduced by decreasing the external field 

Figure 8.22 

(a) Magnetized bar of ferromagnet in which there is only one domain and hence an external 

magnetic field. 

(b) Formation of two domains with opposite magnetizations reduces the external field. There are, 

however, field lines at the ends. 

(c) Domains of closure fitting at the ends eliminate the external fields at the ends. 

(d) A specimen with several domains and closure domains. There is no external magnetic field 

and the specimen appears unmagnetized. 
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lines. However, there is now a boundary, called a domain wall (or Bloch wall), between 
the two domains where the magnetization changes from one direction to the opposite 
direction and hence the atomic spins do, also. It requires energy to rotate the atomic 
spin through 180° with respect to its neighbor because the exchange energy favors 
aligning neighboring atomic spins (0°). The wall in Figure 8.22b is a 180° wall inas¬ 
much as the magnetization through the wall is rotated by 180°. It is apparent that the 
wall region where the neighboring atomic spins change their relative direction (or ori¬ 
entation) from one domain to the neighboring one has higher PE than the bulk of the 
domain, where all the atomic spins are aligned. As we will show below, the domain 
wall is not simply one atomic spacing but has a finite thickness, which for iron is typ¬ 
ically of the order of 0.1 pm, or several hundred atomic spacings. The excess energy in 
the wall increases with the area of the wall. 

The magnetostatic energy associated with the field lines at the ends in Fig¬ 
ure 8.22b can be further reduced by eliminating these external field lines by closing the 
ends with sideway domains with magnetizations at 90°, as shown in Figure 8.22c. 
These end domains are closure domains and have walls that are 90° walls. The mag¬ 
netization is rotated through 90° through the wall. Although we have reduced the magne¬ 
tostatic energy, we have increased the potential energy in the walls by adding additional 
walls. The creation of magnetic domains continues (spontaneously) until the potential 
energy reduction in creating an additional domain is the same as the increase in creat¬ 
ing an additional wall. The specimen then possesses minimum potential energy and is 
in equilibrium with no net magnetization. Figure 8.22d shows a specimen with several 
domains and no net magnetization. The sizes, shapes, and distributions of domains de¬ 
pend on a number of factors, including the size and shape of the whole specimen. For 
iron particles of dimensions less than of the order of 0.01 pm, the increase in the poten¬ 
tial energy in creating a domain wall is too costly and these particles are single do¬ 
mains and hence always magnetized. 

The magnetization of each domain is normally along one of the preferred directions 
in which the atomic spin alignments are easiest (the exchange interaction is the 
strongest). For iron, the magnetization is easiest along any one of six (100) directions 
(along cube edges), which are called easy directions. The domains have magnetizations 
along these easy directions. The magnetization of the crystal along an applied field oc¬ 
curs, in principle, by the growth of domains with magnetizations (or components of M) 
along the applied field (H), as illustrated in Figure 8.23a and b. For simplicity, the mag¬ 
netizing field is taken along an easy direction. The Bloch wall between the domains A 
and B migrates toward the right, which enlarges the domain A and shrinks domain B, 
with the net result that the crystal has an effective magnetization M along H. The migra¬ 
tion of the Bloch wall is caused by the spins in the wall, and also spins in section B ad¬ 
jacent to the wall, being gradually rotated by the applied field (they experience a torque). 
The magnetization process therefore involves the motions of Bloch walls in the crystal. 

8.5.2 Magnetocrystalline Anisotropy 

Ferromagnetic crystals characteristically exhibit magnetic anisotropy, which means 
that the magnetic properties are different along different crystal directions. In the case 
of iron (BCC), the spins in a domain are most easily aligned in any of the six [100] type 
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(a) 

Figure 8.23 

(a) An unmagnetized crystal of iron in the absence of an 

applied magnetic field. Domains A and B are the same size 

and have opposite magnetizations. 

(b) When an external magnetic field is applied, the domain 

wall migrates into domain B, which enlarges A and shrinks 

B. The result is that the specimen now acquires net 

magnetization. 

Magnetizing field H (x 104 A m-1) 

Applied magnetic field noH (T) 

Figure 8.24 Magnetocrystalline anisotropy in a single iron 

crystal. 

M versus H depends on the crystal direction and is easiest along 

[100] and hardest along [111]. 

directions, collectively labeled as (100), and correspond to the six edges of the cubic 
unit cell. The exchange interactions are such that spin magnetic moments are most eas¬ 
ily aligned with each other if they all point in one of the six (100) directions. Thus 
(100) directions in the iron crystal constitute the easy directions for magnetization. 
When a magnetizing field H along a [100] direction is applied, as illustrated in Fig¬ 
ure 8.23a and b, domain walls migrate to allow those domains (e.g., A) with magneti¬ 
zations along H to grow at the expense of those domains (e.g., B) with magnetizations 
opposing H. The observed M versus H behavior is shown in Figure 8.24. Magnetiza¬ 
tion rapidly increases and saturates with an applied field of less than 0.01 T. 

On the other hand, if we want to magnetize the crystal along the [111] direction by 
applying a field along this direction, then we have to apply a stronger field than that 
along [100]. This is clearly shown in Figure 8.24, where the resulting magnetization 
along [111] is smaller than that along [100] for the same magnitude of applied field. 
Indeed, saturation is reached at an applied field that is about a factor of 4 greater than 
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Table 8.4 Exchange interaction, magnetocrystalline anisotropy energy K, and saturation magnetostriction coefficient A.sat 

Material Crystal 

Eex ~ kTc 

(meV) Easy Hard 

K 

(mj cm-3) 
^-sat 

(x 10~6) 

Fe BCC 90 <100>; cube edge <111>; cube diagonal 48 20 [100] 

-20 [111] 

Co HCP 120 // to c axis 1. to c axis 450 

Ni FCC 50 <111 >; cube diagonal <100>; cube edge 5 -46 [100] 

-24 [111] 

NOTE: K is the magnitude of what is called the first anisotropy constant (Ki) and is approximately the magnitude of the anisotropy energy. 
Etx is an estimate from kTc, where 7c is the Curie temperature. All approximate values are from various sources. (Further data can be found 
in D. Jiles, Introduction to Magnetism and Magnetic Materials, London, England: Chapman and Hall, 1991.) 

that along [100]. The [111] direction in the iron crystal is consequently known as the 
hard direction. The M versus H behavior along [100], [110], and [111] directions in 
an iron crystal and the associated anisotropy are shown in Figure 8.24. 

When an external field is applied along the diagonal direction OD in Figure 8.24, 
initially all those domains with M along OA, OB, and OC, that is, those with magne¬ 
tization components along OD, grow by consuming those with M in the wrong direc¬ 
tion and eventually take over the whole specimen. This is an easy process (similar 
to the process along [100]) and requires small fields and represents the processes from 
0 to P on the magnetization curve for [111] in Figure 8.24. However, from P onwards, 
the magnetizations in the domains have to be rotated away from their easy directions, 
that is, from OA, OB, and OC toward OD. This process consumes substantial energy 
and hence needs much stronger applied fields. 

It is apparent that the magnetization of the crystal along [100] needs the least 
energy, whereas that along [111] consumes the greatest energy. The excess energy 
required to magnetize a unit volume of a crystal in a particular direction with respect 
to that in the easy direction is called the magnetocrystalline anisotropy energy and 
is denoted by K. For iron, the anisotropy energy is zero for [100] and largest for the 
[111] direction, about 48 kJ m-3 or 3.5 x 10-6 eV per atom. For cobalt, which has the 
HCP crystal structure, the anisotropy energy is at least an order of magnitude greater. 
Table 8.4 summarizes the easy and hard directions, and the anisotropy energy K for the 
hard direction. 

8.5.3 Domain Walls 

We recall that the spin magnetic moments rotate across a domain wall. We men¬ 
tioned that the wall is not simply one atomic spacing wide, as this would mean two 
neighboring spins being at 180° to each other and hence possessing excessive ex¬ 
change interaction. A schematic illustration of the structure of a typical 180° Bloch 
wall, between two domains A and B, is depicted in Figure 8.25. It can be seen that 
the neighboring spin magnetic moments are rotated gradually, and over several hun¬ 
dred atomic spacings the magnetic moment reaches a rotation of 180°. Exchange 
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Easy direction 
z or [001] 

* 

Gradual rotation 
of magnetic moments 

f////^W\l 
Domain A !<■-Bloch wall-> 

tttt 

Domain B 

♦ \ 
-z or [001] 
Easy direction 

Figure 8.25 In a Bloch wall, the neighboring spin magnetic moments rotate gradually, 

and it takes several hundred atomic spacings to rotate the magnetic moment by 180°. 

forces between neighboring atomic spins favor very little relative rotation. Had it 
been left to exchange forces alone, relative rotation of neighboring spins would be so 
minute that the wall would have to be very thick (infinitely thick) to achieve a 180° 
rotation. 

However, magnetic moments that are oriented away from the easy direction pos¬ 
sess excess energy, called the anisotropy energy (K). If the wall is thick, then it will 
contain many magnetic moments rotated away from the easy direction and there would 
be a substantial anisotropy energy in the wall. Minimum anisotropy energy in the wall 
is obtained when the magnetic moment changes direction by 180° from the easy di¬ 
rection along +z to that along — z in Figure 8.25 without any intermediate rotations 
away from z. This requires a wall of one atomic spacing. In reality, the wall thickness 
is a compromise between the exchange energy, demanding a thick wall, and anisotropy 
energy, demanding a thin wall. The equilibrium wall thickness is that which minimizes 
the total potential energy, which is the sum of the exchange energy and the anisotropy 
energy within the wall. This thickness turns out to be ~ 0.1 pm for iron and less for 
cobalt, in which the anisotropy energy is greater. 

MAGNETIC DOMAIN WALL ENERGY AND THICKNESS The Bloch wall energy and thickness 
depend on two main factors: the exchange energy £ex (J atom-1) and magnetocrystalline energy 
K (J m-3). Suppose that we consider a Bloch wall of unit area, and thickness 5, and calculate 
the potential energy t/wau in this wall due to the exchange energy and the magnetocrystalline 

j anisotropy energy. The spins change by 180° across the thickness 8 of the Bloch wall as in Fig¬ 
ure 8.25. The contribution Uexchange from the exchange energy arises because it takes energy to 
rotate one spin with respect to another. If the thickness 8 is large, then the angular change from 
one spin to the next will be small, and the exchange energy contribution Uexchmge will also be 
small. Thus, Utxctiangc is inversely proportional to 8. Utxchange is also directly proportional to Eex 

j which gauges the magnitude of this exchange energy ; it costs Eex to rotate the two spins 180° to 
f each other. Thus, Uexchmge <x Eex/8. 

i The anisotropy energy contribution f/anisotroPy arises from having spins point away from the 
easy direction. If the thickness 8 is large, there are more and more spin moments that are aligned 
away from the easy direction, and the anisotropy energy contribution t/anisotropy is also large. 
Thus, f/anisotropy is proportional to 8, and also, obviously, to the anisotropy energy K that gauges 
the magnitude of this energy. Thus, f/anisotropy oc K 8. 

EXAMPLE 8.4 
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Figure 8.26 The potential energy of a 

domain wall depends on the exchange 

and anisotropy energies. 

Potential energy 

Potential 

energy of a 

Bloch wall 

Bloch wall 

thickness 

Figure 8.26 shows the contributions of the exchange and anisotropy energies, t/exchange and 
Uanisotropy? to the total Bloch wall energy as a function of wall thickness 5. It is clear that exchange 
and anisotropy energies have opposite (or conflicting) requirements on the wall thickness. 
There is, however, an optimum thickness 6' that minimizes the Bloch wall energy, that is, a 
thickness that balances the requirements of exchange and anisotropy forces. 

If the interatomic spacing is a, then there would be N = 8/a atomic layers in the wall. 
Since the spin moment angle changes by 180° across 5, we can calculate the relative spin ori¬ 
entations (180°/iV) of adjacent atomic layers, and hence we can find the exact contributions of 
exchange and anisotropy energies. We do not need the exact mathematics, but the final result is 
that the potential energy t/waii per unit area of the wall is approximately 

tAvall ~ 
7T2£ex 

2 a8 
+ K8 

The first term on the right is the exchange energy contribution (proportional to Eex/8), and the sec¬ 
ond is the anisotropy energy contribution (proportional to K 8); both have the features we discussed. 

Show that the minimum energy occurs when the wall has the thickness 

Taking Eex ^ kTc, where Tc is the Curie temperature, and for iron, K 50 kJ m 3, and 
a ^ 0.3 nm, estimate the thickness of a Bloch wall and its energy per unit area. 

SOLUTION 

We can differentiate t/wan with respect to 8, 

dt/wall _ 7T Etx | v 

~dT~~l^~ + K 

and then set it to zero for 5 = 8' to find, 

8 (*2E«\ 
V 2aK ) 

1/2 

Since Tc = 1043 K, Eex = kTc = (1.38 x 10~23 J K"')(1043 K) = 1.4 x 10~20 J, so that 

* = '1/2 = [ *2(1-4*10'M) f = 6.8 x 10-8m 
V 2aK J L2(0.3 x 10-9)(50, 000) J 

or 68 nm 
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and ^Avall — 

Jt2E. 
+ K8' = 

7T2(IA x 10~20) 
+ (50 x 10J)(6.8 x 1(T8) 

2 a8' 

= 0.007 J m“2 

2(0.3 x 10"9)(6.8 x 10-8) 

or 7 mJ m-2 

A better calculation gives 5' and C/wau as 40 nm and 3 mJ m-2, respectively, about the same 
order of magnitude.4 The Bloch wall thickness is roughly 70 nm or 8/a = 230 atomic layers. It 
is left as an exercise to show that when 8 = 8', the exchange and anisotropy energy contribu¬ 
tions are equal. 

8.5.4 Magnetostriction 

If we were to strain a ferromagnetic crystal (by applying a suitable stress) along a cer¬ 
tain direction, we would change the. interatomic spacing not only along this direction 
but also in other directions and hence change the exchange interactions between the 
atomic spins. This would lead to a change in the magnetization properties of the crys¬ 
tal. In the converse effect, the magnetization of the crystal generates strains or changes 
in the physical dimensions of the crystal. For example, in very qualitative terms, when 
an iron crystal is magnetized along the [111] direction by a strong field, the atomic 
spins within domains are rotated from their easy directions toward the hard [111] di¬ 
rection. These electron spin rotations involve changes in the electron charge distri¬ 
butions around the atoms and therefore affect the interatomic bonding and hence the 
interatomic spacing. When an iron crystal is placed in a magnetic field along an easy 
direction [100], it gets longer along this direction but contracts in the transverse 
directions [010] and [001], as depicted in Figure 8.27. The reverse is true for nickel. 
The longitudinal strain At/i along the direction of magnetization is called the 
magnetostrictive constant, denoted by X. The magnetostrictive constant depends on 
the crystal direction and may be positive (extension) or negative (contraction). Further, 
X depends on the applied field and can even change sign as the field is increased; for 
example, X for iron along the [110] direction is initially positive and then, at higher 
fields, becomes negative. When the crystal reaches saturation magnetization, X also 
reaches saturation, called saturation magnetostriction strain A.sat, which is typically 
10~6-10~5. Table 8.4 summarizes the Asat values for Fe and Ni along the easy and hard 
directions. The crystal lattice strain energy associated with magnetostriction is called 
the magnetostrictive energy, which is typically less than the anisotropy energy. 

Magnetostriction is responsible for the transformer hum noise one hears near 
power transformers. As the core of a transformer is magnetized one way and then in the 
opposite direction under an alternating voltage, the alternating changes in the longitu¬ 
dinal strain vibrate the surrounding environment, air, oil, and so forth, and generate an 
acoustic noise at twice the main frequency, or 120 Hz, and its harmonics. (Why?) 

The magnetostrictive constant can be controlled by alloying metals. For example, 
A.sat along the easy direction for nickel is negative and for iron it is positive, but for the 
alloy 85% Ni-15% Fe, it is zero. In certain magnetic materials, A. can be quite large, 

4 See, for example, D. Jiles, Introduction to Magnetism and Magnetic Materials, London, England: Chapman and 
Hall, 1991. 
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Figure 8.27 Magnetostriction means that the 

iron crystal in a magnetic field along x, an easy 

direction, elongates along x but contracts in the 

transverse directions (in low fields). 

Original Fe crystal 

€ 7 [010] 

-H- .x [100] 

-t+S€- 

greater than 10-4, which has opened up new areas of sensor applications based on 
the magnetostriction effect. For example, it may be possible to develop torque sensors 
for automotive steering applications by using Co-ferrite type magnetic materials5 
(e.g., CoO-Fe203 or similar compounds) that have Xsat of the order of 10~4. 

8.5.5 Domain Wall Motion 

The magnetization of a single ferromagnetic crystal involves the motions of domain 
boundaries to allow the favorably oriented domains to grow at the expense of domains 
with magnetizations directed away from the field (Figure 8.23). The motion of a do¬ 
main wall in a crystal is affected by crystal imperfections and impurities and is not 
smooth. For example, in a 90° Bloch wall, the magnetization changes direction by 90° 
across the boundary. Due to magnetostriction (Figure 8.27), there is a change in the 
distortion of the lattice across the 90° boundary, which leads to a complicated strain 
and hence stress distribution around this boundary. We also know that crystal imper¬ 
fections such as dislocations and point defects also have strain and stress distributions 
around them. Domain walls and crystal imperfections therefore interact with each 
other. Dislocations are line defects that have a substantial volume of strained lattice 
around them. Figure 8.28 visualizes a dislocation with tensile and compressive strains 
around it and a domain wall that has a tensile strain on the side of the dislocation. If 
the wall gets close to the dislocation, the tensile and compressive strains cancel, 
which results in an unstrained lattice and hence a lower strain energy. This energeti¬ 
cally favorable arrangement keeps the domain boundary close to the dislocation. It 
now takes greater magnetic field to snap away the boundary from the dislocation. Do¬ 
main walls also interact with nonmagnetic impurities and inclusions. For example, an 
inclusion that finds itself in a domain becomes magnetized and develops south and 
north poles, as shown in Figure 8.29a. If the domain wall were to intersect the inclu¬ 
sion and if there were to be two neighboring domains around the inclusion, as in Fig¬ 
ure 8.29b, then the magnetostatic energy would be lowered—energetically a favorable 
event. This reduction in magnetostatic potential energy means that it now takes greater 
force to move the domain wall past the impurity, as if the wall were “pinned” by the 
impurity. 

The motion of a domain wall in a crystal is therefore not smooth but rather jerky. 
The wall becomes pinned somewhere by a defect or an impurity and then needs a 

I 5 See, for example, D. Jiles and C. C. H. Lo, Sensors and Actuators, A106, 3, 2003. 
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Figure 8.28 Stress and strain 

distributions around a dislocation and 

near a domain wall. 

Bloch wall Bloch wall 

(a) (b) 

Figure 8.29 Interaction of a Bloch wall with a nonmagnetic 

(no permanent magnetization) inclusion. 

(a) The inclusion becomes magnetized and there is magnetostatic 

energy. 

(b) This arrangement has lower potential energy and is thus favorable. 

greater applied field to break free. Once it snaps off, the domain wall is moved until it 
is attracted by another type of imperfection, where it is held until the field increases 
further to snap it away again. Each time the domain wall is snapped loose, lattice 
vibrations are generated, which means loss of energy as heat. The whole domain wall 
motion is nonreversible and involves energy losses as heat to the crystal. 

8.5.6 Polycrystalline Materials and the M versus H Behavior 

The majority of the magnetic materials used in engineering are polycrystalline and 
therefore have a microstructure that consists of many grains of various sizes and ori¬ 
entations depending on the preparation and thermal history of the component. In an 
unmagnetized polycrystalline sample, each crystal grain will possess domains, as de¬ 
picted in Figure 8.30. The domain structure in each grain will depend on the size and 
shape of the grain and, to some extent, on the magnetizations in neighboring grains. 
Although very small grains, perhaps smaller than 0.1 pm, may be single domains, in 
most cases the majority of the grains will have many domains. Overall, the structure 
will possess no net magnetization, provided that it was not previously subjected to an 
applied magnetic field. We can assume that the component was heated to a temperature 
above the Curie point and then allowed to cool to room temperature without an ap¬ 
plied field. 

Suppose that we start applying a very small external magnetic field (fx0H) along 
some direction, which we can arbitrarily label as +x. The domain walls within vari¬ 
ous grains begin to move small distances, and favorably oriented domains (those with 
a component of M along +jc) grow a little larger at the expense of those pointing away 
from the field, as indicated by point a in Figure 8.31. The domain walls that are 
pinned by imperfections tend to bow out. There is a very small but net magnetization 
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Figure 8.30 Schematic illustration of magnetic 

domains in the grains of an unmagnetized 

polycrystalline iron sample. 

Very small grains have single domains. 

M 

Rotation 
of M 

Saturation 
of M 

Figure 8.31 M versus H behavior of a previously unmagnetized polycrystalline iron specimen. 

An example grain in the unmagnetized specimen is that at O. 

(a) Under very small fields, the domain boundary motion is reversible. 

(b) The boundary motions are irreversible and occur in sudden jerks. 

(c) Nearly all the grains are single domains with saturation magnetizations in the easy directions. 

(d) Magnetizations in individual grains have to be rotated to align with the field H. 

(e) When the field is removed, the specimen returns along d to e. 

(f) To demagnetize the specimen, we have to apply a magnetizing field of Hc in the reverse direction. 

along the field, as indicated by the Oa region in the magnetization versus magnetiz¬ 
ing field (M versus H) behavior in Figure 8.31. As we increase the magnetizing field, 
the domain motions extend larger distances, as shown for point b in Figure 8.31, and 
walls encounter various obstacles such as crystal imperfections, impurities, second 
phases, and so on, which tend to attract the walls and thereby hinder their motions. A 



8.5 Magnetic Domains: Ferromagnetic Materials 715 

domain wall that is stuck (or pinned) at an imperfection at a given field cannot move 
until the field increases sufficiently to provide the necessary force to snap the wall 
free, which then suddenly surges forward to the next obstacle. As a wall suddenly 
snaps free and shoots forward to the next obstacle, essentially two causes lead to heat 
generation. Sudden changes in the lattice distortion, due to magnetostriction, create 
lattice waves that carry off some of the energy. Sudden changes in the magnetization 
induce eddy currents that dissipate energy via Joule heating (domains have a finite 
electrical resistance). These processes involve energy conversion to heat and are irre¬ 
versible. Sudden jerks in the wall motions lead to small jumps in the magnetization of 
the specimen as the magnetizing field is increased; the phenomenon is known as the 
Barkhausen effect. If we could examine the magnetization precisely with a highly 
sensitive instrument, we would see jumps in the M versus H behavior, as shown in the 
inset in Figure 8.31. 

As we increase the field, magnetization continues to increase by jerky domain wall 
motions that enlarge domains with favorably oriented magnetizations and shrink away 
those with magnetizations pointing away from the applied field. Eventually domain 
wall motions leave each crystal grain with a single domain and magnetization in one of 
the easy directions, as indicated by point c in Figure 8.31. Although some grains would 
be oriented to have the easy direction and hence M along the applied field, the magne¬ 
tization in many grains will be pointing at some angle to H as shown for point c in 
Figure 8.31. From then until point d, the increase in the applied field forces the magne¬ 
tization in a grain, such as that at point c to rotate toward the direction of H. Eventually 
the applied field is sufficiently strong to align M along H, and the specimen reaches sat¬ 
uration magnetization Msat, directed along H or +x, as at point d in Figure 8.31. 

If we were to decrease and remove the magnetizing field, the magnetization in 
each grain would rotate to align parallel with the nearest easy direction in that grain. 
Further, in some grains, additional small domains may develop that reduce the magne¬ 
tization within that grain, as indicated at point e in Figure 8.31. This process, from 
point d to point e, leaves the specimen with a permanent magnetization, called the 
remanent or residual magnetization and denoted by Mr. 

If we were now to apply a magnetizing field in the reverse direction —x, the mag¬ 
netization of the specimen, still along +x, would decrease and eventually, at a suffi¬ 
ciently large applied field M would be zero and the sample would have been totally 
demagnetized. This is shown as point / in Figure 8.31. The magnetizing field Hc re¬ 
quired to totally demagnetize the sample is called the coercivity or the coercive field. 
It represents the resistance of the sample to demagnetization. We should note that at 
point/in Figure 8.31, the sample again has grains with many domains, which means 
that during the demagnetization process, from point e to point / new domains had to 
be generated. The demagnetization process invariably involves the nucleation of vari¬ 
ous domains at various crystal imperfections to cancel the overall magnetization. The 
treatment of the nucleation of domains is beyond the scope of this book; we will 
nonetheless, accept it as required process for the demagnetization of the crystal grains. 

If we continue to increase the applied magnetic field along — x, as illustrated in 
Figure 8.32a, the process from point /onward becomes similar to that described for 
magnetization from point a to point d in Figure 8.31 along +x except that it is now 
directed along — jc . At point g, the sample reaches saturation magnetization along the 
—x direction. The full M versus H behavior as the magnetizing field is cycled between 
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(a) (b) 

Figure 8.32 

(a) A typical M versus H hysteresis curve. 

(b) The corresponding 8 versus H hysteresis curve. The shaded area inside the hysteresis loop is the 

energy loss per unit volume per cycle. 

+jc to —x has a closed loop shape, shown in Figure 8.32a, called the hysteresis loop. 
We observe that in both +x and — x directions, the magnetization reaches saturation 
Msat when H reaches //sat, and on removing the applied field, the specimen retains an 
amount of permanent magnetization, represented by points e and h and denoted by Mr. 
The necessary applied field of magnitude Hc that is needed to demagnetize the speci¬ 
men is the coercivity (or coercive field), which is represented by points / and i. The 
initial magnetization curve, Oabed in Figure 8.31, which starts from an unmagnetized 
state, is called the initial magnetization curve. 

We can, of course, monitor the magnetic field B instead of M, as in Figure 8.32b, 
where 

B = ii0M + ix0H 

which leads to a hysteresis loop in the B versus H behavior. The very slight increase in 
B with H when M is in saturation is due to the permeability of free space {fx0H). The 
area enclosed within the B versus H hysteresis loop, shown as the hatched region in 
Figure 8.32b, represents the energy dissipated per unit volume per cycle of applied 
field variation. 

Suppose we do not take a magnetic material to saturation but still subject the speci¬ 
men to a cyclic applied field alternating between the +x and — x directions. Then the hys¬ 
teresis loop would be different than that when the sample is taken all the way to saturation, 
as shown in Figure 8.33. The magnetic field in the material does not reach Bsat (corre¬ 
sponding to Msat) but instead reaches some maximum value Bm when the magnetizing 
field is Hm. There is still a hysteresis effect because the magnetization and demagnetiza¬ 
tion processes are nonreversible and do not retrace each other. The shape of the hysteresis 
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B 

Figure 8.33 The 8 versus H hysteresis loop 

depends on the magnitude of the applied field in 

addition to the material and sample shape and size 

loop depends on the magnitude of the applied field in addition to the material and sample 
shape and size. The area enclosed within the loop is still the energy dissipated per unit 
volume per cycle of applied field oscillation. The hysteresis loop taken to saturation, as in 
Figure 8.32a and b, is called the saturation (major) hysteresis loop. It is apparent from 
Figure 8.33 that the remanence and coercivity exhibited by the sample depend on the B-H 
loop. The quoted values normally correspond to the saturation hysteresis loop. 

Ferrimagnetic materials exhibit properties that closely resemble those of ferro¬ 
magnetic materials. One can again identify distinct magnetic domains and domain 
wall motions during magnetization and demagnetization that also lead to B-H hyste¬ 
resis curves with the same characteristic parameters, namely, saturation magnetization 
(Msat and Bsat at Hsat), remanence (Mr and Br), coercivity (Hc), hysteresis loss, and so on. 

8.5.7 Demagnetization 

The B-H hysteresis curves, as in Figure 8.32b, that are commonly given for magnetic 
materials represent B versus H behavior observed under repeated cycling. The applied 
field intensity H is cycled back and forward between the — x and +x directions. If we 
were to try and demagnetize a specimen with a remanent magnetization at point e in 
Figure 8.34 by applying a reverse field intensity, then the magnetization would move 
along from point e to point/. If at point /we were to suddenly switch off the applied 
field, we would find that B does not actually remain zero but recovers along/to point 
e' and attains some value B'r. The main reason is that small domain wall motions are 
reversible and as soon as the field is removed, there is some reversible domain wall 
motion “bouncing back” the magnetization along/V. We can anticipate this recovery 
and remove the field intensity at some point /' so that the sample recovers along f'O 
and the magnetization ends up being zero. However, to remove the field intensity at 
point /', we need to know not only the exact B-H behavior but also the exact location 
of point f (or the recovery behavior). The simplest method to demagnetize the sam¬ 
ple is first to cycle H with ample magnitude to reach saturation and then to continue 
cycling H but with a gradually decreasing magnitude, as depicted in Figure 8.35. As H 
is cycled with a decreasing magnitude, the sample traces out smaller and smaller B-H 
loops until the B-H loops are so small that they end up at the origin when H reaches 
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B 

Figure 8.34 Removal of the demagnetizing 

field at point f does not necessarily result in zero 

magnetization as the sample recovers along f-e'. 

B 

Figure 8.35 A magnetized specimen can be 

demagnetized by cycling the field intensity with a 

decreasing magnitude, that is, tracing out smaller 

and smaller B-H loops until the origin is reached, 

H = 0. 

zero. The demagnetization process in Figure 8.35 is commonly known as deperming. 
Undesirable magnetization of various magnetic devices such as recording heads is typ¬ 
ically removed by this deperming process (for example, a demagnetizing gun brought 
close to a magnetized recording head implements deperming by applying a cycled H 
with decreasing magnitude). 

EXAMPLE 8.5 ENERGY DISSIPATED PER UNIT VOLUME AND THE HYSTERESIS LOOP Consider a toroidal coil 

with an iron core that is energized from a voltage supply through a rheostat, as shown in Fig¬ 

ure 8.11. Suppose that by adjusting the rheostat we can adjust the current i supplied to the coil 

and hence the magnetizing field H in the core material. H and i are simply related by Ampere’s 

law. However, the magnetic field B in the core is determined by the B-H characteristics of the 

core material. From electromagnetism (see Example 8.2), we know that the battery has to do 

work dEvoi per unit volume of core material to increase the magnetic field by dB, where 

dEy0i = H dB 

Work done 

per unit 

volume 

during 

magnetization 

so that the total energy or work involved per unit volume in changing the magnetic field from 

an initial value B\ to a final value B2 in the core is 

r 
Evol = H dB [8.22] 

“ B\ 

where the integration limits are determined by the initial and final magnetic fields. 

Equation 8.22 corresponds to the area between the B-H curve and the B axis between B\ 

and Bj. Suppose that we take the iron core in the toroid from point P on the hysteresis curve to 

Q, as shown in Figure 8.36. This is a magnetization process for which energy is put into the 

sample. The work done per unit volume from P to Q is the area PQRS, shown as hatched. On 

returning the sample to the same initial magnetization (same magnetic field B as we had at P), 

taking it from Q to S, energy is returned from the core into the electric circuit. This energy per 

unit volume is the area QRS, shown as gray, and is less than PQRS during magnetization. The 

difference is the energy dissipated in the sample as heat (moving domain walls and so on) and 
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B 

Figure 8.36 The area between the 

B-H curve and the B axis is the energy 

absorbed per unit volume in 

magnetization or released during 

demagnetization. 

corresponds to the hysteresis loop area PQS. Over one full cycle, the energy dissipated per unit 
volume is the total hysteresis loop area. 

The hysteresis loop and hence the energy dissipated per unit volume per cycle depend not 
only on the core material but also on the magnitude of the magnetic field (Bm), as apparent in 
Figure 8.33. For example, for magnetic steels used in transformer cores, the hysteresis power 
loss Ph per unit volume of core is empirically expressed in terms of the maximum magnetic field 
Bm and the ac frequency/as6 

Ph = KfBnm [8.23] 

where AT is a constant that depends on the core material (typically, K = 150.7),/is the ac fre¬ 
quency (Hz), Bm is the maximum magnetic field (T) in the core (assumed to be in the range 
0.1-1.5 T), and n = 1.6. According to Equation 8.23, the hysteresis loss can be decreased by 
operating the transformer with a reduced magnetic field. 

Hysteresis 
power loss 
per m3 

8.6 SOFT AND HARD MAGNETIC MATERIALS 

8.6.1 Definitions 

Based on their B-H behavior, engineering materials are typically classified into soft and 
hard magnetic materials. Their typical B-H hysteresis curves are shown in Figure 8.37. 
Soft magnetic materials are easy to magnetize and demagnetize and hence require rel¬ 
atively low magnetic field intensities. Put differently, their B-H loops are narrow, as 
shown in Figure 8.37. The hysteresis loop has a small area, so the hysteresis power loss 
per cycle is small. Soft magnetic materials are typically suitable for applications 
where repeated cycles of magnetization and demagnetization are involved, as in elec¬ 
tric motors, transformers, and inductors, where the magnetic field varies cyclically. 
These applications also require low hysteresis losses, or small hysteresis loop area. 
Electromagnetic relays that have to be turned on and off require the relay iron to be 
magnetized and demagnetized and therefore need soft magnetic materials. 

Hard magnetic materials, on the other hand, are difficult to magnetize and demag¬ 
netize and hence require relatively large magnetic field intensities, as apparent in Fig¬ 
ure 8.37. Their B-H curves are broad and almost rectangular. They possess relatively 
large coercivities, which means that they need large applied fields to be demagnetized. 
The coercive field for hard materials can be millions of times greater than those for soft 

6 This is the power engineers Steinmetz equation for commercial magnetic steels. It has been applied not only to 
silicon irons (Fe + few percent Si) but also to a wide range of magnetic materials. 
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Figure 8.37 Soft and hard magnetic 

materials. 

B 

magnetic materials. Their characteristics make hard magnetic materials useful as per¬ 
manent magnets in a variety of applications. It is also clear that the magnetization can 
be switched from one very persistent direction to another very persistent direction, 
from +Br to — Br, by a suitably large magnetizing field intensity. As the coercivity is 
strong, both the states +Br and —Br persist until a suitable (large) magnetic field in¬ 
tensity switches the field from one direction to the other. It is apparent that hard mag¬ 
netic materials can also be used in magnetic storage of digital data, where the states 
+Br and —Br can be made to represent 1 and 0 (or vice versa). 

8.6.2 Initial and Maximum Permeability 

It is useful to characterize the magnetization of a material by a relative permeability 
/xr, since this simplifies magnetic calculations. For example, inductance calculations 
become straightforward if one could represent the magnetic material by fir alone. But 
it is clear from Figure 8.38a that 

B 
Vr = -- 

li0H 

is not even approximately constant because it depends on the applied field and the 
magnetic history of the sample. Nonetheless, we still find it useful to specify a relative 
permeability to compare various materials and even use it in various calculations. The 
definition fir = B/(ji0H) represents the slope of the straight line from the origin O to 
the point P, as shown in Figure 8.38a. This is a maximum when the line becomes a tan¬ 
gent to the B-H curve at P, as in the figure. Any other line from O to the B-H curve 
that is not a tangent does not yield a maximum relative permeability (the mathematical 
proof is left to the reader, though the argument is intuitively acceptable from the fig¬ 
ure). The maximum relative permeability, as defined in Figure 8.38a, is denoted by 
f^r,max and serves as a useful magnetic parameter. The point P in Figure 8.38a that de¬ 
fines the maximum permeability corresponds to what is called the “knee” of the B-H 
curve. Many transformers are designed to operate with the maximum magnetic field in 
the core reaching this knee point. For pure iron, £tr,max is less than 104, but for certain 
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B B 

Figure 8.38 Definitions of (a) maximum permeability and (b) initial permeability. 

soft magnetic materials such as supermalloys (a nickel-iron alloy), the values of /xr>max 
can be as high as 106. 

Initial relative permeability, denoted as /iri, represents the initial slope of the ini¬ 
tial B versus H curve as the material is first magnetized from an unmagnetized state, as 
illustrated in Figure 8.38b. This definition is useful for soft magnetic materials that are 
employed at very low magnetic fields (e.g., small signals in electronics and communi¬ 
cations engineering). In practice, weak applied magnetic fields where firi is useful are 
typically less than 10"4 T. In contrast, iir<max is useful when the magnetic field in the ma¬ 
terial is not far removed from saturation. Initial relative permeability of a magnetically 
soft material can vary by orders of magnitude. For example, fxri for iron is 150, whereas 
for supemumetal-200, a commercial alloy of nickel and iron, it is about 2 x 105. 

8.7 SOFT MAGNETIC MATERIALS: 
EXAMPLES AND USES 

Table 8.5 identifies what properties are desirable in soft magnetic materials and also lists 
some typical examples with various applications. An ideal soft magnetic material would 
have zero coercivity (Hc), a very large saturation magnetization (5sat), zero remanent mag¬ 
netization (Br), zero hysteresis loss, and very large /zr>max and firi. A number of example 
materials, from pure iron to ferrites, which are ferrimagnetic, are listed in Table 8.5. Pure 
iron, although soft, is normally not used in electric machines (except in a few specific 
relay-type applications) because its good conductivity allows large eddy currents to be in¬ 
duced under varying fields. Induced eddy currents in the iron lead to Joule losses (RI2), 
which are undesirable. The addition of a few percentages of silicon to iron (silicon-iron), 
known typically as silicon-steels, increases the resistivity and hence reduces the eddy cur¬ 
rent losses. Silicon-iron is widely used in power transformers and electric machinery. 

The nickle-iron alloys with compositions around 77% Ni-23% Fe constitute an 
important class of soft magnetic materials with low coercivity, low hysteresis losses, and 
high permeabilities (jxri and fxr,max). High nri makes these alloys particularly useful in 
low magnetic field applications that are typically found in high-frequency work in 
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Table 8.5 Selected soft magnetic materials and some typical values and applications 

Magnetic 

Material 

Hc 
(T) 

f^sat 
(T) 

Br 
(T) Mri Mr, max w„ Typical Applications 

Ideal soft 0 Large 0 Large Large 0 Transformer cores, inductors, electric 

machines, electromagnet cores, 

relays, magnetic recording heads. 

Iron (commercial) 

grade, 0.2% 

impurities) 

<10~4 2.2 <0.1 150 104 250 Large eddy current losses. Generally 

not preferred in electric machinery 

except in some specific applications 

(e.g., some electromagnets and 

relays). 

Silicon iron 

(Fe: 2-4% Si) 

<10-4 2.0 0.5-1 103 104- 
4 X 105 

30-100 Higher resistivity and hence lower eddy 

current losses. Wide range of electric 
machinery (e.g., transformers). 

Supermalloy 

(79% Ni-15.5% 

Fe-5% Mo-0.5% Mn) 

2 x 1(T7 0.7-0.8 <0.1 105 106 <0.5 High permeability, low-loss electric 

devices, e.g., specialty transformers, 

magnetic amplifiers. 

78 Permalloy 

(78.5% 

Ni-21.5% Fe) 

5 x 1(T6 0.86 <0.1 8 x 103 105 <0.1 Low-loss electric devices, audio 

transformers, HF transformers, 

recording heads, filters. 

Glassy metals, 

Fe-Si-B 

2 x 10~6 1.6 <10"6 — 10s 20 Low-loss transformer cores. 

Ferrites, 

Mn-Zn ferrite 

10~5 0.4 <0.01 2 x 103 5 x 103 <0.01 HF low-loss applications. Low 

conductivity ensures negligible 

eddy current losses. HF transformers, 

inductors (e.g., pot cores, E and U 

cores), recording heads. 

NOTE: W/i is the hysteresis loss, energy dissipated per unit volume per cycle in hysteresis losses, J m 3 cycle ', typically at Bm = 1 T. 

electronics (e.g., audio and wide-band transformers). They have found many engi¬ 
neering uses in sensitive relays, pulse and wide-band. transformers, current transform¬ 
ers, magnetic recording heads, magnetic shielding, and so forth. Alloying iron with 
nickel increases the resistivity and hence reduces eddy current losses. The magne¬ 
tocrystalline anisotropy energy is least at these nickel compositions, which leads to 
easier domain wall motions and hence smaller hysteresis losses. There are a number of 
commercial nickel-iron alloys whose application depends on the exact composition 
(which may also have a few percentages of Mo, Cu, or Cr) and the method of prepara¬ 
tion (e.g., mechanical rolling). For example, supermalloy (79% Ni-16% Fe-5% Co) 
has firi ^ 105, compared with commercial grade iron, which has firi less than 103. 

Amorphous magnetic metals, as the name implies, have no crystal structure (they 
only have short-range order) and consequently possess no crystalline imperfections such 
as grain boundaries and dislocations. They are prepared by rapid solidification of the melt 
by using special techniques such as melt spinning (as described in Chapter 1). Typically 
they are thin ribbons by virtue of their preparation method. Since they have no crystal 
structure, they also have no magnetocrystalline anisotropy energy, which means that all 
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directions are easy. The absence of magnetocrystalline anisotropy and usual crystalline 
defects which normally impede domain wall motions, leads to low coercivities and hence 
to soft magnetic properties. The coercivity, however, is not zero inasmuch as there is still 
some magnetic anisotropy due to the directional nature of the strains frozen in the metal 
during rapid solidification. By virtue of their disordered structure, these metallic glasses 
also have higher resistivities and hence they have smaller eddy current losses. Although 
they are ideally suited for various transformer and electric machinery applications, their 
limited size and shape, at present, prevent their use in power applications. 

Ferrites are ferrimagnetic materials that are typically oxides of mixed transition 
metals, one of which is iron. For example, Mn ferrite is MnFe204 and MgZn ferrite is 
Mni_xZnjfFe204. They are normally insulators and therefore do not suffer from eddy 
current losses. They are ideal as magnetic materials for high-frequency work where 
eddy current losses would prevent the use of any material with a reasonable conductivity. 
Although they can have high initial permeabilities and low losses, they do not possess 
as large saturation magnetizations as ferromagnets, and further, their useful temperature 
range (determined by the Curie temperature) is lower. There are many types of commer¬ 
cial ferrites available depending on the application, tolerable losses, and the required 
upper frequency of operation. MnZn ferrites, for example, have high initial permeabil¬ 
ities (e.g., 2 x 103) but are only useful up to about 1 MHz, whereas NiZn ferrites have 
lower initial permeability (e.g., 102) but can be used up to 200 MHz. Generally, the ini¬ 
tial permeability in the high-frequency region decreases with frequency. 

Garnets are ferrimagnetic materials that are typically used at the highest frequencies 
that cover the microwave range (1-300 GHz). The yttrium iron garnet, YIG, which is 
YsFesO^, is one of the simplest garnets with a very low hysteresis loss at microwave fre¬ 
quencies. Garnets have excellent dielectric properties with high resistivities and hence 
low losses. The main disadvantages are the low saturation magnetization, which is 0.18 
T for YIG, and low Curie temperature, 280 °C for YIG. The compositions of garnets de¬ 
pend on the properties required for the particular microwave application. For example, 
Y2.iGdo.98Fe50i2 is a garnet that is used in X-band (8-12 GHz) three-port circulators 
handling high microwave powers (e.g., peak power 200 kW and average power 200 W). 

AN INDUCTOR WITH A FERRITE CORE Consider a toroidal coil with a ferrite core. Suppose 
that the coil has 200 turns and is used in HF work with small signals. The mean diameter of the 
toroid is 2.5 cm and the core diameter is 0.5 cm. If the core is a MnZn ferrite, what is the 
approximate inductance of the coil? 

EXAMPLE 8.6 

SOLUTION 

The inductance L of a toroidal coil is given by 

j _ fJ'riH'oN A 

~ l 

SO 

L = 

, , . / 0.005 Y 
(2 x 103)(4jt x 10-7 Hm-1)(200)2^(—-— mj 

(;r 0.025 m) 
= 0.025 H or 25 mH 
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Had the core been air, the inductance would have been 1.26 x 10-5 H or 12.6 |iH. The main 
assumption is that B is uniform in the core, and this will be only so if the diameter of the toroid 
(2.5 cm) is much greater than the core diameter (0.5 cm). Here this ratio is 5 and the calculation 
is only approximate. 

8.8 HARD MAGNETIC MATERIALS: 
EXAMPLES AND USES 

An ideal hard magnetic material, as summarized in Table 8.6, has very large coerciv- 
ity and remanent magnetic field. Further, since they are used as permanent magnets, 
the energy stored per unit volume in the external magnetic field should be as large as 
possible since this is the energy available to do work. This energy density (J m~3) in 
the external field depends on the maximum value of the product BH in the second 
quadrant of the B-H characteristics and is denoted as (BH)max. It corresponds to the 
largest rectangular area that fits the B-H curve in the second quadrant, as shown in 
Figure 8.39. 

When the size of a ferromagnetic sample falls below a certain critical dimension, 
of the order of 0.1 pm for cobalt, the whole sample becomes a single domain, as 
depicted in Figure 8.40, because the cost of energy in generating a domain wall is too 
high compared with the reduction in external magnetostatic energy. These small 
particle-like pieces of magnets are called single domain fine particles. Their magnetic 

Table 8.6 Hard magnetic materials and typical values 

Magnetic Material 
t&oHe 

(T) 
Br 
(T) 

(BH) max 

(kj nr3) Examples and Uses 

Ideal hard Large Large Large Permanent magnets in various 

applications. 

Alnico (Fe-Al-Ni-Co-Cu) 0.19 0.9 50 Wide range of permanent magnet 

applications. 

Alnico (Columnar) 0.075 1.35 60 

Strontium ferrite 

(anisotropic) 

0.3-0.4 0.36-0.43 24-34 Starter motors, dc motors, 

loudspeakers, telephone 

receivers, various toys. 

Rare earth cobalt, e.g,, 

Simeon (sintered) 

0.62-1.1 1.1 150-240 Servo motors, stepper motors, 

couplings, clutches, quality 

audio headphones. 

NdFeB magnets 0.9-1.0 1.0-1.2 200-275 Wide range of applications, small 

motors (<e.gin hand tools), 

Walkman equipment, CD 

motors, MRI body scanners, 

computer applications. 

Hard particles, 

y-Fe203 

0.03 0.2 Audio and video tapes, 

floppy disks. 
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+z Easy 

Hard 
direction 

Figure 8.39 Hard magnetic materials 

and (B/-/)mox. 

Figure 8.40 A single domain fine 

particle. 

+Z 

t 

-z 

(a) 

Figure 8.41 A single domain elongated particle. 

Due to shape anisotropy, magnetization prefers to be along 

the long axis as in (a). Work has to be done to change M 

from (a) to (b) to (c). 

properties depend not only on the crystal structure of the particle but also on the 
shape of the particle because different shapes give rise to different external magnetic 
fields. For a spherical iron particle, the magnetization M will be in an easy direction, 
for example, along [100] taken along +z. To reverse the magnetization from +z to —z 
by an applied field, we have to rotate the spins around past the hard direction, as shown 
in Figure 8.40, since we cannot generate reverse domains (or move domain walls). 
The rotation of magnetization involves substantial work due to the magnetocrystalline 
anisotropic energy, and the result is high coercivity. The higher the magnetocrystalline 
anisotropy energy, the greater the coercivity. The energy involved in creating a domain 
wall increases with the magnetocrystalline anisotropy energy. The critical size below 
which a particle becomes a single domain therefore increases with the crystalline 
anisotropy. Barium ferrite crystals have the hexagonal structure and hence have a high 
degree of magnetocrystalline anisotropy. Critical size for single domain barium ferrite 
particles is about 1-1.5 pm, and the coercivity ia0Hc of small particles can be as high 
as 0.3 T, compared with values 0.02-0.1 T in multidomain barium ferrite pieces. 

Particles that are not spherical may even have higher coercivity as a result of shape 
anisotropy. Consider an ellipsoid (elongated) fine particle, shown in Figure 8.41a. If 
the magnetization M is along the long axis (along z), then the potential energy in the 
external magnetic field is less than if M were along the minor axis (along y), as com¬ 
pared in Figure 8.41a and b. Thus, we have to do work to rotate M from the long to the 
short axis, or from Figure 8.41a to b. An elongated fine particle therefore has its mag¬ 
netization along its length, and the effect is called shape anisotropy. If we have to 
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reverse the magnetization from +z to —z by applying a reverse field, then we can only 
do so by rotating the magnetization, as shown in Figure 8.41a to c. M has to be rotated 
around through the minor axis, and this involves substantial work. Thus the coercivity 
is high. In general, the greater the elongation of the particle with respect to its width, 
the higher the coercivity. Small spherical Fe-Cr-Co particles have a coercivity fx0Hc 
at most 0.02 T, but elongated and aligned particles can have a coercivity as high as 
0.075 T due to shape anisotropy. 

High coercivity magnets can be fabricated by having elongated fine particles dis¬ 
persed by precipitation in a structure. Fine particles will be single domains. Alnico is a 
popular permanent magnet material that is an alloy of the metals Al, Ni, Co, and Fe 
(hence the name). Its microstructure consists of fine elongated Fe-Co rich particles, 
called the a'-phase, dispersed in a matrix that is Ni-Al rich and called the a-phase. The 
structure is obtained by an appropriate heat treatment that allows fine a' particles to 
precipitate out from a solid solution of the alloy. The a' particles are strongly magnetic, 
whereas the a-phase matrix is weakly magnetic. When the heat treatment is carried out 
in the presence of a strong applied magnetic field, the a' particles that are formed have 
their elongations (or lengths) and hence their magnetizations along the applied field. 
The demagnetization process requires the rotations of the magnetizations in single do¬ 
main elongated a' particles, which is a difficult process (shape anisotropy), and hence 
the coercivity is high. The main drawback of the Alnico magnet is that the alloy is 
mechanically hard and brittle and cannot be shaped except by casting or sintering 
before heat treatment. There are, however, other alloy permanent magnets that can be 
machined. 

A variety of permanent magnets are made by compacting high-coercivity particles 
by using powder metallurgy (e.g., powder pressing or sintering). The particles are 
magnetically hard because they are sufficiently small for each to be of single domain 
or they possess substantial shape anisotropy (elongated particles may be ferromagnetic 
alloys, e.g., Fe-Co, or various hard ferrites). These are generically called powdered 
solid permanent magnets. An important class is the ceramic magnets that are made by 
compacting barium ferrite, BaFei209, or strontium ferrite, SrFenC^, particles. The 
barium ferrite has the hexagonal crystal structure with a large magnetocrystalline 
anisotropy, which means that barium ferrite particles have high coercivity. The ce¬ 
ramic magnet is typically formed by wet pressing ferrite powder in the presence of a 
magnetizing field, which allows the easy directions of the particles to be aligned, 
and then drying and carefully sintering the ceramic. They are used in many low-cost 
applications. 

Rare earth cobalt permanent magnets based on samarium-cobalt (Sm-Co) alloys 
have very high (BH)max values and are widely used in many applications such as dc 
motors, stepper and servo motors, traveling wave tubes, klystrons, and gyroscopes. 
The intermetallic compound SmCos has a hexagonal crystal structure with high mag¬ 
netocrystalline anisotropy and hence high coercivity. The SmCos powder is pressed in 
the presence of an applied magnetic field to align the magnetizations of the particles. 
This is followed by careful sintering to produce a solid powder magnet. The Sn^Cois 
magnets are more recent and have particularly high values of (BH)max up to about 
240 kJ m-3. Sni2Coi5 is actually a generic name and the alloy may contain other tran¬ 
sition metals substituting for some of the Co atoms. 
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One important application of permanent 
magnets is in small dc motors. Toothbrushes 
that operate from batteries use dc motors 
with strong permanent magnets to get the 
required torque to drive the brushes. 

The more recent neodymium-iron-boron, NdFeB, powdered solid magnets can 
have very large (HB)max values up to about 275 kJ m-3. The tetragonal crystal struc¬ 
ture has the easy direction along the long axis and possesses high magnetocrystalline 
anisotropic energy. This means that we need a substantial amount of work to rotate the 
magnetization around through the hard direction, and hence the coercivity is also high. 
The main drawback is the lower Curie temperature, typically around 300 °C, whereas 
for Alnico and rare earth cobalt magnets, the Curie temperatures are above 700 °C. 
Another method of preparing NdFeB magnets is by the recrystallization of amorphous 
NdFeB at an elevated temperature in an applied field. The grains in the recrystallized 
structure are sufficiently small to be single domain grains and therefore possess high 
coercivity. 

(BWJmox FOR A PERMANENT MAGNET Consider the permanent magnet in Figure 8.42. There 
is a small air gap of length ig where there is an external magnetic field that is available to do 
work. For example, if we were to insert an appropriate coil in the gap and pass a current through 
the coil, it would rotate as in a moving coil panel meter. Show that the magnetic energy per unit 
volume stored in the gap is proportional to the maximum value of BH. How does (BH)max vary 
with the magnetizing field? 

EXAMPLE 8.7 

SOLUTION 

Let lm be the mean length of the magnet from one end to the other, as shown in Figure 8.42. 
We assume that the cross-sectional area A is constant throughout. There are no windings 
around the magnet and no current, 7 = 0. Ampere’s law for H involves integrating H along a 
closed path or around the mean path length lm + tg. Suppose that Hm and Hg are the magnetic 
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Figure 8.42 A permanent magnet with a small air gap. 

field intensities in the permanent magnet and in the gap, respectively. Then H d£ integrated 
around lm + lg is 

Hd£ = Hmlm + Hgtg = 0 

so that 

and hence 

H„ = -H„ 
l 

1 
m 

g 

B-Hfor 

air gap 

B-Hfor 

magnet 

material 

Energy in air 

gap of a 

magnet 

Bg = -p0y-Hm [8.24] 

Equation 8.24 is a relationship between Bg in the gap and Hm in the magnet. In addition, we 
have the B-H relationship for the magnetic material itself between the magnetic field Bm and 
intensity Hm in the magnet, that is, 

Bm = f(Hm) [8.25] 

The magnetic flux in the magnet and in the air gap must be continuous. Since we assumed 
a uniform cross-sectional area, the continuity of flux across the air gap implies that Bm = Bg. 
Thus we need to equate Equation 8.24 to Equation 8.25. Equation 8.24 is a straight line with a 
negative slope in a Bg versus Hm plot, as shown in Figure 8.43a. Equation 8.25 is, of course, the 
B-H characteristics of the material. The two intersect at point P, as shown in Figure 8.43a, 
where Bg = Bm = B'm and Hm = H'm. 

We know that there is magnetic energy in the air gap given by 

Emag = (Gap volume)(Magnetic energy density in the gap) 

= 0M,)Qs,h.) = 

1 
= -(Magnet volume)B'mH'm [8.26] 

Thus, the external magnetic energy depends on the magnet volume and the product of B'm 
and H'm of the magnet characteristics at the operating point P. For a given magnet size, the mag¬ 
netic energy in the gap is proportional to the rectangular area B'm H'm,OB'm PH'm in Figure 8.43a, 
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Air gap Magnet B 

(a) 

B 

Figure 8.43 

(a) Point P represents the operating point of the magnet and determines the magnetic field inside and 

outside the magnet. 

(b) Energy density in the gap is proportional to BH, and for a given geometry and size of gap, this is a 

maximum at a particular magnetic field B*m or Bg. 

and we have to maximize this area for the best energy extraction. Figure 8.43b shows how the 
product BH varies with B in a typical magnetic material. BH is maximum at (BP/)max, when the 
magnetic field is 5* and the field intensity is H*. We can appropriately choose the air-gap size 
to operate at these values, in which case we will be only limited by the (BH)milX available for that 
magnetic material. It is clear that (BH)max is a good figure of merit for comparing hard magnetic 
materials. According to Table 8.6, we can extract four to five times more work from a rare earth 
cobalt magnet than from an Alnico magnet of the same size if we were not limited by economics 
and weight. It should be mentioned that Equation 8.26 is only approximate as it neglects all 
fringe fields. 

8.9 SUPERCONDUCTIVITY 

8.9.1 Zero Resistance and the Meissner Effect 

In 1911 Kamerlingh Onnes at the University of Leiden in Holland observed that 
when a sample of mercury is cooled to below 4.2 K, its resistivity totally vanishes 
and the material behaves as a superconductor, exhibiting no resistance to current 
flow. Other experiments since then have shown that there are many such substances, 
not simply metals, that exhibit superconductivity when cooled below a critical 
temperature Tc that depends on the material. On the other hand, there are also many 
conductors, including some with the highest conductivities such as silver, gold, and 
copper, that do not exhibit superconductivity. The resistivity of these normal 
conductors at low temperatures is limited by scattering from impurities and crystal 
defects and saturates at a finite value determined by the residual resistivity. The two 
distinctly different types of behavior are depicted in Figure 8.44. Between 1911 and 
1986, many different metals and metal alloys had been studied, and the highest 
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Figure 8.44 A superconductor such as lead 

evinces a transition to zero resistivity at a critical 

temperature Tc (7.2 K for Pb). 

A normal conductor such as silver exhibits residual 

resistivity down to lowest temperatures. 

recorded critical temperature was about 23 K in a niobium-germanium compound 
(NbsGe) whose superconductivity was discovered in the early 1970s. In 1986 Bednorz 
and Muller, at IBM Research Laboratories in Zurich, discovered that a copper 
oxide-based ceramic-type compound La-Ba-Cu-O, which normally has high resis¬ 
tivity, becomes superconducting when cooled below 35 K. Following this Nobel 
prize-winning discovery, a variety of copper oxide-based compounds (called cuprate 
ceramics) have been synthesized and studied. In 1987 it was found that yttrium bar¬ 
ium copper oxide (Y—Ba-Cu-O) becomes superconducting at a critical temperature 
of 95 K, which is above the boiling point of nitrogen (77 K). This discovery was par¬ 
ticularly significant because liquid nitrogen is an inexpensive cryogent that is readily 
liquified and easy to use compared with cryogent liquids that had to be used in the 

Superconductivity, zero resistance below a certain critical 
temperature, was discovered by a Dutch physicist, Heike 
Kamerlingh Onnes, in 1911. Kamerlingh Onnes and one of his 
graduate students found that the resistance of frozen mercury 
simply vanished at 4.15 K; Kamerlingh Onnes won the Nobel 
prize in 1913. 

SOURCE: © Riiksmuseum voor de Geschiedenis der 
Natuurwetenschappen, courtesy AIP Emilio Segre Visual 
Archives. 
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John Bardeen, Leon N. Cooper, and John Robert Schrieffer, in Nobel prize ceremony 
(1972). They received the Nobel prize for the explanation of superconductivity in terms 
of Cooper pairs. 

I SOURCE: AIP Emilio Segre Visual Archives. 

"My belief is that the pairing condensation is what Mother Nature had in mind when she 
created these fascinating high-Tc systems." Robert Schrieffer (1991) 

past (liquid helium). At present the highest critical temperature for a superconductor 
is around 130 K (—143 °C) for Hg-Ba-Ca-Cu-O. These superconductors with Tc 
above ~30 K are now typically referred as high-Tc superconductors. The quest for 
a near-room-temperature superconductor goes on, with many scientists around the 
world trying different materials, or synthesizing them, to raise Tc even higher. There 
are already commercial devices utilizing high-Tc superconductors, for example, 
thin-film SQUIDs7 that can accurately measure very small magnetic fluxes, high-Q 
filters, and resonant cavities in microwave communications. 

The vanishing of resistivity is not the only characteristic of a superconductor. A 
superconductor cannot be viewed simply as a substance that has infinite conductivity 
below its critical temperature. A superconductor below its critical temperature expels 
all the magnetic field from the bulk of the sample as if it were a perfectly diamagnetic 
substance. This phenomenon is known as the Meissner effect. Suppose that we place 
a superconducting material in a magnetic field above Tc. The magnetic field lines will 
penetrate the sample, as we expect for any low fxr medium. However, when the 
superconductor is cooled below Tc, it rejects all the magnetic flux in the sample, as 
depicted in Figure 8.45. The superconductor develops a magnetization M by devel¬ 
oping surface currents, such that M and the applied field cancel everywhere inside 

I 7 SQUID is a superconducting quantum interference device that can detect very small magnetic fluxes. 
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Figure 8.45 The Meissner effect. 

A superconductor cooled below its critical temperature expels all magnetic field lines from 

the bulk by setting up a surface current. A perfect conductor (<x = oo) shows no Meissner 

effect. 

the sample. Put differently \x0M is in the opposite direction to the applied field and 
equal to it in magnitude. Thus, below Tc a superconductor is a perfectly diamagnetic 
substance (xm = — 1) - This should be contrasted with the behavior of a perfect conduc¬ 
tor, which only exhibits infinite conductivity, or p = 0, below Tc. If we place a perfect 
conductor in a magnetic field and then cool it below TCJ the magnetic field is not re¬ 
jected. These two types of behavior are identified in Figure 8.45. If we switch off the 
field, the field around the superconductor simply disappears. But switching off the field 
means there is a decreasing applied field. This change in the field induces currents in the 
perfect conductor by virtue of Faraday’s law of induction. These currents generate a 
magnetic field that opposes the change (Lenz’s law); in other words, they generate a 
field along the same direction as the applied field to reenforce the decreasing field. As 
the current can be sustained (p — 0) without Joule dissipation, it keeps on flowing and 
maintaining the magnetic field. The two final situations are shown in Figure 8.45 and 
distinguish the Meissner effect, a distinct characteristic of a superconductor, from the 
behavior of a perfect conductor (p = 0 only). The photograph showing the levitation of 
a magnet above the surface of a superconductor (Figure 8.46) is the direct result of the 
Meissner effect: the exclusion of the magnet’s magnetic fields from the interior of the 
superconductor. 

The transition from the normal state to the superconducting state as the temperature 
falls below the critical temperature has similarities with phase transitions such as solid 
to liquid or liquid to vapor changes. At the critical temperature, there is a sharp change 
in the heat capacity as one would observe for any phase change. In the superconducting 
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Magnet Superconductor 

Figure 8.46 

Left: A magnet over a superconductor becomes levitated. The superconductor is a perfect diamagnet which means that there 

can be no magnetic field inside the superconductor. 

Right: Photograph of a magnet levitating above a superconductor immersed in liquid nitrogen (77 K). This is the Meissner 
effect. 

I SOURCE: Photo courtesy of Professor Paul C. W. Chu. 

state, we cannot treat a conduction electron in isolation. The electrons behave collec¬ 
tively and thereby impart the superconducting characteristics to the substance, as dis¬ 
cussed later. 

8.9.2 Type I and Type II Superconductors 

The superconductivity below the critical temperature has been observed to disappear 
in the presence of an applied magnetic field exceeding a critical value denoted by Bc. 
This critical field depends on the temperature and is a characteristic of the material. 
Figure 8.47 shows the dependence of the critical field on the temperature. The criti¬ 
cal field is maximum, Bc{ 0), when 7=0K (obtained by extrapolation8). As long as 
the applied field is below Bc at that temperature, the material is in the superconduct¬ 
ing state, but when the field exceeds Bc, the material reverts to the normal state. We 
know that in the superconducting state, the applied magnetic field lines are expelled 
from the sample and the phenomenon is called the Meissner effect. The external 
field, in fact, does penetrate the sample from the surface into the bulk, but the mag¬ 
nitude of this penetrating field decreases exponentially from the surface. If the field 
at the surface of the sample is B0, then at a distance x from the surface, the field is 

8 There is a third law to thermodynamics that is not as emphasized as the first two laws, which dominate all branches 
of engineering. That is, one can never reach the absolute zero of temperature. 
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Figure 8.47 The critical field versus 

temperature in Type I superconductors. 

Figure 8.48 The critical field versus 

temperature in three examples of Type I 

superconductors. 

»oM 

B = (x0H 

Figure 8.49 Characteristics of Type I and Type II superconductors. B = ju0H is the 

applied field and M is the overall magnetization of the sample. Field inside the sample, 

Binside = l^oH + ix0M, which is zero only for 8 < 8C (Type I) and 8 < Bci (Type II). 

given by an exponential decay, 

B( x) = B0 exp 

where X is a “characteristic length” of penetration, called the penetration depth, and 
depends on the temperature and Tc (or the material). At the critical temperature, the 
penetration length is infinite and any magnetic field can penetrate the sample and de¬ 
stroy the superconducting state. Near absolute zero of temperature, however, typical 
penetration depths are 10-100 nm. Figure 8.48 shows the Bc versus T behavior for 
three example superconductors, tin, mercury, and lead. 

Superconductors are classified into two types, called Type I and Type II, based on 
their diamagnetic properties. In Type I superconductors, as the applied magnetic 
field B increases, so does the opposing magnetization M until the field reaches the crit¬ 
ical field Bc, whereupon the superconductivity disappears. At that point, the perfect 
diamagnetic behavior, the Meissner effect, is lost, as illustrated in Figure 8.49. A Type 
I superconductor below Bc is in the Meissner state, where it excludes all the magnetic 
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Figure 8.50 The mixed or vortex state in a Type II 

superconductor. 

Figure 8.51 Temperature dependence of Bc\ 
and Bc2. 

flux from the interior of the sample. Above Bc it is in the normal state, where the mag¬ 
netic flux penetrates the sample as it would normally and the conductivity is finite. 

In the case of Type II superconductors, the transition does not occur sharply from 
the Meissner state to the normal state but goes through an intermediate phase in which 
the applied field is able to pierce through certain local regions of the sample. As the 
magnetic field increases, initially the sample behaves as a perfect diamagnet exhibit¬ 
ing the Meissner effect and rejecting all the magnetic flux. When the applied field in¬ 
creases beyond a critical field denoted as Bc\, the lower critical field, the magnetic 
flux lines are no longer totally expelled from the sample. The overall magnetization M 
in the sample opposes the field, but its magnitude does not cancel the field everywhere. 
As the field increases, M gets smaller and more flux lines pierce through the sample 
until at BC2, the upper critical field, all field lines penetrate the sample and supercon¬ 
ductivity disappears. This behavior is shown in Figure 8.49. Type II superconductors 
therefore have two critical fields Bc\ and Bc2. 

When the applied field is between Bc\ and Bc2, the field lines pierce through the sam¬ 
ple through tubular local regions, as pictured in Figure 8.50. The sample develops local 
small cylindrical (filamentary) regions of normal state in a matrix of superconducting 
state and the magnetic flux lines go though these filaments of local normal state, as 
shown in Figure 8.50. The state between Bc\ and Bc2 is called the mixed state (or vortex 
state) because there are two states—normal and superconducting—mixed in the same 
sample. The filaments of normal state have finite conductivity and a quantized amount 
of flux through them. Each filament is a vortex of flux lines (hence the name vortex 
state). It should be apparent that there should be currents circulating around the walls of 
vortices. These circulating currents ensure that the magnetic flux through the supercon¬ 
ducting matrix is zero. The sample overall has infinite conductivity due to the supercon¬ 
ducting regions. Figure 8.51 shows the dependence of Bcl and Bc2 on the temperature and 
identifies the regions of Meissner, mixed, and normal states. All engineering applica¬ 
tions of superconductors invariably use Type II materials because Bc2 is typically much 
greater than Bc found in Type I materials and, furthermore, the critical temperatures of 
Type II materials are higher than those of Type I. Many superconductors, including the 
recent high-rc superconductors, are of Type II. Table 8.7 summarizes the characteristics 
of selected Type I and Type II superconductors. 
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Table 8.7 Examples of Type I and Type II superconductors 

Type I Sn Hg Ta V Pb Nb 

Tc( K) 3.72 4.15 4.47 5.40 7.19 9.2 

Bc (T) 0.030 0.041 0.083 0.14 0.08 0.198 

Y-Ba-Cu-O Bi-Sr-Ca-Cu-O 
Type II Nb3Sn Nb3Ge Ba2-,Br,Cu04 (YBa2Cu307) (Bi2Sr2Ca2Cu30io) Hg-Ba-Ca-Cu-O 

Tc( K) 18.05 23.2 30-35 93-95 122 130-135 

Bc2 (Tesla) 24.5 38 ~ 150 ~300 

at OK 

Jc (A cm-2) ~107 10M07 
at OK 

I NOTE: Critical fields are close to absolute zero, obtained by extrapolation. Type I for pure, clean elements. 

8.9.3 Critical Current Density 

Another important characteristic feature of the superconducting state is that when the 
current density through the sample exceeds a critical value Jc, it is found that super¬ 
conductivity disappears. This is not surprising since the current through the super¬ 
conductor will itself generate a magnetic field and at sufficiently high current densities, 
the magnetic field at the surface of the sample will exceed the critical field and extin¬ 
guish superconductivity. This plausible direct relation between Bc and Jc is only true 
for Type I superconductors, whereas in Type II superconductors, Jc depends in a com¬ 
plicated way on the interaction between the current and the flux vortices. New high-Tc 
superconductors have exceedingly high critical fields, as apparent in Table 8.7, that do 
not seem to necessarily translate to high critical current densities. The critical current 
density in Type II superconductors depends not only on the temperature and the 
applied magnetic field but also on the preparation and hence the microstructure (e.g., 
polycrystallinity) of the superconductor material. Critical current densities in new 
high-Tc superconductors vary widely with preparation conditions. For example, in 
Y-Ba-Cu-O, Jc may be greater than 107 A cm-2 in some carefully prepared thin films 
and single crystals but around 103-106 A cm-2 in some of the polycrystalline bulk 
material (e.g., sintered bulk samples). In NbaSn, used in superconducting solenoid 
magnets, on the other hand, Jc is close to 107 A cm-2 at near 0 K. 

The critical current density is important in engineering because it limits the total cur¬ 
rent that can be passed through a superconducting wire or a device. The limits of 
superconductivity are therefore defined by the critical temperature Tc, critical magnetic 
field Bc (or Bc2), and critical current density Jc. These constitute a surface in a three- 
dimensional plot, as shown in Figure 8.52, which separates the superconducting state 
from the normal state. Any operating point (7i, B\, J\) inside this surface is in the 
superconducting state. When the cuprate ceramic superconductors were first discovered, 
their Jc values were too low to allow immediate significant applications in engineering. 
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B 

Figure 8.52 The critical surface for 

a niobium-tin alloy, which is a Type II 

superconductor. 

Their synthesis over the last 10 years has advanced to a level that we can now benefit 
from large critical currents and fields. Over the same temperature range, ceramic 
cuprate superconductors now easily outperform the traditional superconductors. There 
are already a number of applications of these high-7^ superconductors in the commer¬ 
cial market. 

SUPERCONDUCTING SOLENOIDS9 Superconducting solenoid magnets can produce very 
large magnetic fields up to ~ 15 T or so, whereas the magnetic fields available from a ferro¬ 
magnetic core solenoid is limited to ~2 T. High field magnets used in magnetic resonance 
imaging are based on superconducting solenoids wound using a superconducting wire. They 
are operated around 4 K with expensive liquid helium as the cryogen. These superconducting 
wires are typically Nb3Sn or NbTi alloy filaments embedded in a copper matrix. A very large 
current, several hundred amperes, is passed through the solenoid winding to obtain the neces¬ 
sary high magnetic fields. There is, of course, no Joule heating once the current is flowing in 
the superconducting state. The main problem is the large forces and hence stresses in the coil 
due to large currents. Two wires carrying currents in the opposite direction repel each other, 
and the force is proportional to I2. Thus the magnetic forces between the wires of the coil give 
rise to outward radial forces trying to “blow open” the solenoid, as depicted in Figure 8.53. 
The forces between neighboring wires are attractive and hence give rise to compressional 
forces squeezing the solenoid axially. The solenoid has to have a proper mechanical support 
structure around it to prevent mechanical fracture and failure due to large forces between the 
windings. The copper matrix serves as mechanical support to cushion against the stresses as 
well as a good thermal conductor in the event that superconductivity is inadvertently lost dur¬ 
ing operation. 

Suppose that we have a superconducting solenoid that is 10 cm in diameter and 1 m in 
length and has 500 turns of Nb3Sn wire, whose critical field Bc at 4.2 K (liquid He temperature) 
is about 20 T and critical current density Jc is 3 x 106 A cm-2. What is the current necessary to 
set up a field of 5 T at the center of a solenoid? What is the approximate energy stored in the 

EXAMPLE 8.8 

9 Designing a superconducting solenoid is by no means trivial, and the enthusiastic student is referred to a very 
readable description given by James D. Doss, Engineer's Guide to High Temperature SuperconductivityNew York: 
John Wiley & Sons, 1989, ch, 4. Photographs and descriptions of catastrophic failure in high field solenoids can be 
found in an article by G. Broebinger, A. Passner, and J. Bevk, "Building World-Record Magnets" in Scientific 
American, June 1995, pp. 59-66. 
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Solenoid 

Figure 8.53 A solenoid carrying a current experiences radial forces pushing the coil apart and axial 

forces compressing the coil. 

Superconducting electromagnets used on 
MRI. Operates with liquid He, providing a 
magnetic field 0.5-1.5 T. 

SOURCE: Courtesy of IGC Magnet 
Business group. 

solenoid? Assume that the critical current density decreases linearly with the applied field. Fur¬ 
ther, assume also that the field across the diameter of the solenoid is approximately uniform 
(field at the windings is the same as that at the center). 

SOLUTION 

We can assume that we have a long solenoid, that is, length (100 cm) diameter (10 cm). The 
field at the center of a long solenoid is given by 

t 

so the current necessary for B = 5 T is 

Bl 

fx0N 

(5)(1) 

(4jr x 10-7)(500) 
= 7958 A or 7.96 kA 

As the coil is 1 m and there are 500 turns, the coil wire radius must be 1 mm. If all the cross 
section of the wire were of superconducting medium, then the corresponding current density 
would be 

I 7958 q , , 
J ■ e = —- = -- = 2.5 x 109 Am2 or 2.5 x 105 A cm 2 

nr2 n (0.001 )2 

The actual current density through the superconductors will be greater than this as the 
wires are embedded in a metal matrix. Suppose that 20 percent by cross-sectional area (and 
hence as volume percentage) is the superconductor; then the actual current density through the 
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superconductor is 

Jsuper = = 1.25 x 106 A cm-2 

We now need the critical current density J'c at a field of 5 T. Assuming Jc decreases linearly 

with the applied field and vanishes when B = Bc, we can find J'c, from linear interpolation 

, Bc- B , 20 T - 5 T , 
J. — Jc-= (3 x 106 A cm 2)-- 2.25 x 106 A cm 2 

c CBC 20 T 

The actual current density J super through the superconductors is less than this critical value 

J'c. We can assume that the superconducting solenoid will operate “safely” (with all other de¬ 

signs correctly implemented). It should be emphasized that accurate and reliable calculations 

will involve the actual Jc-Bc-Tc surface, as in Figure 8.52 for the given material. 

Since the field in the solenoid is B = 5 T, assuming that this is uniform along the axis and 

the core is air, the energy density or energy per unit volume is 

E vol — 

B2 52 

2(4?r x 10-7) 
= 9.95 x 106 J m"3 

so the total energy 

E = Evoi [volume] = (9.95 x 106 Jm-3)[(1 m)(7r0.052 m2)] 

= 7.81 x 104 J or 78.1 kJ 

If all this energy can be converted to electrical work, it would light a 100 W lamp for 

13 min (and if converted to mechanical work, it could lift an 8 ton truck by 1 m). 

8.10 superconductivity origin 
Although superconductivity was discovered in 1911, the understanding of its origin 
did not emerge until 1957 when Bardeen, Cooper, and Schrieffer formulated the theory 
(called the BCS theory) in terms of quantum mechanics. The quantum mechanical 
treatment is certainly beyond the scope of this book, but one can nonetheless grasp an 
intuitive understanding, as follows. The cardinal idea is that, at sufficiently low tem¬ 
peratures, two oppositely spinning and oppositely traveling electrons can attract each 
other indirectly through the deformation of the crystal lattice of positive metal ions. 
The idea is illustrated pictorially in Figure 8.54. The electron 1 distorts the lattice 

--©2 Figure 8.54 A pictorial and intuitive 

view of an indirect attraction between 

two oppositely traveling electrons via 

lattice distortion and vibration. 
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around it and changes its vibrations as it passes through this region. Random thermal 
vibrations of the lattice at low temperatures are not strong enough to randomize this in¬ 
duced lattice distortion and vibration. The vibrations of this distorted region now look 
differently to another electron, 2, passing by. This second electron feels a “net” attrac¬ 
tive force due to the slight displacements of positive metal ions from their equilibrium 
positions. The two electrons interact indirectly through the deformations and vibra¬ 
tions of the lattice of positive ions. This indirect interaction at sufficiently low temper¬ 
atures is able to overcome the mutual Coulombic repulsion between the electrons and 
hence bind the two electrons to each other. The two electrons are called a Cooper pair. 
The intuitive diagram in Figure 8.54, of course, does not even convey the intuition why 
the spins of the electrons should be opposite. The requirement of opposite spins comes 
from the formal quantum mechanical theory. The net spin of the Cooper pair is zero 
and their net linear momentum is also zero. There is a further significance to the pair¬ 
ing of electron spins in the Cooper pair. As a quasi-particle, or an entity, the Cooper 
pair has no net spin and hence the Cooper pairs do not obey the Fermi-Dirac statistics.10 
They can therefore all “condense” to the lowest energy state and possess one single 
wavefunction that can describe the whole collection of Cooper pairs. All the paired 
electrons are described collectively by a single coherent wavefunction 'k, which ex¬ 
tends over the whole sample. A crystal imperfection cannot simply scatter a single 
Cooper pair because all the pairs behave as a single entity—like a “huge molecule.” 
Scattering one pair involves scattering all, which is simply not possible. An analogy 
may help. One can scatter an individual football player running on his own. But if all 
the team members got together and moved forward arm in arm as a rigid line, then the 
scattering of any one now is impossible, as the rest will hold him in the line and con¬ 
tinue to move forward (don’t forget, it’s only an analogy!). Superconductivity is said 
to be a macroscopic manifestation of quantum mechanics. The BCS theory has had 
good success with traditional superconductors, but there seems to be some doubt about 
its applicability to the new high-Jc superconductors. There are a number of high-Tc 
superconductivity theories at present, and the interested student can easily find addi¬ 
tional reading on the subject. 

ADDITIONAL TOPICS 

8.11 ENERGY BAND DIAGRAMS AND MAGNETISM 

8.11.1 Pauli Spin Paramagnetism 

Consider a paramagnetic metal such as sodium. The paramagnetism arises from the 
alignment of the spins of conduction electrons with the applied magnetic field. A con¬ 
duction electron in a metal has an extended wave function and does not orbit any par¬ 
ticular metal ion. The conduction electron’s magnetic moment arises from the electron 
spin alone, and p.spin is in the opposite direction to the spin; p.spin can be either up 

I 10 In fact, the Cooper pair without a net spin behaves as if is were a boson particle. 
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Figure 8.55 Pauli spin paramagnetism in metals due to conduction electrons. 

(ms = — or down (ms = +^). In the absence of a magnetic field, the energies of 
magnetic moment up and down states (or wavefunctions) are the same and there are as 
many electrons with magnetic moment up as there are with magnetic moment down. 
Figure 8.55a shows the density of states (number of states per unit energy per unit vol¬ 
ume) for states with magnetic moment up (f), denoted as g^(E), and for states with 
magnetic moment down (f), denoted as g±(E). Both states have the same energy and 
both are equally occupied. All energy levels up to the Fermi energy EF are occupied as 
shown in Figure 8.55a. Effectively we are viewing the energy band of the metal as two 
subbands corresponding to magnetic moment up and down bands. The bands overlap 
in the absence of a field and are indistinguishable. 

Consider what happens in the presence of an applied field B0 along the z direction. 
If a conduction electron’s magnetic moment fiz is along the field (aligned with the 
field), then it has a lower potential energy. Thus, those electron wavefunctions with a 
magnetic moment up have lower energy, whereas those wavefunctions with a mag¬ 
netic moment down have higher energy. In the presence of a field B0, therefore, all 
states with magnetic moment up, and hence g^(E), are lowered in energy by f$B0 
where fi is the Bohr magneton. All states with magnetic moment down, and hence 
&(£), are raised by fiB0. Both shifts are shown in Figure 8.55b. Those electrons with 
magnetic moment down near EF in the g±(E) band can now find lower energy states 
in the g^(E) band and hence flip their spins and transfer to the g^(E) band. There are 
now more electrons in states with magnetic moment up in the g^(E) band than in the 
g±(E) band. When averaged over all conduction electrons there is now a net magnetic 
moment per conduction electron along the z direction or the applied field. 

To find the net magnetic moment per conduction electron we have to find how 
many electrons transfer from the <^(£) band to the g^(E) band. The energy separation 
AE between the magnetic moment down and up states is 2fiB0. All electrons, ne per unit 
volume, in the g±(E) band around EF within an energy range 5 A E transfer to the g^(E) 
band. A£ is small, so ne is approximately <?;(£>)(! AE) or \ g(EF)(^ AE) because 
g(EF) includes states with spin up and down, that is, \ g(EF) = gi(EF). The magnetic 
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Pauli spin 

para¬ 
magnetism 

moment down band decreases by ne and the magnetic moment up band increases by ne 
and the net magnetic moment per unit volume is 

M%2n«M! = 2tiSK£f)(iA£)]i6 

= 2 [i g(Er) (± 2fiB,)\ fi = f!2g(EF)B0 

Using B0 = tx0H and the definition Xm = M/H, the paramagnetic susceptibility is 

Xpara « p,0P2g(EF) 

We see that the density of states at the Fermi level determines the susceptibility. 

EXAMPLE 8.9 PAULI SPIN PARAMAGNETISM OF SODIUM The Fermi energy of sodium, EF, is 3.15 eV. 
Using the density of states g(E) expression for the free conduction electrons in a metal, evalu¬ 
ate the paramagnetic susceptibility of sodium and compare with the experimental value of 
9.1 x 10-6. 

SOLUTION 

The density of states gr(£") in the free electron model is 

g(E) = (Sn2l/2)^j El/2 

We have to evaluate g(E) at the Fermi energy E = EF = 3.15 eV, 

g(EF) = (^2l/2)( ~X W' ) (3.15 x 1.6 x 10"19)1/2 = 7.54 x 1046 J~'m"3 
\ (6.626 x 10~34)2/ 

Paramagnetic susceptibility is 

Xpara = p0P29(EF) = (47t x 10~7)(9.27 x 10~24)2(7.54 X 1046) = 8.16 x 1CT6 

We need to subtract the diamagnetic from the calculated paramagnetic susceptibility to ob¬ 
tain the net susceptibility, which would decrease the calculated value slightly. Nonetheless, 
given the approximate nature of the theory, the calculated value is not far out from the measured 
value. 

8.11.2 Energy Band Model of Ferromagnetism 

The energy band model of paramagnetism can be extended to explain ferromagnet¬ 
ism. Once we start using the energy band model, we are essentially assigning all the 
valence (outer shell) electrons of the atoms to a collective sharing among all the 
atoms; they no longer belong to their individual parents. These valence electrons 
now belong to the whole crystal. (The model is also known as the itinerant electron 
model.) 

Recall that in a ferromagnetic crystal there is an internal magnetization, even in 
the absence of an applied field, due to a net number of unpaired spins; that is, overall, 
the crystal has more electrons with spins up than with spins down. The reason is the 
exchange energy, which causes the spin magnetic moments of two electrons to line up 
parallel to each other so that their energy is lowered in much the same way as Hund’s 
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E E 

Figure 8.56 Energy band model of 

ferromagnetism. 

(a) The split c/-band. 

(b) The s-band is not affected. The arrows in 

the bands are spin magnetic moments. 

rule works within an atom. In magnetic metals such as Fe, Ni, and Co, there are two 
bands of interest, the 5-band and the d-band. The two bands overlap but the s -band is 
much wider. We can represent the density of states for magnetic moment up and mag¬ 
netic moment down states separately. Consider the d-band. The density of states 
gff (£) for magnetic moment up states is lowered by AE with respect to the density of 
states g±(E) for magnetic moment down states due to the exchange energy as shown 
in Figure 8.56a. The energy lowering AE for the 5-band can be neglected as in Fig¬ 
ure 8.56b. All the states up to the Fermi energy are occupied. For Fe, the d-band 
magnetic moment up states are filled almost to the top of the band (this band is 96 
percent full), and magnetic moment down states are filled roughly halfway. Thus, 
there are many more electrons with moments up than moments down; put differently 
there are many electrons that have aligned their spins. The spin magnetic moment 
alignment of electrons is exactly what is needed to generate a net magnetization. (In 
some books, the spin magnetic moment down band is sketched lower than the spin 
magnetic moment up band in contrast to Figure 8.56a. Both sketches are correct 
since both would also result in a net number of electrons having their spins in paral¬ 
lel, and hence a net magnetization within the crystal. Another way to look at it is to 
realize that there are two bands: one band for the “majority of spins,” and another 
band for the “minority spins.”) 

The ^-band is filled up to EF, and there are almost equal numbers of electrons 
with up and down moments in this band. The ferromagnetic effect arises from the be¬ 
havior of electrons mainly in the d-band. Electrical conduction, on the other hand, is 
determined by electrons in the s -band. The reason is that the 5-band is very wide 
compared with the d-band, and the electron effective mass in the s-band is very 
small. Thus, electrons have a much higher mobility in the s-band than in the d-band. 
When an s-electron is scattered (by phonons, impurities, defects, etc.) into the d-band, 
it does not make any significant contribution to conduction because the drift mobil¬ 
ity is very small in this band. The spin of the electron cannot be flipped easily in 
a scattering process. An s-electron with its moment down can be easily scattered 
into the empty states in the corresponding moment-down d-band (there are many 
empty states at £>), but the moment-up electron has no states in the moment-up 
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d-band into which it can be scattered. Conduction occurs by moment-up electrons; 
these are the favored electrons for conduction. 

The band model is particularly useful in explaining the noninteger number of 
Bohr magnetons that give rise to the ferromagnetism. The isolated Fe atom has six 
3d and two 45 electrons or 8 valence electrons. These electrons in the crystal become 
shared by all the atoms. If N is the number of atoms per unit volume, then one unit 
volume of crystal has SN valence electrons. SN electrons enter the s and d bands, 
filling states starting from the lowest energy.11 The exact distribution of electrons 
depends on how many states are available at each energy as electrons fill the bands. 
We simply summarize the results of the filling process that is shown in Figure 8.56 
for Fe: 

0.3N electrons in the moment-up 5-band (N states available) 

0.3N electrons in the moment-down 5-band (N states available) 

4.8/V electrons in the moment-up d-band (5N states available) 

2.6N electrons in the moment-down d-band (5N states available) 

To find how many electrons have parallel spin magnetic moments, we simply sum 
the above, which is 2.2N moment-up electrons per unit volume or 2.2N Bohr magne¬ 
tons per unit volume, or 2.2 Bohr magnetons per atom. The saturation magnetization 
Msat is then (2.2N)fi or 2.2 T. There is therefore a natural explanation for a noninteger 
number of spins per atom in the band model of ferromagnetism. 

8.12 ANISOTROPIC AND GIANT 
MAGNETORESISTANCE 

In general, magnetoresistance refers to the change in the resistance of a material 
(any material) when it is placed in a magnetic field. When a nonmagnetic metal 
such as copper is placed in a magnetic field, the change in its resistivity, and hence 
the sample resistance, is so small that it has no real practical use. When a magnetic 
metal, such as iron, is placed in a magnetic field, the change in the resistivity 
depends on the direction of the current flow with respect to the magnetic field. The 
resistivity p// for current flow parallel to the magnetic field decreases, and the re¬ 
sistivity p±, perpendicular to the field, increases by roughly the same amount. The 
change in the resistivity due to the applied magnetic field is anisotropic (depends 
on the direction) and is called anisotropic magnetoresistance (AMR). The change 
in resistivity is limited to a few percent, but, nonetheless, is still useful. The physi¬ 
cal origin of this phenomenon is based on the applied field being able to tilt the 
orbital angular momenta of the 3d electrons as shown in Figure 8.57a. The field 
rotates the 3d orbitals, which changes the scattering of the conduction electrons 
according to their direction of travel; hence p// and p± are different, as shown in 
Figure 8.57b. 

I 11 8N is used to emphasize that all these valence electrons belong to the crystal, i.e., 8N ^7x 1024 cm 3. 
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Figure 8.57 

(a) The origin of anisotropic magnetoresistance (AMR). The electrons traveling along the 

field experience more scattering than those traveling perpendicular to the field. 

(b) Resistivity depends on the current flow direction with respect to the applied magnetic 

field. 

On the other hand, a very large magnetoresistance, called giant magnetoresis- 
tance (GMR), has been observed in certain special multilayer structures, which ex¬ 
hibit substantial changes in the resistance (e.g., more than 10 percent) when a magnetic 
field is applied.12 Even though GMR is a relatively new discovery (1988), it is already 
widely used in the read heads of hard disk drives. There are also various magnetic field 
sensors based on the GMR. 

The special multilayer structure in its simplest form has two ferromagnetic lay¬ 
ers (such as Fe or Co or their alloys, etc.) separated by a nonmagnetic transition metal 
layer (such as Cu), called the spacer, as shown in Figure 8.58a. The magnetic layers 
are thin (less than 10 nm), and the nonmagnetic layer is even thinner. The magnetiza¬ 
tions of the two ferromagnetic layers are not random; they depend on the thickness of 
the spacer because the two layers are “coupled” indirectly through this thin spacer.13 In 
the absence of an external field, two magnetic layers are coupled in such a way that 
their magnetizations are antiparallel or in opposite directions; this arrangement is also 
called an antiferromagnetically coupled configuration. We will use the notation FNA 
to represent the antiparallel configuration, where N stands for the nonmagnetic metal. 

We can apply an external magnetic field to one of the layers and rotate its magne¬ 
tization so that the two magnetizations are now in parallel as in Figure 8.58c. This par¬ 
allel configuration is frequently called ferromagnetically coupled layers and is denoted 
as FNF. The two structures have a giant difference in their resistances, hence the term 
giant magnetoresistance. The resistance of the antiparallel FNA in Figure 8.58b struc¬ 
ture is much higher than that of the parallel structure FNF in Figure 8.58c. 

12 GMR was discovered in the late 1980s by Peter Grunberg (Julich, Germany), and Albert Fert (University of Paris- 
Sud) and their coworkers. Magnetoresistance itself, however, has been well known, and dates back to Lord Kelvin's 
experiments in 1857. 

13 The physics of the coupling process between the two magnetic layers is an indirect exchange interaction, the 
details of which are not needed to understand the basics of the GMR phenomenon. 
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Figure 8.58 A highly simplified view of the principle of the giant magnetoresistance effect. 

(a) The basic trilayer structure. 

(b) Antiparallel magnetic layers with high resistance Rap. 

(c) An external field aligns layers; parallel alignment has a lower resistance Rp. 

The current flow through this multilayer structure (whether along or perpendicu¬ 
lar to the layers) will involve electrons crossing from one layer to another, passing 
through the interfaces. Recall that it is the electrons around the Fermi energy that are 
involved in the conduction and that their mean speed is orders of magnitude larger than 
the drift velocity. The electron trajectories are therefore not parallel to the current flow 
(and should not be confused with current flow lines). 

Consider the antiparallel FNA structure. The magnetic moment up electron in the 
first magnetic layer is the favored conduction electron; that is, it suffers very little scat¬ 
tering. However, when this moment-up electron arrives at the A layer in which the 
magnetization is reversed, it finds itself with the wrong spin or wrong moment. It is 
now an unfavored electron and is subject to scattering. Thus, the moment-up electron 
suffers scattering not only in the bulk of A but, more significantly, as it crosses the N- 
layer into the A-layer, that is, at the interface as in Figure 8.58b. The antiparallel FNA 
structure therefore has a high resistance, denoted as RAp. In contrast, when the magne¬ 
tizations are parallel, the moment-up electron is the favored electron in both the layers 
and experiences very little scattering. The resistance Rp of this parallel (FNF) struc¬ 
ture is smaller than Rap (Rp < RAp). The difference in the resistances Rp and Rap in 
this simple trilayer is roughly 10 percent or less. But, in multilayered structures, which 
have a series of alternating magnetic and nonmagnetic layers (e.g., 50 or more mag¬ 
netic and nonmagnetic alternating layers as in FNANFANFA . . .), the change in the 
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Table 8.8 GMR effect in trilayers and multilayers 

Sample Structure and layer thicknesses 

A R/Rp 
(%) 

Temperature 

(K) 

CoFe/CAgCu/CoFe Trilayer 4-7 300 

NiFe/Cu/Co Trilayer, 10/2.5/2.2 nm 

(spin valve) 
4.6 300 

Co9oFe 1 o/Cu/Co9oFe \ o Trilayer, 4/2.5/0.8 nm (spin valve) 7 300 

[Co/Cu ] 100 100 layers of Co/Cu, 1 nm /1 nm SO 300 

[Co/Co]6o 60 layers Co/Cu, 0.8 nm / 0.83 nm 115 4.2 

I SOURCE: Data from P. Grunberg, Sensors and Actuators, A91, 153, 2001. 

resistance can be impressively large, exceeding 100 percent at low temperature and 
60-80 percent at room temperature. 

The GMR effect is often measured by quoting the change in the resistance with re¬ 
spect to RP, 

/ AR\ — Rap ~ Rp 

' Rp ' GMR Rp 
Further, the magnetoresistance effect can be measured either by passing a current that 
flows in the plane of the layers or perpendicular to the plane. Most experiments use the 
first one, in what is known as current in plane (CIP) measurements; but the biggest 
change, however, is observed for currents perpendicular to the plane of the layers. 
Table 8.8 summarizes typically reported A R/Rp values for the GMR effect in simple 
trilayers and multilayers. 

The structures with antiparallel and parallel magnetic alignments are obviously 
two extreme cases. If the angle between the magnetization vectors Mi and M2 of the two 
magnetic layers is 6, then the resistance of the structure depends on 6 , with the minimum 
for 9 — 0 (FNF) and the maximum for 9 = 180° (FNA) as shown in Figure 8.59. The 
fractional change in the resistance depends on 0 as 

AR _ / AR\ 1 - cos6 

Rp \ Rp /max 2 

As expected, the change is maximum when 0 = 180°. 
One of the best applications of GMR is in a spin valve, in which the current flow 

is controlled by an external applied magnetic field. Stated differently, the resistance of 
the valve is controlled by an applied field. Figure 8.60a shows one possible simple spin 
valve structure. The magnetization of the Co magnetic layer is fixed, that is, pinned, by 
having this layer next to an antiferromagnetic layer, called the pinning layer. The 
exchange interaction between the ferromagnetic Co layer and the antiferromagnetic 
CoMn layer effectively pins the direction of the Co layer; it takes an enormous field to 
change the magnetization of the Co layer. A Cu spacer layer separates the Co and the 
next magnetic FeNi layer. The FeNi layer is called tht free layer because its magneti¬ 
zation can be changed by an external magnetic field. Normally, in the absence of a 

Giant 

magnetoresis¬ 

tance effect 

GMR and 

relative mag¬ 

netizations of 

magnetic 
layers 
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Figure 8.59 Resistance of the multilayer structure depends on the relative orientations of magnetization 
in the two magnetic layers. 

Pinning layer (MnFe) 
| Fixed M 

— =- 

Cu 

__' _ 
7 

Free layer 
No field 

(a) 

B0 = Ptflo 

Figure 8.60 Principle of the spin valve. 

(a) No applied field. 

(b) Applied field has fully oriented the free-layer magnetization. 

(c) Resistance change versus applied magnetic field (schematic) for a FeNi/Cu/FeNi spin valve. 

field, the magnetization of the FeNi layer is antiparallel to the Co layer, and the struc¬ 
ture has a high resistance RAP. An applied external field B0 = ii0H can rotate the FeNi 
layer’s magnetization and can easily align FeNi’s magnetization fully in parallel with 
that of Co so that the resistance becomes minimum, i.e., RP as in Figure 8.60b. It is 
clear that the external field can be used to control the flow of current through this struc¬ 
ture. (The name spin valve reflects the fact that the valve operation relies on the spin 
of the electrons.) The free layer should be relatively soft to be able to respond to the 
applied field, whereas the pinned layer should have sufficient coercivity not to lose its 
magnetization. Figure 8.60c shows a typical magnetoresistance versus applied field 
characteristics for one particular type of spin valve. The spin valve exhibits hysteresis; 
that is, the signal AR versus H depends on the direction of magnetization as shown in 
the figure. 
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8.13 MAGNETIC RECORDING MATERIALS 

General Principles of Magnetic Recording Outside electric machinery (mainly 
rotating machines and transformers), magnetic materials are most widely used in mag¬ 
netic recording media to store information in either analog or digital form. The deep 
disappointment of accidently losing valuable stored information on the hard drive of 
one’s computer is well known to most computer users. Magnetic materials in magnetic 
recording fall into two categories: those used in magnetic heads to record (write), play 
(read), and erase information, and those used in magnetic media in which the informa¬ 
tion is stored either permanently or until the next write requirement. The magnetic 
storage media can be flexible, as in audio and video cassettes and floppy disks, or it can 
be rigid, as in the hard disk of a computer hard drive. Even though magnetic recording 
appears in seemingly diverse applications (e.g., audio tape recorders vis-^-vis com¬ 
puter hard drives), the basic principles are nonetheless quite similar. 

As a very simple example, we will consider magnetic recording of a signal on an 
audio tape, as shown schematically in Figure 8.61. The tape is simply a polymer back¬ 
ing tape that has a thin coating of magnetic material on it, as described later. The in¬ 
formation is converted into a current signal i(t) that modulates the current around a 
toroid-type electromagnet with a very small air gap (around 1 pm). This gapped core 
electromagnet is the inductive recording head. The current modulates the magnetic 
field intensity in the core of the head and hence the field in the gap and around it. The 
recording of information is achieved by the fringing magnetic field around the gap re¬ 
gion magnetizing the audio type passing under the head at a constant speed (the tape is 
usually in contact with the head). As the fringing field changes according to the current 
signal, so does the magnetization of the audio tape. This means that the electrical sig¬ 
nal is stored as a spatial magnetic pattern in the tape. The fringing fields of the recording 
head modulate the magnetization in the tape in the direction of motion, put differently, 
along the length of the tape. This type of magnetic information storage is called longi¬ 
tudinal recording. 

Figure 8.61 The principle of longitudinal magnetic recording on a flexible medium, for example, 

magnetic tape in an audio cassette. 
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The audio tape moves forward and passes under a second head, called the play (or 
read) head, that converts the spatial variations in the magnetization in the tape into a 
voltage signal that is amplified and appropriately conditioned for playback, as depicted 
in Figure 8.61. Of course, the same recording head can also serve as the play head, as 
is customarily the practice in various general audio recording equipment. The reading 
process is based on Faraday’s law of induction. As the magnetized region in the tape 
passes under the play head, a portion of the magnetic field from this tape region pene¬ 
trates into the core and flows around the whole core and hence links the coil. We should 
recall that magnetic fields prefer to flow in high permeability regions to which they are 
strongly attracted. The field thus loops around through the core of the head. It does so 
because the magnetic permeability of the core is very high. As the tape moves past the 
play head, the field linking the coil changes as different magnetized regions in the tape 
pass through. The changes in the magnetic flux linking the coil generate a voltage v(t) 
that is proportional to the strength of the field and hence the magnetization in the tape 
under the head; the speed of the tape remains the same. Thus the spatial magnetic pat¬ 
tern (information) in the tape is converted into an output voltage signal as the tape is 
run through under the play head at a constant rate. It should be apparent that the spatial 
magnetic pattern in the tape is proportional to the current signal i(t), whereas the out¬ 
put signal at the play head is the induced voltage v(t). 

Suppose that the input signal has a frequency/, or period 1//, and the speed of the 
tape is u. Then the magnetic pattern repeats at every 1 // seconds. During this time the 
tape advances by a distance Ax = u/f. This Ax represents a spatial wavelength X that 
characterizes the repetition of the spatial magnetic pattern that represents the informa¬ 
tion. The smaller the A., the greater the/and hence the greater the information that can 
be stored. Typical video tapes have X in the submicron range (e.g., 0.75 pm) to be able 
to store the high density of information in a video signal into a spatial magnetic pat¬ 
tern. The actual recording process in a video cassette recorder is more complicated and 
involves moving the heads helically across the film, which increases the relative tape 
speed and hence the induced voltage. 

The recording of digital information is straightforward because the information in 
the form of ones and zeros involves only changes, or no changes, in the direction of 
magnetization along the tape. In the recording of analog signals, the audio signal is 
combined with an ac bias signal. However, the analog signal can also be stored as a 
digital signal by converting it, by an appropriate encoding procedure, to a digital 
signal. 

Hard Disk Storage The basic principle of magnetic recording used in hard disk 
drives of computers is somewhat similar to the basic schematic illustration for record¬ 
ing on a tape in Figure 8.61, but with a few notable differences that allow high mag¬ 
netic data storage capacity and a compact size. The basic principle of the magnetic 
hard disk drive storage is shown in Figure 8.62. The information storage medium is a 
thin film of magnetic material (described later) coated, for example, by sputtering, on 
a disk substrate, which rotates inside the hard drive. The information is recorded as 
magnetization patterns on this thin-film magnetic medium by an inductive write head, 
similar in principle to the recording head in Figure 8.61. Both the write and the read 
heads are in a single compact assembly that moves radially across the rotating disk to 
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Figure 8.62 The principle of the hard disk drive magnetic recording. 

The write inductive head and the GMR read sensor have been integrated into a single tiny read/write head. 

Above: Giant magnetoresistance (GMR) hard disk 
heads on a U.S. quarter. Left: A small hard disk 
drive next to a quarter coin—a microdrive. 

I SOURCE: Courtesy of IBM. 

write or read the information into tracks, called magnetic bit tracks, on the magnetic 
medium. The total area storage density depends on the information density in the track 
and the track density on the disk. The read head is not an inductive head (as in Figure 
8.61) but a tiny giant magnetoresistance (GMR) sensor whose resistance depends on 
an external magnetic field, as explained in Section 8.12. In this case, the field that in¬ 
fluences the GMR sensor comes from that of the magnetized region of the disk that is 
under the GMR sensor. The principle of the GMR is shown in Figure 8.60. The GMR 
sensor is a multilayered thin-film device whose resistance changes by roughly 10 per¬ 
cent or so in response to an applied field. This change in the resistance generates the 
read signal. Normally a constant current is passed through the GMR sensor, and the 
read signal is the voltage variation across the sensor; this voltage is due to the resis¬ 
tance variation induced by the field from the magnetization pattern under the sensor. 

There are two important reasons for using a GMR sensor instead of a conventional 
inductive read head. First is that the GMR sensor is so much smaller than the inductive 
head that it can probe a much smaller region of the magnetic medium; we can there¬ 
fore squeeze more information into a given area on the magnetic storage medium. A 
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Figure 8.63 A simplified schematic illustration of a MIG (metal-in¬ 

gap) head. 

The ferrite core has the poles coated with a ferromagnetic soft metal 

to enhance the head performance. 

Glass gap 
spacer 

Sendust layers 

typical GMR sensor has a width that is something like 50 nm (~1000 times thinner than 
the human hair). Second, for the same size, GMR is much more sensitive than the in¬ 
ductive head. Thus, all hard drive read heads are tiny GMR sensors as indicated in Fig¬ 
ure 8.62. The inductive write head is normally a thin-film head, which has a very 
small width. Consequently, the information can be written into a very small area on the 
magnetic storage medium. Usually the thin-film write head and the GMR sensor are 
integrated into the same structure for convenient write and read operations. The afore¬ 
mentioned basic principles still govern the operation of current magnetic hard drive 
storage devices.14 

Recording Head Materials The material for the recording head must be magneti¬ 
cally soft so that its magnetization easily follows the input signal (current i or magnetic 
field intensity H). At the same time, it must provide a strong fringing magnetic field 
at the gap to magnetize the audio tape, that is, overcome the coercivity of the tape. This 
requires high saturation magnetization. Thus, the recording head needs small coer¬ 
civity and large saturation magnetization, which requires soft magnetic materials with 
as large relative permeabilities as possible. 

Typical materials that are used in recording heads are permalloys (Ni-Fe alloys), 
Sendust (Fe-Al-Si alloy), some sintered soft ferrites (e.g., MnZn and NiZn ferrites), 
and, more recently, various magnetic amorphous metals such as CoZrNb alloys. Typi¬ 
cally, metal-based heads (from permalloy, Sendust, or related materials) are made of 
laminated metal sheets (with thin insulation between them) to suppress eddy current 
losses at high frequencies. For high-frequency recording, generally ferrite heads are 
preferred since ferrites are insulators and suffer no eddy current losses. Ferrites how¬ 
ever have low saturation magnetizations and require magnetic storage media of low 
coercivity. The main problem in ferrite recording heads is that the comers of the poles 
at the air gap become saturated first. Once saturated, the field around the gap is not 
proportional to the input current signal, and this degrades the quality of recording. This 
is overcome by coating the pole faces with a high magnetization metal alloy such as 
Sendust, or, more recently, a magnetic amorphous metal (e.g., CoZrNb), as depicted 
in Figure 8.63. Since the magnetic metal alloy is only at the tips of the head, the eddy 
current losses are still small. This type of head where the poles of the ferrite core have 
a metal coating is called a metal-in-gap (MIG) head and is widely used in various 

14 One highly recommended book on magnetic recording is R. L. Comstock, Introduction to Magnetism and 
Magnetic Recording, New York: Wiley, 1999. See also R. L. Comstock, "Modern Magnetic Materials in Data 
Storage," / Mater. Sci: Mater. Elecron. 12, 509, 2002. 
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schematic illustration of the principle 
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recording applications. The gap distance itself also influences the extent of the fring¬ 
ing field around it and hence the field penetrating into the magnetic tape. The smaller 
the gap, the greater the fringing. The necessary fringing fields for proper recording on 
a tape require gap sizes around 1 pm or less. 

More recently, recording head devices have been fabricated using thin films of 
various ferromagnetic metals or ferrite alloys that have sufficiently small eddy current 
losses to be useable at high frequencies. A highly simplified illustration of the princi¬ 
ple of a thin-film head is shown in Figure 8.64. The head is manufactured by using 
typical thin-film deposition techniques, such as sputtering of the metal film in a vac¬ 
uum chamber, photolithography, or some other method. The magnetic core is in the 
form of a thin film whose thickness is a few microns and whose width is about the 
same as the tape. The gap at the end of the core has the same width as the core, but its 
spacing is very small (e.g., 0.25 pm) and generates the necessary fringing field. A 
spiral-type coil made by depositing a nonmagnetic metal thin film threads the core. 
The magnetic core is like a U-shaped core that is threaded by the metal strips of the 
coil. If the core is a metallic material, the coil metal is appropriately insulated from it 
by thin films of insulation. 

Magnetic Storage Media Materials The properties of magnetic storage media 
such as magnetic tapes, floppy disks, and hard disks used in various magnetic recording 
applications (audio, video, digital, etc.) must be such that they are able to retain the 
spatial magnetization pattern written on them after they have passed the recording 
head. This requires high remanent magnetization Mr. High remanent magnetization is 
also important in the reading process because the magnetic flux that induces voltages 
in the read head depends on this remanent magnetization, given a particular speed of 
motion under the read head. Thus the read operation requires media with high Mr. 

Further, it should be difficult to undesirably erase the magnetic information on the 
tape by demagnetizing it under stray fields, and this requires high coercivity Hc. A 
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Figure 8.65 A magnetic tape is typically a F|exib,e , (p0|yester_ 
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strong magnet passed over a floppy disk can destroy the information stored in it. The co- 
ercivity therefore determines the stability of the recording. The coercivity cannot be too 
high, however, as this would prevent the writing operation, that is, magnetization, under 
the recording head. One therefore has to find a compromise that allows the information 
to be written and.at the same time retained without ease of demagnetization. 

These two requirements, high Mr and medium-to-high Hc, lead to a choice of 
medium to hard magnetic materials as magnetic storage media. Typical flexible stor¬ 
age media (e.g., audio or video tapes) use particulate coatings on flexible polymeric 
sheets or tapes, as pictured schematically in Figure 8.65. Elongated particles of various 
magnetic materials are magnetically hard due to a combination of two factors. First, 
these particles tend to be single domains and are hard due to the magnetocrystalline 
anisotropy energy. Second, they are also elongated, have a greater length to width ratio 
(aspect ratio), which means they are also hard due to shape anisotropy; they prefer to 
be magnetized along the length. 

Typical particulate matter used in coatings are y-Fe203, Co-modified y-Fe2C>3 or 
Co(y-Fe203), QO2, and metallic particles (Fe), as summarized in Table 8.9. The over¬ 
all magnetic properties of the particulate coating depend not only on the properties of 
the individual particles (which are hard) but also on the concentration of particles as 
well as their distribution in the coating. For example, as the packing density of parti¬ 
cles increases, the saturation magnetization Msat (total magnetic moment per unit vol¬ 
ume) also increases, which is desirable, but the coercivity worsens. The concentrations 
of particles in the coating are typically between 5 x 1014 cm-3 {e.g., floppy disk) and 

Table 8.9 Selected examples of flexible magnetic storage media based on coatings of particulate 

matter: typical values 

Particulate 
Matter Typical Application (T) 

HoHc 
(T) Comments 

y-Fe203 Audio tape (Type I) 0.16 0.036 Widely used particles. 

y-Fe2C>3 Floppy disk 0.07 0.03 

Co(y-Fe203) Video tape 0.13 0.07 Cobalt-impregnated y-Fe203 particles. 

Cr02 Audio tape (Type II) 0.16 0.05 More expensive than y-Fe2C>3. 

Cr02 Video tape 0.14 0.06 

Fe Audio tape (Type IV) 0.30 0.11 High coercivity and magnetization. To 

avoid corrosion, the particles have 

to be treated (expensive). 
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5 x 1015 cm-3 (e.g., video tape), which are sufficient to provide the necessary rema¬ 
nent field and maintain adequate coercivity. 

The brown gamma iron oxide, j/-Fe2C>3, is a metastable form of iron oxide that is 
ferrimagnetic and is prepared synthetically. Cobalt-treated y-Fe203 particles have a 
small percentage of Co impregnated into the surface of the particles, which improves 
the magnetic hardness. Cobalt-impregnated y-Fe2C>3 particles are used in various video 
tapes. All these particles in Table 8.9 are needle shaped (elongated rod-like shapes) 
with length-to-diameter ratios greater than 5, which makes them substantially hard as a 
result of shape anisbtropy. The needle-like particles are typically 0.3-0.6 pm in length 
and 0.05-0.1 pm in diameter. The particles are initially mixed into a lacquer-like resin 
binder that is then coated onto a thin polyester backing tape. When the resin coating 
solidifies, it forms a magnetic coating stuck on the backing tape. Typically between 
20-40 percent of this magnetic coating is actually due to the magnetic particles. 

Another form of magnetic storage medium is in the form of magnetic thin films de¬ 
posited onto various hard substrates or even on a flexible plastic tape as in some video 
tapes. The hard disk in the hard drive of a computer, for example, is typically an alu¬ 
minum disk that has a thin magnetic film (e.g., CoPtCr) coated onto it. The deposition 
of the magnetic thin film may involve vacuum deposition techniques (e.g., electron 
beam evaporation or sputtering) or electroplating. Typical film thicknesses are less 
than 50 nm. The advantage of using a thin-film coating is that they are solid films of a 
magnetic material, that is, almost 100 percent dense, whereas in a particulate medium, 
the packing density of magnetic particles is 20-40 percent. Consequently, thin mag¬ 
netic films have higher saturation and remanent magnetizations, which enable a 
smaller area of the thin film to be used for storing the same information as that in a flex¬ 
ible medium. Thus there is an increase in the stored information density—a distinct ad¬ 
vantage. Table 8.10 lists the characteristics of a few selected thin magnetic films used 
as magnetic storage media. Most thin films are alloys of Co because Co has a high 
degree of magnetocrystalline anisotropy and hence good coercivity Hc. Alloying Co 
with Cr provides good corrosion resistance and increases Hc. Alloying with Pt or Ta 
also increases Hc. The desired film properties can usually be obtained by alloying Co 
with other elements and optimizing the deposition conditions; this is an ongoing 
research area. The current commercial interest is to increase the storage density even 

Table 8.10 Selected examples of thin films in magnetic storage media: typical values 

Thin Film Typical Deposition 
Mo Ms 

(T) 
lx0Hc 

(T) 
Comment and Typical 
or Potential Application 

Co and rare earth Sputtering in vacuum 0.7-0.8 0.05-0.07 Longitudinal magnetic recording media 

Co(}/-Fe203) Sputtering in vacuum 0.3 0.07-0.08 Longitudinal magnetic recording media 

CoNiP Electroplating 1 0.1 Longitudinal magnetic recording media, hard disks 

CoCr alloys Sputtering in vacuum 0.3-0.7 0.05-0.3 Longitudinal and perpendicular magnetic recording 

media, hard disks 

CoPtCrB Sputtering in vacuum 0.3-0.5 0.25-0.6 Longitudinal and perpendicular magnetic recording 

media, hard disks 
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further by using perpendicular magnetic recording in contrast to longitudinal record¬ 
ing. In perpendicular recording, the local magnetizations in the thin film are perpen¬ 
dicular to the surface of the film. 

The magnetic coating on some video tapes may be in the form of a thin film 
deposited by vacuum evaporation of the magnetic material using an electron beam to 
heat it. Some recent video tapes have CoNi thin-film coatings that are evaporated by 
an electron beam onto a polyester (PET) tape. 

Josephson 

junction 

supercurrent 

8.14 JOSEPHSON EFFECT 

The Josephson junction is a junction between two superconductors that are separated 
by a thin insulator (a few nanometers thick) as depicted in Figure 8.66. If the insulating 
barrier is sufficiently thin, then there is a probability that the Cooper pairs can tunnel 
across the junction. The wavefunction ^ of the Cooper pair, however, changes phase 
by 6 when it tunnels through the junction, not unexpected as the pair goes through a 
potential barrier. The maximum superconducting current Ic that can flow through this 
weak link depends on not only the thickness and area (size) of the insulator but also on 
the superconductor materials and the temperature. The current /, or the supercurrent, 
through the junction due to Cooper pair tunneling is determined by the phase angle 6, 

7 = /c sin & [8.27] 

where Ic is the maximum current or the critical current. If the current through the junc¬ 
tion is controlled by an external circuit, then the tunneling Cooper pairs on either side 
of the junction (in the superconductors) adjust their respective phases to maintain the 
phase change to satisfy Equation 8.27. If we plot the I-V characteristics of this junc¬ 
tion as in Figure 8.67, we would find that for I < Ic, the behavior follows the vertical 
OC line with no voltage across the junction. 

If the current through the junction exceeds 7C, then the Cooper pairs cannot tunnel 
through the insulator because Equation 8.27 cannot be satisfied. There is still a current 
through the junction, but it is due to the tunneling of norpial, that is, single electrons as 
represented by the curve OABD in Figure 8.67. Thus, the current switches from point 
C to point B and then follows the normal tunneling curve B to D. At point B, a voltage 

(a) (b) 

Figure 8.66 

(a) A Josephson junction is a junction between two superconductors separated by a thin insulator. 

(b) In practice, thin-film technology is used to fabricate a Josephson junction. 
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I 

Figure 8*67 I-V characteristics of a 

Josephson junction for positive currents when 

the current is controlled by an external circuit. 

I-V characteristics of a Sn-SnO-Sn Josephson junction 
at T = 1.52 K. 

SOURCE: E. P. Balsano, G. Paterno, A. Barone, 
P. Rissman, and M. Russo, "Temperature 
dependence of the maximum (dc) Josephson 
current" Phys. Rev. B, vol. 10, p. 1882, Figure 2. 
© 1974 American Physical Society. 

develops across the junction and increases with the current. The normal tunneling cur¬ 
rent in the range OA is negligible and rises suddenly when the voltage exceeds Va. The 
reason is that a certain amount of voltage (corresponding to a potential energy eVa) is 
needed to provide the necessary energy to disassociate the tunneling single electron 
from its Cooper pair. It is apparent that the thin insulation acts as a weak superconduc¬ 
tor or as a weak link in the superconductor; weak with regard to the currents that can 
flow in the superconductor itself. The I-V characteristic in Figure 8.67 is symmetric 
about O (as in the photograph for an actual device), and is called the dc characteristic 
of the Josephson junction. In addition, the I-V behavior exhibits hysteresis; that is, if 
we were to decrease the current, the behavior does not follow DBC down to O, but fol¬ 
lows the DBA curve. When the current is decreased nearly to zero, the normal tunnel¬ 
ing current switches to the supercurrent. The Josephson junction is bistable; that is, it 
has two states corresponding to the superconducting state OC and normal state ABD. 
Thus, the device behaves as an electronic switch whose switching time, in theory, is 
determined by tunneling times, in the picoseconds range. In practice the switching 
time (~10 ps) is limited by the junction capacitance. 

If, on the other hand, a dc voltage is applied across the Josephson junction, then 
the phase change 9 is modulated by the applied voltage. The most interesting and sur¬ 
prising aspect is that the voltage modulates the rate of change of the phase through the 
barrier, that is, 

dO _ 2eV_ 

dt h 

When we integrate this, we find that 9 is time and voltage dependent, so, accord¬ 
ing to Equation 8.27, the current is a sinusoidal function of time and voltage, that is, 

Applied 

voltage 

modulates 

phase 

I = in ^6 lr sin I 0, 
2it(2eV)t\ 

h ) 
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or 

/ = I0 sin (2tt ft) 

where IQ is a new constant incorporating 60 and the frequency of the oscillations of the 
current is given by 

ac Josephson 

effect 

The Josephson junction therefore generates an oscillating current of frequency/ 
when there is a dc voltage V across it. This is called the ac Josephson effect, a re¬ 
markable phenomenon originally predicted by Josephson as a graduate student at 
Cambridge (1962). According to the ac Josephson effect, the junction generates an ac 
current at a frequency of 2e/h Hz per volt or 483.6 MHz per microvolt. Furthermore, 
the frequency of the current has nothing to do with the material properties of the junc¬ 
tion but is only determined by the applied voltage through e and h. The ac Josephson 
effect has been adopted to define the voltage standard: One volt is the voltage that, 
when applied to a Josephson junction, will generate an ac current and hence an elec¬ 
tromagnetic radiation of frequency 483,597.9 GHz. 

/ = 
2eV 

[8.28] 

8.15 FLUX QUANTIZATION 

Consider a ring of a superconducting material above its Tc. Suppose that the ring is im¬ 
mersed in magnetic flux lines from a magnet placed above it as shown in Figure 8.68a. 
When we cool the ring to below Tc, the magnetic flux lines are excluded from the ring 
itself, due to the Meissner effect, but they go through the hole, as shown in Fig¬ 
ure 8.68b. If we now remove the magnet, we may think that the magnetic flux lines 
simply disappear, but this is not the case. A persistent current is set up on the inside sur¬ 
face of the superconducting ring that flows to maintain the flux constant in the hollow. 
This supercurrent generates flux lines in the hollow as if to replace those taken away 
by the removal of the magnet, as depicted in Figure 8.68c. Since the current can flow 
indefinitely in the ring, the overall effect is that the magnetic flux is trapped within the 
ring. Indeed, if we were to bring back the magnet, the current in the ring would disap¬ 
pear to ensure that the magnetic flux in the hollow remains unchanged. The origin of 

Figure 8.68 
(a) Above TCl the flux lines enter the ring. 

(b) The ring and magnet are cooled through Tc. 
The flux lines do not enter the superconducting ring 

but stay in the hole. 

(c) Removing the magnet does not change the flux 

in the hole. 

(a )T>TC (b) T<TC (c) T<TC 
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flux trapping can be appreciated by considering what would happen if the flux were 
allowed to change, that is, d&fdt ^ 0. A changing flux would induce a voltage 
V = —d&/dt around the ring that would drive an infinite current I = V/R where 
R = 0. This is not possible, and hence the flux cannot change, which means we must 
have d<b/dt = 0. One should also note that there can be no electric field inside a 
superconductor because 

£ = 

since the conductivity a is infinite. 
What would happen if we have a superconducting ring (below Tc) that initially had 

no flux in the hole? If we were to bring a magnet to it, then the flux lines would now 
be excluded from both the ring itself and also the hole since the trapped flux within the 
ring is zero. 

It turns out that the trapped flux <J> inside the ring is quantized by virtue of super¬ 
conductivity being a quantum phenomenon. The smallest quantized amount of flux is 
called the magnetic flux quantum and is given by hj2e or 2.0679 x 10-15 Wb. The 
flux <J> in the ring is an integer multiple n of this quantum. 

__, Trapped flux 
[8.29] . J . 

is quantized 

CD Selected Topics and Solved Problems 

Selected Topics 

Atomic Diamagnetism 

Atomic Paramagnetism 

Ferrimagnetism and Ferrites 

Solved Problems 

ibbl Diamagnetism: Examples 

DEFINING TERMS 

Antiferromagnetic materials have crystals in which 
alternating permanent atomic spin magnetic moments 

are equal in magnitude but point in opposite directions 

(antiparallel), which leads to no net magnetization of 
the crystal. 

Bloch wall is a magnetic domain wall. 

Bohr magneton (ft) is a useful elementary unit of 

magnetic moment on the atomic scale. It is equal to the 

magnetic moment of one electron spin along an 
applied magnetic field P = etif 2m e. 

Coercivity or coercive field (Hc) measures the ability 

of a magnetized material to resist demagnetization. It is 

the required reverse applied field that would remove 
any remanent magnetization, that is, demagnetize the 

material. 

Cooper pair is a quasi-particle formed by the mutual 

attraction of two electrons with opposite spins and 

opposite linear momenta below a critical temperature. 

It has a charge of — 2e and a mass of 2me but no net 

spin. It does not obey Fermi-Dirac statistics. The 
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electrons are held together by the induced distortions 

and vibrations of the lattice of positive metal ions with 
which the electrons interact. 

Critical magnetic field (Bc) is the maximum field 

that can be applied to a superconductor without 
destroying the superconducting behavior. Bc decreases 

from its maximum value at absolute zero to zero at Tc. 

Critical temperature (Tc) is a temperature that sepa¬ 

rates the superconducting state from the normal state. 

Above Tc, the substance is in the normal state with a 

finite resistivity, but below Tc, it is in the super¬ 

conducting state with zero resistivity. 

Curie temperature (Tc) is the critical temperature at 
which the ferromagnetic and ferrimagnetic properties 

are lost. Above the Curie temperature, the material 
behaves as if it were paramagnetic. 

Diamagnetic material has a negative magnetic sus¬ 
ceptibility and reduces or repels applied magnetic 

fields. Superconductors are perfect diamagnets that 
repel the applied field. Many substances possess weak 

diamagnetism, so the applied field is slightly decreased 
within the material. 

Domain wall is a region between two neighboring 

magnetic domains of differing orientations of mag¬ 
netization. 

Domain wall energy is the excess energy in the domain 

wall as a result of the gradual orientations of the neigh¬ 

boring spin magnetic moments of atoms through the wall 

region. It is the excess energy due to the excess exchange 

interaction energy, magnetocrystalline anisotropy en¬ 
ergy, and magnetostrictive energy in the wall region. 

Easy direction is the crystal direction along which the 

atomic magnetic moments (due to spin) are sponta¬ 

neously and most easily aligned. Exchange interaction 

energy is lowest (hence favorable) when the alignment 

of atomic spin magnetic moments is in this direction in 

the crystal. For the iron crystal, it is one of the six [100] 
directions (cube edge). 

Eddy current loss is the Joule energy loss (I2R) in a 

ferromagnetic material subjected to changing magnetic 

fields (in ac fields). The varying magnetic field induces 

voltages in the ferromagnetic material that drive cur¬ 

rents (called eddy currents) that generate Joule heating 

due to I2R. 

Eddy currents are the induced conduction currents 

flowing in a ferromagnetic material as a result of vary¬ 
ing (ac) magnetic fields. 

Exchange interaction energy (Eex) is a kind of 

Coulombic interaction energy between two neighbor¬ 

ing electrons and positive metal ions that depends on 

the relative spin orientations of the electrons as a conse¬ 

quence of the Pauli exclusion principle. Its exact origin 

is quantum mechanical. Qualitatively, different spins 

lead to different electron wavefunctions, different neg¬ 

ative charge distributions, and hence different Coulom¬ 

bic interactions. In ferromagnetic crystals, £ex is nega¬ 
tive when the neighboring electron spins are parallel. 

Ferrimagnetic materials possess crystals that con¬ 
tain two sets of atomic magnetic moments that oppose 

each other, but one set has greater strength and there¬ 

fore there is a net magnetization of the crystal. An 
unmagnetized ferrimagnetic substance normally has 

many magnetic domains whose magnetization vectors 
add to give no overall magnetization. 

Ferrites are ferrimagnetic materials that are ceramics 

with insulating properties. They are therefore used in 

HF applications where eddy current losses are signifi¬ 
cant. Their general composition is (MO)(Fe2C>3), 

where M is typically a divalent metal. For magnetically 

soft ferrites, M is typically Fe, Mn, Zn, or Ni, whereas 
for magnetically hard ferrites, M is typically Sr or Ba. 

Hard ferrites such as BaOFe2C>3 have the hexagonal 

crystal structure with a high degree of magnetocrys¬ 

talline anisotropy and therefore possess high coercivity 

(difficult to demagnetize). 

Ferromagnetic materials have the ability to possess 

large permanent magnetizations even in the absence 
of an applied field. An unmagnetized ferromagnetic 

material normally has many magnetic domains whose 

magnetization vectors add to give no overall magneti¬ 

zation. However, in a sufficiently strong magnetizing 

field, the whole ferromagnetic substance becomes one 

magnetic domain in which all the atomic spin magnetic 

moments are aligned to give a large magnetization 

along the field. Some of this magnetization is retained 
even after the removal of the field. 

Giant magnetoresistance (GMR) is the large change 

in the resistance of a special multilayer structure when a 

magnetic field is applied; the simplest structure usually 
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consists of two thin ferromagnetic layers (e.g., Fe) sand¬ 

wiching an even thinner nonmagnetic metal ( e.g., Cu). 

Hard direction is the crystal direction along which it 

is hardest to align the atomic spin magnetic moments 

relative to the easy direction. Exchange interaction 

energy Eex favors the easy direction most (Eex is most 

negative) and favors the hard direction least (£ex is 
least negative). 

Hard magnetic materials characteristically have high 
remanent magnetizations (Br) and high coercivities 

(Hc), so once magnetized, they are difficult to demag¬ 

netize. They are suitable for permanent magnet appli¬ 
cations. They have broad B-H hysteresis loops. 

Hard magnetic particles are small particles of vari¬ 

ous shapes that have high coercivity due to having a 

single magnetic domain with high magnetocrystalline 

anisotropy energy, or possessing substantial shape 

anisotropy (aspect ratio—length-to-width ratio). 

Hysteresis loop is the magnetization (M) versus 

applied magnetic field intensity (H) or B versus H 

behavior of a ferromagnetic (or ferrimagnetic) sub¬ 

stance through one cycle as it is repeatedly magnetized 
and demagnetized. 

Hysteresis loss is the energy loss involved in magne¬ 

tizing and demagnetizing a ferromagnetic (or ferri¬ 

magnetic) substance. It arises from various energy 

losses involved in the irreversible motions of the 

domain walls. Hysteresis loss per unit volume of spec¬ 

imen is the area of the B-H hysteresis loop. 

Initial permeability (prip0) is the initial slope of the 

B versus H characteristic of an unmagnetized ferro¬ 

magnetic (or ferrimagnetic) material and typically rep¬ 

resents the magnetic permeability under very small 

applied magnetic fields. Initial relative permeability 

(pri) is the relative permeability of an unmagnetized 

ferromagnetic (or ferrimagnetic) material under very 

small applied fields. 

Magnetic dipole moment (pm) is defined as IAu„, 

where I is the current flowing in a circuit loop of area A 

and u„ is the unit vector in the direction of an advance of 
a screw when it is turned in the direction of the circulat¬ 

ing current. Qualitatively, it measures the strength of the 

magnetic field created by a current loop and also the ex¬ 

tent of interaction of the current loop with an externally 

applied magnetic field. p.m is normal to the surface of 

the loop. Magnetic moment in a magnetic field experi¬ 

ences a torque that tries to rotate pm to align it with the 
field. In a nonuniform field, the magnetic moment ex¬ 

periences a force that attracts it to a greater field. 

Magnetic domain is a region of a ferromagnetic (or 

ferrimagnetic) crystal that has spontaneous magnetiza¬ 

tion, that is, magnetization in the absence of an applied 
field, due to the alignment of all magnetic moments in 

that region. 

Magnetic field, magnetic induction, or magnetic flux 

density (B) is a field that is generated by a current- 

carrying conductor that produces a force on a current- 

carrying conductor elsewhere. Equivalently, we can 

define it as the field generated by a moving charge that 

acts to produce a force on a moving charge elsewhere. 

The force is called the Lorentz force and is given by 
F = q\ x B where v is the velocity of the particle with 

charge q. The magnetic field B in a material is the sum 

of the applied field p0H, and that due to the magnetiza¬ 

tion of the material p0M, that is, B = pa(H + M). 

Magnetic field intensity or magnetizing field (H) 

gauges the magnetic strength of external conduction 

currents (e.g., currents flowing in the windings) in the 

absence of a material medium. It excludes the magne¬ 

tization currents that become induced on the surfaces 

of any material placed in a magnetic field. paH is the 

magnetic field in free space and is considered to be the 

applied magnetic field. The terms intensity or strength 
distinguish H from B, which is simply called the mag¬ 

netic field. 

Magnetic flux (<t>) represents to what extent magnetic 

field lines are flowing through a given area perpendi¬ 

cular to the field lines. If 8A is a small area perpendic¬ 

ular to the magnetic field B and B is constant over 8A, 

then the flux 54> through 8A is defined by <$<t> = Z? 8A. 

Total flux through any closed surface is zero. 

Magnetic permeability (p) is the magnetic field gen¬ 
erated per unit magnetizing field, that is, p = B/H. 

Permeability gauges the effectiveness of a medium in 

generating as much magnetic field as possible per unit 

magnetizing field. Permeability of free space is the 

absolute permeability p0, which is the magnetic field 

generated in a vacuum per unit magnetizing field. 
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Magnetic susceptibility (xm) indicates the ease with 
which the material becomes magnetized under an 

applied magnetic field. It is the magnetization in¬ 

duced in the material per unit magnetizing field, 

Xm = M/H. 

Magnetization or magnetization vector (M) repre¬ 

sents the net magnetic moment per unit volume of 

material. In the presence of a magnetic field, individual 

atomic moments tend to align with the field, which 

results in a net magnetization. Magnetization of a spec¬ 

imen can be represented by the flow of currents on the 
surface over a unit length of the specimen; M = 7m, 

where Im is the surface magnetization current per unit 

length. 

Magnetization current (lm) is a bound current per 

unit length that exists on the surface of a substance due 
to its magnetization. It is not, however, due to the flow 

of free charges but arises in the presence of an applied 

magnetic field as a result of the orientations of the elec¬ 
tronic motions in the constituent atoms. In the bulk, 

these electronic motions cancel each other and there is 

no net bulk current, but on the surface, they add to give 

a bound surface current Im per unit length, which is 
equal to the magnetization M of the substance. 

Magnetocrystalline anisotropy is the anisotropy 

associated with magnetic properties such as the 

magnetization in different directions in a ferromag¬ 

netic (or ferrimagnetic) crystal. Atomic spins prefer to 

align along certain directions in the crystal, called easy 
directions. The direction along which it is most diffi¬ 

cult to align the spins is called the hard direction. For 

example, in the iron crystal, all atomic spins prefer to 

align along one of the [100] directions (easy direc¬ 

tions) and it is most difficult to align the spins along 
one of the [111] directions (hard directions). 

Magnetocrystalline anisotropy energy (K) is the 

energy needed to rotate the magnetization of a ferro¬ 

magnetic (or ferrimagnetic) crystal from its natural 
easy direction to a hard direction. For example, it takes 

an energy of about 48 mJ cm-3 to rotate the magneti¬ 

zation of an iron crystal from the easy direction [100] 

to the hard direction [111]. 

Magnetoresistance generally refers to the change in 

the resistance of a magnetic material when it is placed 

in a magnetic field. The change in the resistance of a 

nonmagnetic metal, such as copper, is usually very 

small. In a magnetic metal, the change in the resistivity 

due to the applied magnetic field is anisotropic; that is, 
it depends on the direction of current flow with respect 

to the applied field and is called anisotropic magne¬ 
toresistance (AMR). 

Magnetostatic energy is the potential energy stored 

in an external magnetic field. It takes external work to 
establish a magnetic field, and this energy is said to be 

stored in the magnetic field. Magnetic energy per unit 

volume at a point in free space is given by 

1 B^ 

£Voi(air) = -p0H2 = -— 
2 2 p0 

Magnetostriction is the change in the length of a fer¬ 

romagnetic (or ferrimagnetic) crystal as a result of its 

magnetization. An iron crystal placed in a magnetic 

field along an easy direction becomes longer along this 

direction but contracts in the transverse direction. 

Magnetostrictive energy is the strain energy in the 

crystal due to magnetostriction, that is, the work done 

in straining the crystal when it becomes magnetized. 

Maximum relative permeability (/ur,max) is the max¬ 
imum relative permeability of a ferromagnetic (or 

ferrimagnetic) material. 

Meissner effect is the repulsion of all magnetic flux 

from the interior of a superconductor. The supercon¬ 

ductor behaves as if it were a perfect diamagnet with 

Xm = 1 • 

Paramagnetic materials have a small and positive 

magnetic susceptibility. In an applied field, they 

develop a small amount of magnetization in the direc¬ 

tion of the applied field, so the magnetic field in the 
material is slightly greater. They are attracted to a 
higher magnetic field. 

Relative permeability (pr) measures the magnetic 

field in a medium with respect to that in a vacuum, 

pr = B/p0H. Since B depends on the magnetization 

of the medium, pr measures the ease with which the 

material becomes magnetized. 

Remanence or remanent magnetization (Mr) is the 

magnetization that remains in a magnetic material after 

it has been fully magnetized and the magnetizing field 

has been removed. It measures the ability of a magnetic 
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8.2 

8.3 

8.4 

8.5 

Pauli spin 

paramagnetism 

8.6 

8.7 

Potential energy 

of a Bloch wall 

What is the approximate inductance of an air-cored solenoid with a diameter of 1 cm, length of 

20 cm, and 500 turns? What is the magnetic field inside the solenoid and the energy stored in the whole 

solenoid when the current is 1 A? What happens to these values if the core medium has a relative per¬ 

meability pr of 600? 

Magnetization Consider a long solenoid with a core that is an iron alloy (see Problem 8.1 for the rel¬ 

evant formulas). Suppose that the diameter of the solenoid is 2 cm and the length of the solenoid is 

20 cm. The number of turns on the solenoid is 200. The current is increased until the core is magnetized 

to saturation at about / = 2 A and the saturated magnetic field is 1.5 T. 

a. What is the magnetic field intensity at the center of the solenoid and the applied magnetic field, 

p0H, for saturation? 

b. What is the saturation magnetization Msat of this iron alloy? 

c. What is the total magnetization current on the surface of the magnetized iron alloy specimen? 

d. If we were to remove the iron-alloy core and attempt to obtain the same magnetic field of 1.5 T in¬ 

side the solenoid, how much current would we need? Is there a practical way of doing this? 

Paramagnetic and diamagnetic materials Consider bismuth with Xm = —16.6 x 10-5 and aluminum 

with Xm = 2.3 x 10-5. Suppose that we subject each sample to an applied magnetic field B0 of 1 T 

applied in the +x direction. What is the magnetization M and the equivalent magnetic field p0M in each 

sample? Which is paramagnetic and which is diamagnetic? 

Mass and molar susceptibilities Sometimes magnetic susceptibilities are reported as molar or mass 

susceptibilities. Mass susceptibility (in m3 kg-1) is Xm/P where p is the density. Molar susceptibility 

(in m3 mol-1) is Xm(M&t/p) where A/at is the atomic mass. Terbium (Tb) has a magnetic molar suscep¬ 

tibility of 2.0 cm3 mol-1. Tb has a density of 8.2 g cm-3 and an atomic mass of 158.93 g mol-1. What 

is its susceptibility, mass susceptibility and relative permeability? What is the magnetization in the sam¬ 

ple in an applied magnetic field of 2 T? 

Pauli spin paramagnetism Paramagnetism in metals depends on the number of conduction electrons 

that can flip their spins and align with the applied magnetic field. These electrons are near the Fermi 

level Ef, and their number is determined by the density of states gr(£» at £>. Since each electron has a 

spin magnetic moment of /?, paramagnetic susceptibility can be shown to be given by 

Xpara ^ PoP 9^f) 

where the density of states is given by Equation 4.10. The Fermi energy of calcium £> is 4.68 eV. Eval¬ 

uate the paramagnetic susceptibility of calcium and compare with the experimental value of 1.9 x 10-5. 

Ferromagnetism and the exchange interaction Consider dysprosium (Dy), which is a rare earth 

metal with a density of 8.54 g cm-3 and atomic mass of 162.50 g mol-1. The isolated atom has the elec¬ 

tron structure [Xe]4/106.s2. What is the spin magnetic moment in the isolated atom in terms of number of 

Bohr magnetons? If the saturation magnetization of Dy near absolute zero of temperature is 2.4 MA m_1, 

what is the effective number of spins per atom in the ferromagnetic state? How does this compare with 

the number of spins in the isolated atom? What is the order of magnitude for the exchange interaction in 

eV per atom in Dy if the Curie temperature is 85 K? 

Magnetic domain wall energy and thickness The energy of a Bloch wall depends on two main fac¬ 

tors: the exchange energy £ex (J/atom) and magnetocrystalline energy K (J m-3). If a is the interatomic 

distance and 8 is the wall thickness, then it can be shown that the potential energy per unit area of the 

wall is 

Show that the minimum energy occurs when the wall has the thickness 

Bloch wall 

thickness 
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material to retain a portion of its magnetization 

after the removal of the applied field. The correspond¬ 

ing magnetic field (/i0Mr) is the remanent magnetic 

field Br. 

Saturation magnetization is the maximum magneti¬ 

zation that can be obtained in a ferromagnetic crystal at 

a given temperature when all the magnetic moments 

have been aligned in the direction of the applied field, 

when there is a single magnetic domain with its mag¬ 

netization M along the applied field. 

Shape anisotropy is the anisotropy in magnetic prop¬ 

erties associated with the shape of the ferromagnetic 

(or ferrimagnetic) substance. A crystal rod that is thin 

and long prefers to have its magnetization M along the 

length (long axis) of the rod because this direction of 

magnetization creates less external magnetic fields and 

leads to less external magnetostatic energy compared 

with the case when M is along the width (short axis) of 

the rod. Reversing the magnetization involves rotating 

M through the width of the rod, where the external 

magnetic field and hence magnetostatic energy are 

large, and requires large substantial work. It is there¬ 

fore difficult to rotate magnetization around from the 

long axis to the short axis. 

Soft magnetic materials characteristically have high 

saturation magnetizations (Bsat) but low saturation 

magnetizing fields (Hsat) and low coercivities (Hc), so 

they can be magnetized and demagnetized easily. They 

have tall and narrow B-H hysteresis loops. 

Superconductivity is a phenomenon in which a sub¬ 

stance loses all resistance to current flow (acquires 

zero resistivity) and also exhibits the Meissner effect 

(becomes a perfect diamagnet). 

Type I superconductors have a single critical field 

(Bc) above which the superconducting behavior is 

totally lost. 

Type II superconductors have a lower (Bc i) and an 

upper (Bc2) critical field. Below Bc 1, the substance is in 

the superconducting phase with Meissner effect; all 

magnetic flux is excluded from the interior. Between 

Bci and Bc2, magnetic flux lines pierce through local 

filamentary regions of the superconductor, which 

behave normally. Above Bc2, the superconductor re¬ 

verts to normal behavior. 

QUESTIONS AND PROBLEMS 
8.1 Inductance of a long solenoid Consider the very long (ideally infinitely long) solenoid shown in Fig¬ 

ure 8.69. If r is the radius of the core and l is the length of the solenoid, then r. The total number 

of turns is N and the number of turns per unit length is n = N/t. The current through the coil wires is /. 

Apply Ampere’s law around C, which is the rectangular circuit PQRS, and show that 

B ^ fi0lArnI 

Further, show that the inductance is 

L ^ ore 

where Vc0re is the volume of the core. How would you increase the inductance of a long solenoid? 

Inductance of a 

long solenoid 

C 
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and show that when 8 = S', the exchange and anisotropy energy contributions are equal. Using reasonable 

values for various parameters, estimate the Bloch energy and wall thickness for Ni. (See Example 8.4.) 

Toroidal inductor and radio engineers toroidal inductance equation 

a. Consider a toroidal coil (Figure 8.10) whose mean circumference is t and that has N tightly wound 

turns around it. Suppose that the diameter of the core is 2a and i » a. By applying Ampere’s law, 

show that if the current through the coil is /, then the magnetic field in the core is 

Vo Hr NI 

i 
[8.30] 

where \xr is the relative permeability of the medium. Why do you need i a for this to be valid? 

Does this equation remain valid if the core cross section is not circular but rectangular, a x b> and 

i a and bl 

b. Show that the inductance of the toroidal coil is 

L = 
fx0iirN2 A 

t 
[8.31] 

where A is the cross-sectional area of the core. 

c. Consider a toroidal inductor used in electronics that has a ferrite core size FT-37, that is, round but 

with a rectangular cross section. The outer diameter is 0.375 in (9.52 mm), the inner diameter is 

0.187 in (4.75 mm), and the height of the core is 0.125 in (3.175 mm). The initial relative perme¬ 

ability of the ferrite core is 2000, which corresponds to a ferrite called the 77 Mix. If the inductor 

has 50 turns, then using Equation 8.31, calculate the approximate inductance of the coil. 

d. Radio engineers use the following equation to calculate the inductances of toroidal coils, 

L(mH) = [8.32] 

where L is the inductance in millihenries (mH) and AL is an inductance parameter, called an induc¬ 

tance index, that characterizes the core of the inductor. Al is supplied by the manufacturers of fer¬ 

rite cores and is typically quoted as millihenries (mH) per 1000 turns. In using Equation 8.32, one 

simply substitutes the numerical value of AL to find L in millihenries. For the FT-37 ferrite toroid 

with the 77 Mix as the ferrite core, Al is specified as 884 mH/1000 turns. What is the inductance of 

the toroidal inductor in part (c) from the radio engineers equation in Equation 8.32? What is the per¬ 

centage difference in values calculated by Equations 8.32 and 8.31? What is your conclusion? 

{Comment: The agreement is not always this close.) 

A toroidal inductor 

a. Equations 8.31 and 8.32 allow the inductance of a toroidal coil in electronics to be calculated. 

Equation 8.32 is the equation that is used in practice. Consider a toroidal inductor used in electron¬ 

ics that has a ferrite core of size FT-23 that is round but with a rectangular cross section. The outer 

diameter is 0.230 in (5.842 mm), the inner diameter is 0.120 in (3.05 mm), and the height of the 

core is 0.06 in (1.5 mm). The ferrite core is a 43-Mix that has an initial relative permeability of 850 

and a maximum relative permeability of 3000. The inductance index for this 43-Mix ferrite core of 

size FT-23 is Al = 188 (mH/1000 turns). If the inductor has 25 turns, then using Equations 8.31 

and 8.32, calculate the inductance of the coil under small-signal conditions and comment on the 

two values. 

b. The saturation field Bm of the 43-Mix ferrite is 0.2750 T. What will be typical dc currents that will 

saturate the ferrite core (an estimate calculation is required)? It is not unusual to find such an in¬ 

ductor in an electronic circuit also carrying a dc current. Will your calculation of the inductance re¬ 

main valid in these circumstances? 

c. Suppose that the toroidal inductor discussed in parts (a) and (b) is in the vicinity of a very strong 

magnet that saturates the magnetic field inside the ferrite core. What will be the inductance of the 

coil? 

Toroidal coil 

inductance 

Radio engineers 

inductance 

equation 
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Transformer 

equation 

Hysteresis loss 

Eddy current 

loss 

*8.10 The transformer 

a. Consider the transformer shown in Figure 8.70a whose primary is excited by an ac (sinusoidal) 

voltage of frequency f The current flowing into the primary coil sets up a magnetic flux in the 

transformer core. By virtue of Faraday’s law of induction and Lenz’s law, the flux generated in 

the core is the flux necessary to induce a voltage nearly equal and opposite to the applied volt¬ 

age. Thus, 

_ (Total flux linked) _ NAdB 

dt dt 

where A is the cross-sectional area, assumed constant, and N is the number of turns in the primary. 

Show that if is the rms voltage at the primary (Vmax = VrmsV^) and Bm is the maximum mag¬ 
netic field in the core, then 

Vrms = 4.44 NAfBm [8.33] 

Transformers are typically operated with Bm at the “knee” of the B-H curve, which corre¬ 

sponds roughly to maximum permeability. For transformer irons, Bm & 1.2 T. Taking VrmS = 120 V 

and a transformer core with A = 10 cm x 10 cm, what should N be for the primary winding? If 

the secondary winding is to generate 240 V, what should be the number of turns for the secondary 

coil? 

b. The transformer core will exhibit hysteresis and eddy current losses. The hysteresis loss per unit 

second, as power loss in watts, is given by 

Ph = Kf B” Vcore [8.34] 

where K = 150.7,/is the ac frequency (Hz), Bm is the maximum magnetic field (T) in the core (as¬ 

sumed to be in the range 0.2-1.5 T), n= 1.6, and VC0K is the volume of the core. The eddy current 

losses are reduced by laminating the transformer core, as shown in Figure 8.70b. The eddy current 

loss is given by 

Pe = 1.65 f2Bl Vcore [8.35] 

where d is the thickness of the laminated iron sheet in meters (Figure 8.70b) and p is its resistivity 

(£2 m). 

Suppose that the transformer core has a volume of 0.0108 m3 (corresponds to a mean circum¬ 

ference of 1.08 m). If the core is laminated into sheets of thickness 1 mm and the resistivity of the 

transformer iron is 6 x 10-7 £2 m, calculate both the hysteresis and eddy current losses at/= 60 Hz, 

and comment on their relative magnitudes. How would you reduce each loss? 

(a) lb) 

Figure 8.70 

(a) A transformer with N turns in the primary. 

(b) Laminated core reduces eddy current losses. 
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8.11 Losses in a magnetic recording head Consider eddy current losses in a permalloy magnetic head for 

audio recording up to 10 kHz. We will use Equation 8.35 for the eddy current losses. Consider a magnetic 

head weighing 30 g and made from a permalloy with density 8.8 g cm-3 and resistivity 6 x 10"7 £2 m. 

The head is to operate at Bm of 0.5 T. If the eddy current losses are not to exceed 1 mW, estimate the 

thickness of laminations needed. How would you achieve this? 

*8.12 Design of a ferrite antenna for an AM receiver We consider an AM radio receiver that is to operate 

over the frequency range 530-1600 kHz. Suppose that the receiving antenna is to be a coil with a ferrite 

rod as core, as depicted in Figure 8.71. The coil has N turns, its length is i, and the cross-sectional area is 

A. The inductance L of this coil is tuned with a variable capacitor C The maximum value of C is 265 pF, 

which with L should correspond to tuning in the lowest frequency at 530 kHz. The coil with the ferrite 

core receives the EM waves, and the magnetic field of the EM wave permeates the ferrite core and in¬ 

duces a voltage across the coil. This voltage is detected by a sensitive amplifier, and in subsequent elec¬ 

tronics it is suitably demodulated. The coil with the ferrite core therefore acts as the antenna of the 

receiver (ferrite antenna). We will try to find a suitable design for the ferrite coil by carrying out 

approximate calculations—in practice some trial and error experimentation would also be necessary. We 

will assume that the inductance of a finite solenoid is 

yUrifioAN2 

l 
[8.36] 

Inductance of a 

solenoid 

where A is the cross-sectional area of the core, i is the coil length, N is the number of turns, and y is a 

geometric factor that accounts for the solenoid coil being of finite length. Assume y « 0.75. The reso¬ 

nant frequency/of an LC circuit is given by 

f =-1_ 
3 2tt(LC)1/2 

[8.37] 

a. If d is the diameter of the enameled wire to be used as the coil winding, then the length i % Nd. If 

we use an enameled wire of diameter 1 mm, what is the number of coil turns N we need for a fer¬ 

rite rod given that its diameter is 1 cm and its initial relative permeability is 100? 

fe. Suppose that the magnetic field intensity H of the signal in free space is varying sinusoidally, that is, 

LC circuit 

resonant 

frequency 

H = Hm sin(2nft) [8.38] 

where Hm is the maximum magnetic field intensity. H is related to the electric field £ at a point by 

H = £/ZSpace> where Zspace is the impedance of free space given by 377 £2. Show that the induced 
voltage at the antenna coil is 

V = ttnd 

m InTHlCfy 
[8.39] 

where /is the frequency of the AM wave and *Em is the electric field intensity of the AM station at the 

receiver point. Suppose that the electric field of a local AM station at the receiver is 10 mV m~l. What 

is the voltage induced across the ferrite antenna and can this voltage be detected by an amplifier? 

Would you use a ferrite rod antenna at short-wave frequencies, given the same C but less AT? 

Induced voltage 

across a ferrite 

antenna 

Ferrite rod 

Coil L 

Figure 8.71 A ferrite antenna of an 

AM receiver. 

*8.13 A permanent magnet with an air gap The magnetic field energy in the gap of a permanent magnet 

is available to do work. Suppose that Bm and Bg are the magnetic field in the magnet and the gap, Hm 

and Hg are the field intensities in the magnet and the gap, and Vm and are the volumes of the magnet 
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Magnet and gap 

relationship 

Energy in gap of 

a magnet 

and gap; show that, in terms of magnitudes, 

Eg Hg Vg ^ Bm Hm Vm 

What is the significance of this result? 

8.14 A permanent magnet with an air gap 

a. Show that the maximum energy stored in the air gap of a permanent magnet can be written very 
roughly as 

1 
^gap ^ ~BrHcVm 

where Vm is the volume of the magnet, which is much greater than that of the gap; Br is the rema¬ 

nent magnetic field; and Hc is the coercivity of the magnet. 

b. Using Table 8.6, compare the (BH)max with the product (\HC) (\Br) and comment on the close¬ 
ness of agreement. 

c. Calculate the energy in the gap of a rare earth cobalt magnet that has a volume of 0.1 m3. Give an 

example of typical work (e.g., raising so many apples, each 100 g, by so many meters) that could 

be done if all this energy could be converted to mechanical work. 

8.15 Weight, cost, and energy of a permanent magnet with an air gap For a certain application, an 

energy of 1 kJ is required in the gap of a permanent magnet. There are three candidates, as shown in 

Table 8.11. Which material will give the lightest magnet? Which will give the cheapest magnet? 

Table 8.11 Three permanent magnet candidates 

Magnet (kJ m-3) 

Density 

(g cm3) 

Yesterday’s 

Relative Price 

(per unit mass) 

Alnico 50 7.3 i 

Rare earth 200 8.2 2 

Ferrite 30 4.8 0.5 

*8.16 Permanent magnet with yoke and air gap Consider a permanent magnet bar that has L-shaped fer¬ 

romagnetic (high permeability) pieces attached to its ends to direct the magnetic field to an air gap as de¬ 

picted in Figure 8.72. The L-shaped high fir pieces for directing the magnetic field are called yokes. 

Suppose that Am, Ay, and Ag are the cross-sectional areas of the magnet, yoke, and gap as indicated in 

the figure. The lengths of the magnet, yoke, and air gap are im, y, and g, respectively. The magnet, the 

two yokes, and the gap can be considered to be all connected end-to-end or in series. Applying Ampere’s 

circuital law for H we can write, 

Hmim + 2 Hyty + figf'g = 0 

Since all four components, magnet, yokes, and gap, are in series, we can assume that the magnetic 

flux 4> through each of them is the same, 

^ = Em ~~ By Ay — BgAg 

a. Show that 

Hm 
Am 

im 

_l_ 2iy 
l^O Ag fXopryAy 

Bm 

b. What does the equation in part (a) represent? Given that Bm and Hm in the magnet must obey the equa¬ 

tion in part (a\ and also the B-H characteristic of the magnet material itself, what is your conclusion? 
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Figure 8.72 A permanent magnet 

with two pieces of yoke and an air 

gap. 

c. Should the yokes be magnetically hard or soft? Justify your decision. 

d. Show that if fxry is very large (Vry ^ oo). 

Hm 
_1_ 

Vo 

Am£g 

Agtm 

e. If Vm = Amim and Vg = Aglg are the volumes of the magnet and gap, respectively, show that 

Bg Hg Vg — Bm Hm Vm 

What is your conclusion (consider the magnetic energy stored in the gap)? 

/ Consider a rare earth permanent magnet, with a density of 8.2 g cm“3, that has a (BH)m3LX of about 

200 kJ m“3. Suppose that (BH)mSLX occurs very roughly at Bm % ^Br where for this rare earth 

magnet Br ^ 1 T. Suppose that Am ^ Ag. What is the volume, effective length (im), and mass of 

the magnet that is needed to store the maximum energy in the gap if tg = 1 cm and Ag — 1000 cm2? 

What is the maximum energy in the gap? 

8.17 Superconductivity and critical current density Consider two superconducting wires, tin (Sn; Type I) 

and Nb3Sn (Type II), each 1 mm in thickness. The magnetic field on the surface of a current-carrying 

conductor is given by 

B = 
Vo I 

2nr 

a. Assuming that Sn wire loses its superconductivity when the field at the surface reaches the critical 

field (0.2 T), calculate the maximum current and hence the critical current density that can be 

passed through the Sn wire near absolute zero of temperature. 

t>. Calculate the maximum current and critical current density for the Nb3Sn wire using the same as¬ 

sumption as in part (a) but taking the critical field to be the upper critical field Bc2, which is 24.5 T 

at 0 K. How does your calculation of Jc compare with the critical density of about 1011 A m-2 for 

Nb3Snat0K? 

8.18 Magnetic pressure in a solenoid Consider a long solenoid with an air core. Diametrically opposite 

windings have oppositely directed currents and, due to the magnetic force, they repel each other. This 

means that the solenoid experiences a radial force Fr that is trying to open up the solenoid, i.e., stretch 

out the windings as depicted in Figure 8.53. Suppose that A is the surface area of the core (on to which 

wires are wound). If we decrease the core diameter by dx, the volume changes by dV. We have to do 

work d W against the radial magnetic forces Fr, 

dW = Frdx = Adx = PrdV 
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Radial magnetic 

pressure in a 

solenoid 

*8.19 Enterprising engineers in the high arctic building a superconducting inductor A current-carrying 

inductor has energy stored in its magnetic field that can be converted to electrical work. A group of en¬ 

terprising engineers and scientists living in Resolute in Nunavut (Canada) have decided to build a 

toroidal inductor to store energy so that this energy can be used to supply a small community of 10 houses 

each consuming on average 3 kW of energy during the night (6 months). They have discovered a super¬ 

conductor (Type II) that has a Bc2 = 100 T and a critical current density of Jc = 5 x 1010Am 2 at night 

temperatures (it is obviously a novel high-rc superconductor of some sort). Their superconducting wire 

has a diameter of 5 mm and is available in any desirable length. All the wiring in the community is done 

by superconductors except where energy needs to be converted to other forms (mechanical, heat, etc.). 

They have decided on the following design specification for their toroid: 

The mean diameter Aoroid of the toroid, (5) (Outside diameter + Inside diameter), is 10 times 

longer than the core diameter Dcore. The field inside the toroid is therefore reasonably uniform to 

within 10 percent. 

The maximum operating magnetic field in the core is 35 T. Fields larger than this can result in 

mechanical fracture and failure. 

Assume that Jc decreases linearly with the magnetic field and that the mechanical engineers in the 

group can take care of the forces trying to blow open the toroid by building a proper support 

structure. 

Find the size of the toroid (mean diameter and circumference), the number of turns and the length of the 

superconducting wire they need, the current in the coil, and whether this current is sufficiently below the 

critical current at that field. Is it feasible? 

8.20 Magnetic storage media 

a. Consider the storage of video information (FM signal) on a video tape. Suppose that the maximum 

signal frequency to be recorded as a spatial magnetic pattern is 10 MHz. The heads helically scan 

the tape, and the relative velocity of the tape to head is about 10 m s-1. What is the minimum spa¬ 

tial wavelength of the stored magnetic pattern (information) on the tape? 

b. Suppose that the speed of an audio cassette tape in a cassette player is 5 cm s_1. If the maximum 

frequency that needs to be recorded is 20 kHz, what is the minimum spatial wavelength on the tape? 

Note: An excellent quantitive description of magnetic recording may be found in R. L. Comstock, In¬ 

troduction to Magnetism and Magnetic Recording, New York: John Wiley & Sons, 1999. 

*8.21 Magnetic recording principles In this “back of an envelope” calculation we consider the principle of 

operation of a recording head for writing on a magnetic tape (perhaps an audio or a video tape). The record¬ 

ing head has a small gap, of size g (about 1 pm or less), which is much smaller than the mean circumfer¬ 

ence of the head t (perhaps a few millimeters) as shown in Figure 8.73. The coil of this head has N turns 

and is energized by the signal current /. The fringe field intensity Hf at the gap magnetizes the magnetic 

tape passing under the head. Hf must be greater than the coercivity Hc of the storage medium (tape) to be 

able to magnetize that region of the tape under the head. Suppose that Hm — magnetic field intensity in the 

core of the head; Hg = magnetic field intensity in the gap; Hf = fringing field intensity below the gap; 

Bm — jjir fjL0 Hm = magnetic field in the core of the head; Bg = fi0Hg = magnetic field in the gap. 

The magnetic flux must be continuous through the small gap. Thus, if A is the cross-sectional area, 

or Bg = Bm 

where Pr = Fr/A is the radial pressure, called the magnetic pressure, acting on the windings of the 

solenoid. (This pressure acts to tear apart the solenoid.) Using the fact that the work done against the 

magnetic forces in changing the volume changes the magnetic energy in the core, show that 

P=*L 
r 2 Ho 

What is the radial pressure on a solenoid that has a field of 35 T in the core? How many atmos¬ 

pheres is this? What is the equivalent ocean depth that gives the same pressure? What happens to this 

pressure at 100 T? 

Flux in the core = ABm = Flux in the gap = A Bg 
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/ 

Figure 8.73 The gap of a 
recording head and the fringing 

field for magnetizing the tape. 

a. Applying Ampere’s law for H around the mean circumference, l + g, show that 

b. 

Hg g + t/ Hr 
NI 

If we apply Ampere’s law for H around the semicircle of radius r coming out from the gap into the 

tape as shown in Figure 8.73 we get 

Hgg-Hf{7tr)^ 0 

Show that, 

c. 

d. 

Jtr(ixrg + l) 
NI 

The fringing field must overcome the coercivity of the storage medium. Suppose that the storage 

medium has Hc = 50 kA m"1 and we have to determine Ni given the head material. Suppose diat 

Hr « 104, g = 1 pm = 10_6m, l«5mm=5x 10-3 m, and r = 1 pm = 10-6 m to record into 

a depth of 1 pm. What is the minimum Nil If the minimum signal current (after amplification) is 

5 mA, how many turns do you need for the coil? 

What is the magnetic field Bm in the core? Can you use a ferrite head? 

Left: These high-temperature superconductor (HTS) flat tapes are based on (Bi2xPbJSr2Ca2Cu301 cw(Bi-2223). 
The tape has an outer surrounding protective metallic sheath. Right: HTS tapes have a ma,or advantage over 
equivalent-sized metal conductors, in being able to transmit considerably higher power loads. Coils made 
from HTS tape can be used to create more compact and efficient motors, generators, magnets, transformers, 

and energy storage devices. 

I SOURCE: Courtesy of Australian Superconductors. 

Field in the gap 

Fringing field 

for recording on 

storage media 



Augustin Jean Fresnel (1788-1827) was a French physicist, and a civil 
engineer for the French government, who was one of the principal 
proponents of the wave theory of light. He made a number of distinct 
contributions to optics including the well-known Fresnel lens that was used in 
lighthouses in the nineteenth century. He fell out with Napoleon in 1815 and 
was subsequently put into house arrest until the end of Napoleon's reign. 
During his enforced leisure time he formulated his wave ideas of light into a 
mathematical theory. 

I SOURCE: Smithsonian Institution, courtesy of AIP Emilio Segre Visual 
I Archives. 

Christiaan Huygens (1629-1695), a Dutch physicist, 
explained double refraction of light in calcite in terms 
of ordinary and extraordinary waves. Christiaan 
Huygens made many contributions to optics and wrote 
prolifically on the subject. 

I SOURCE: Courtesy of Emilo Segre Visual Archives, 
I American Institute of Physics. 
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The way electromagnetic (EM) radiation interacts with matter depends very much on 
the wavelength of the EM wave. Many familiar types of EM radiation have wave¬ 
lengths that range over many orders of magnitude. Although radio waves and X-rays 
are both EM waves, the two interact in a distinctly different way with matter. We tend 
to think of “light” as the electromagnetic radiation that we can see, that is, wavelengths 
in the visible range, typically 400 to 700 nm. However, in many applications, light is 
also used to describe EM waves that can have somewhat shorter or longer wavelengths 
such as ultraviolet (UV) and infrared (IR) light. For many practical purposes, it is use¬ 
ful to (arbitrarily) define light as EM waves that have wavelengths shorter than very 
roughly 100 |xm but longer than long-wavelength X-rays, roughly 10 nm. Today’s 
light wave communications use EM waves with wavelengths of 1300 and 1550 nm; in 
the infrared. Optical properties of materials are those characteristic properties that 
determine the interaction of light with matter; the best example being the refractive 
index n that determines the speed of light in a medium through v = c/n, where vis the 
speed of light in the medium and c is the speed of light in free space. The present chap¬ 
ter examines the key optical properties of matter and how these depend on the mate¬ 
rial and on the characteristics of the EM wave. The refractive index n, for example, 
depends on the dielectric polarization mechanisms as well as the wavelength X. The 
material’s n-X behavior is called the dispersion relation and is one of the most im¬ 
portant characteristics in many optical device applications. 

We know from Chapter 3 that, depending on the experiment, we can treat light 
either as an EM wave, exhibiting typical wave-like properties, or as photons, exhibit¬ 
ing particle-like behavior. In this chapter we will primarily use the wave nature of 
light, though for absorption of light, the photon interpretation is more appropriate as 
the photons interact with electrons in the material. 
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Traveling 

wave along z 

9.1 LIGHT WAVES IN A HOMOGENEOUS MEDIUM 
We know from well-established experiments that light exhibits typical wave-like 
properties such as interference and diffraction. We can treat light as an EM wave with 
time-varying electric and magnetic fields Ex and By, respectively, which propagate 
through space in such a way that they are always perpendicular to each other and the 
direction of propagation z is as depicted in Figure 9.1. The simplest traveling wave is 
a sinusoidal wave, which, for propagation along z, has the general mathematical 
form,1 

Ex = E0 cos (a)t - kz + <t>0) [9.1] 

where Ex is the electric field at position z at time f; k is the propagation constant, or 
wavenumber, given by 2n/X, where A is the wavelength; a> is the angular frequency; 
Ea is the amplitude of the wave; and <f>0 is a phase constant which accounts for the fact 
that at t = 0 and z = 0,Ex may or may not necessarily be zero depending on the choice 
of origin. The argument (cot — kz + <f>0) is called the phase of the wave and denoted 
by <f>. Equation 9.1 describes a monochromatic plane wave of infinite extent travel¬ 
ing in the positive z direction as depicted in Figure 9.2. In any plane perpendicular to 
the direction of propagation (along z), the phase of the wave, according to Equa¬ 
tion 9.1, is constant which means that the field in this plane is also constant. A surface 
over which the phase of a wave is constant is referred to as a wavefront. A wavefront 
of a plane wave is obviously a plane perpendicular to the direction of propagation as 
shown in Figure 9.2. 

We know from electromagnetism that time-varying magnetic fields result in 
time-varying electric fields (Faraday’s law) and vice versa. A time-varying electric 
field would set up a time-varying magnetic field with the same frequency. Accord¬ 
ing to electromagnetic principles,2 a traveling electric field Ex as represented by 
Equation 9.1 would always be accompanied by a traveling magnetic field By with 
the same wave frequency and propagation constant (a> and k) but the directions of 
the two fields would be orthogonal as in Figure 9.1. Thus, there is a similar traveling 
wave equation for the magnetic field component By. We generally describe the in¬ 
teraction of a light wave with a nonconducting matter (conductivity, a — 0) through 
the electric field component Ex rather than By because it is the electric field that dis¬ 
places the electrons in molecules or ions in the crystal and thereby gives rise to the 
polarization of matter. However, the two fields are linked, as in Figure 9.1, and 
there is an intimate relationship between the two fields. The optical field refers to 
the electric field Ex. 

We can also represent a traveling wave using the exponential notation since 
cos <f> = Re[exp(j0)] where Re refers to the real part. We then need to take the real 

1 This chapter uses E for the electric field which was reserved for energy in previous chapters. There should be no 
confusion with Eg that represents the energy bandgap. In addition; n is used to represent the refractive index rather 
than the electron concentration. 

2 Maxwell's equations formulate electromagnetic phenomena and provide relationships between the electric and 
magnetic fields and their space and time derivatives. We only need to use a few selected results from Maxwell's 
equations without delving into their derivations. The magnetic field B is also called the magnetic induction or 
magnetic flux density. 
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Figure 9» 1 An electromagnetic wave is a traveling wave that has time-varying electric and magnetic 

fields that are perpendicular to each other and the direction of propagation z. 

Figure 9.2 A plane EM wave traveling along z, has the same Ex (or By) at any point in a 

given xy plane. 

All electric field vectors in a given xy plane are therefore in phase. The xy planes are of infinite 

extent in the x and y directions. 

part of any complex result at the end of calculations. Thus, we can write Equation 9.1 as 

Ex(z,t) = RetEoexpO'^expyOat - kz)] 

or 

Ex(z, t) = Re[Ecexp j(cot - kz)] 19.2] 

where Ec = E0 exp(j<p0) is a complex number that represents the amplitude of the wave 
and includes the constant phase information <j>0. 

Traveling 

wave along z 
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Figure 9.3 A traveling plane EM wave along a 

direction k. 

Direction of propagation 
/ 

We indicate the direction of propagation with a vector k, called the wavevector, 
whose magnitude is the propagation constant k = 2tt/X. It is clear that k is perpendic¬ 
ular to constant phase planes as indicated in Figure 9.2. When the EM wave is propa¬ 
gating along some arbitrary direction k, as indicated in Figure 9.3, then the electric 
field E{r, t) at a point r on a plane perpendicular to k is 

Light wave 

in three E(r, t) — E0 cos (cat — k • r + 0O) [9.3] 
dimensions 

because the dot product k • r is along the direction of propagation similar to kz. The 
dot product is the product of k and the projection of r onto k which is r' in Figure 9.3, 
so k • r = At'. Indeed, if propagation is along z, k • r becomes kz. In general, if k has 
components kx, ky, and kz along the jc, y, and z directions, then from the definition of the 
dot product, k • r = kxx + kyy + kzz. 

The time and space evolution of a given phase <j>, for example, the phase corre¬ 
sponding to a maximum field, according to Equation 9.1 is described by 

<f> = o)t — kz + 4>o = constant 

During a time interval St, this constant phase (and hence the maximum field) 
moves a distance 8z. The phase velocity of this wave is therefore Sz/St. Thus the 
phase velocity v is 

Phase 
velocity 

where v is the frequency (co = 2ttv). 

We are frequently interested in the phase difference A0 at a given time between 
two points on a wave (Figure 9.1) that are separated by a certain distance. If the wave 
is traveling along z with a wavevector k, as in Equation 9.1, then the phase difference 
between two points separated by Az is simply k Az since cot is the same for each point. 
If this phase difference is 0 or multiples of 2it, then the two points are in phase. Thus, 
the phase difference A<f> can be expressed as k A z or 2n A z/X. 

v_ dz __ to _ 

dt k 
[9.4] 
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9.2 REFRACTIVE INDEX 
When an EM wave is traveling in a dielectric medium, the oscillating electric field po¬ 
larizes the molecules of the medium at the frequency of the wave. Intuitively, the EM 
wave propagation can be considered to be the propagation of this polarization in the 
medium. The field and the induced molecular dipoles become coupled. The net effect 
is that the polarization mechanism delays the propagation of the EM wave. The 
stronger the interaction between the field and the dipoles, the slower is the propagation 
of the wave. The relative permittivity sr measures the ease with which the medium 
becomes polarized, and hence it indicates the extent of interaction between the field 
and the induced dipoles. For an EM wave traveling in a nonmagnetic dielectric 
medium of relative permittivity er, the phase velocity Ws given by 

v = 
1 

y/ 
[9.5] 

If the frequency v is in the optical frequency range, then er will be due to electronic po¬ 
larization as ionic polarization will be too sluggish to respond to the field. However, at 
the infrared frequencies or below, the relative permittivity also includes a significant 
contribution from ionic polarization and the phase velocity is slower. For an EM wave 
traveling in free space, sr = 1 and ^Vacuum = 1 t = c = 3 x 108 m s_l, the ve¬ 
locity of light in a vacuum. The ratio of the speed of light in free space to its speed in 
a medium is called the refractive index n of the medium, 

n = [9.6] 

Suppose that in free space k0 is the wavevector (k0 = 2n/X0) and X0 is the wave¬ 
length, then the wavevector k in the medium will be nk0 and the wavelength X will be 
X0/n. Indeed, we can also define the refractive index in terms of the wavevector k in 
the medium with respect to that in a vacuum k0, 

k 
n = — [9.7] 

k0 

Phase HBH 

velocity in 

a medium 

with sr 

Definition of 

refractive 

index 

Definition of 

refractive 

index 

Equation 9.6 is in agreement with our intuition that light propagates more slowly 
in a denser medium which has a higher refractive index. We should note that the fre¬ 
quency v remains the same. The refractive index of a medium is not necessarily the 
same in all directions. In noncrystalline materials such as glasses and liquids, the ma¬ 
terial structure is the same in all directions and n does not depend on the direction. 
The refractive index is then isotropic. In crystals, however, the atomic arrangements 
and interatomic bonding are different along different directions. Crystals, in general, 
have nonisotropic, or anisotropic, properties. Depending on the crystal structure, the 
relative permittivity er is different along different crystal directions. This means that, 
in general, the refractive index n seen by a propagating EM wave in a crystal will 
depend on the value of sr along the direction of the oscillating electric field (that is, 
along the direction of polarization). For example, suppose that the wave in Figure 9.1 
is traveling along the z direction in a particular crystal with its electric field oscillating 
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along the x direction. If the relative permittivity along this x direction is erx, then 
nx = y/s^. The wave therefore propagates with a phase velocity that is c/nx. The 
variation of n with direction of propagation and the direction of the electric field de¬ 
pends on the particular crystal structure. With the exception of cubic crystals (such as 
diamond) all crystals exhibit a degree of optical anisotropy which leads to a number 
of important applications. Typically noncrystalline solids, such as glasses and liquids, 
and cubic crystals are optically isotropic; they possess only one refractive index for 

, all directions. 

EXAMPLE 9.1 RELATIVE PERMITTIVITY AND REFRACTIVE INDEX Relative permittivity er, or the dielectric 
constant, of materials is frequency dependent and further it depends on crystallographic direc¬ 
tion since it is easier to polarize the medium along certain directions in the crystal. Glass has no 
crystal structure; it is amorphous. The relative permittivity is therefore isotropic but nonetheless 
frequency dependent. 

The relationship n = ,/iy between the refractive index n and er must be applied at the 
same frequency for both n and er. The relative permittivity for many materials can be vastly dif¬ 
ferent at high and low frequencies because different polarization mechanisms operate at these 
frequencies. At low frequencies all polarization mechanisms present can contribute to sr, 
whereas at optical frequencies only the electronic polarization can respond to the oscillating 
field. Table 9.1 lists the relative permittivity er(LF) at low frequencies (e.g., 60 Hz or 1 kHz as 
would be measured for example using a capacitance bridge in the laboratory) for various mate¬ 
rials. It then compares Ver(LF) with n. 

For diamond and silicon there is an excellent agreement between Ver(LF) and n. Both are 
covalent solids in which electronic polarization (electronic bond polarization) is the only polar¬ 
ization mechanism at low and high frequencies. Electronic polarization involves the displace¬ 
ment of light electrons with respect to positive ions of the crystal. This process can readily 
respond to the field oscillations up to optical or even ultraviolet frequencies. 

For AgCl and SiC>2, Ver(LF) is larger than n because at low frequencies both of these solids 
possess a degree of ionic polarization. The bonding has a substantial degree of ionic character 
which contributes to polarization at frequencies below far-infrared wavelengths. (The AgCl crys¬ 
tal has almost all ionic bonding.) In the case of water, the er(LF) is dominated by orientational or 

Table 9.1 Low-frequency (LF) relative permittivity er{LF) and refractive index n 

Material MLF) V sr(LF) n (optical) Comments 

Diamond 5.7 2.39 2.41 (at 590 nm) Electronic bond polarization 

up to UV light 

Si 11.9 3.44 3.45 (at 2.15 |xm) Electronic bond polarization up 

to optical frequencies 

AgCl 11.14 3.33 2.00 (at 1-2 |xm) Ionic polarization contributes 

to £>(LF) 

Si02 3.84 2.00 1.46 (at 600 nm) Ionic polarization contributes 

toer(LF) 

Water 80 8.9 1.33 (at 600 nm) Dipolar polarization contributes 

to £>(LF)» which is large 
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dipolar polarization which is far too sluggish to respond to high-frequency oscillations of the 
field at optical frequencies. 

It is instructive to consider what factors affect n. The simplest (and approximate) expression 
for the relative permittivity is 

Na 
er*l +- [9.81 

where N is the number of molecules per unit volume and a is the polarizability per molecule. 
Both atomic concentration, or density, and polarizability therefore increase n. For example, 
glasses of given type but with greater density tend to have higher n. 

Relative 

permittivity 

and 

polarizability 

9.3 DISPERSION: REFRACTIVE 
INDEX-WAVELENGTH BEHAVIOR 

The refractive index of materials in general depends on the frequency, or the wave¬ 
length. This wavelength dependence follows directly from the frequency dependence of 
the relative permittivity er. Figure 9.4 shows what happens to an atom in the presence 
of an oscillating electric field E which is due to a light wave passing through this loca¬ 
tion; it may also be due to an applied external field. 

In the absence of an electric field and in equilibrium, the center of mass C of the 
orbital motions of the electrons coincides with the positively charged nucleus at O and 
the net electric dipole moment is zero as indicated in Figure 9.4a. Suppose that the 
atom has Z number of electrons orbiting the nucleus and all the electrons are contained 

Gbw-© 
/^induced 

(a) A neutral atom in E = 0. (b) Induced dipole moment in a field. 

Figure 9.4 Electronic polarization of an atom. In the presence of a field in the +x direction, the 

electrons are displaced in the —x direction (from O), and the restoring force is in the +x direction. 
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Induced 

electronic 

dc dipole 

moment 

Simple 

harmonic 

motion 

Natural 

frequency 

of the atom 

within a given shell. In the presence of the electric field E, however, the light electrons 
become displaced in the opposite direction to the field, so their center of mass C is 
shifted by some distance x with respect to the nucleus O which we take to be the origin 
as shown in Figure 9.4b. As the electrons are “pushed” away by the applied field, the 
Coulombic attraction between the electrons and nuclear charge “pulls in” the electrons. 
The force on the electrons, due to E, trying to separate them away from the nuclear 
charge is ZeE. The restoring force Fr, which is the Coulombic attractive force between 
the electrons and the nucleus, can be taken to be proportional to the displacement x pro¬ 
vided that the latter is small. The reason is that Fr = Fr(x) can be expanded in powers 
of x, and for small jc only the linear term matters. The restoring force Fr is obviously 
zero when C coincides with O (x = 0). We can write Fr = —fix where fi is a constant 
and the negative sign indicates that Fr is always directed toward the nucleus O. 

First consider applying a dc field. In equilibrium, the net force on the negative 
charge is zero or ZeE — fix from which x is known. Therefore the magnitude of the 
induced electronic dipole moment is given by 

/^induced — (Ze)x — 
Z2e2 

[9.9] 

As expected ^induced is proportional to the applied field. The electronic dipole mo¬ 
ment in Equation 9.9 is valid under static conditions, i.e., when the electric field is a 
dc field. Suppose that we suddenly remove the applied electric field polarizing the 
atom. There is then only the restoring force —fix, which always acts to pull the elec¬ 
trons toward the nucleus O. The equation of motion of the negative charge center is 
then (force = mass x acceleration) 

d2 x 
-px = Zme—r 

dtL 

By solving this differential equation we can show that the displacement at any 
time is a simple harmonic motion, that is, 

x(t) = x0 cos(co0t) 

where the angular frequency of oscillation co0 is 

/ fi y/2 
= -^ [9.10] 

\Zme/ 

In essence, this is the oscillation frequency of the center of mass of the electron 
cloud about the nucleus and x0 is the displacement before the removal of the field. 
After the removal of the field, the electronic charge cloud executes simple harmonic 
motion about the nucleus with a natural frequency co0 determined by Equation 9.10; 
a)0 is also called the resonance frequency. The oscillations, of course, die out with 
time because there is an inevitable loss of energy from an oscillating charge cloud. An 
oscillating electron is like an oscillating current and loses energy by radiating EM 
waves; all accelerating charges emit radiation. 

Consider now the presence of an oscillating electric field due to an EM wave pass¬ 
ing through the location of this atom as in Figure 9.4b. The applied field oscillates 
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harmonically in the +x and — x directions, that is, E = Ea exp(jcot). This field will 
drive and oscillate the electrons about the nucleus. There is again a restoring force Fr 

acting on the displaced electrons trying to bring back the electron shell to its equilib¬ 
rium placement around the nucleus. For simplicity we will again neglect energy losses. 
Newton’s second law for Ze electrons with mass Zme driven by E is given by 

drx 
Zme—- = — ZeE0exp(jcot) — fix 

at2 
[9.11] 

The solution of this equation gives the instantaneous displacement x (t) of the center 
of mass of electrons from the nucleus (C from O), 

x = x(t) = 
eE0 exp (jcot) 

me(a>l - co2) 

The induced electronic dipole moment is then simply given by /^induced = —(Ze)x. 

The negative sign is needed because normally x is measured from negative to positive 
charge whereas in Figure 9.4b it is measured from the nucleus. By definition, the elec¬ 
tronic polarizability ae is the induced dipole moment per unit electric field, 

Pinduced Ze2 

me{(o20- co2) 
[9.12] 

Thus, the displacement x and hence electronic polarizability ae increase as co in¬ 
creases. Both become very large when co approaches the natural frequency coQ. In prac¬ 
tice, charge separation x and hence polarizability cte do not become infinite at co = coQ 

because two factors impose a limit. First, at large x, the system is no longer linear and 
this analysis is not valid. Secondly, there is always some energy loss. 

Given that the polarizability is frequency dependent as in Equation 9.12, the effect 
on the refractive index n is easy to predict. The simplest (and a very rough) relation¬ 
ship between the relative permittivity er and polarizability ote is 

N 
er = 1 H-oce 

where N is the number of atoms per unit volume. Given that the refractive index n is 
related to sr by n2 = er, it is clear that n must be frequency dependent, i.e.. 

n 2 
= 1 + [9.131 

We can also express this in terms of the wavelength X. If X0 = 2nc/co0 is the reso¬ 
nance wavelength, then Equation 9.13 is equivalent to 

n 2 
= 1 + 

/JVZe2\/ X. \2 X2 

\ s0me )\27Tc/ X2 — X2 
[9.14] 

This type of relationship between n and the frequency co, or wavelength X, is called 
the dispersion relation. Although the above treatment is grossly simplified, it does 
nonetheless emphasize that n will always be wavelength dependent and will exhibit a 

Lorentz 
oscillator 

model 

Electronic 

polarizability 

Relative 

permittivity 

and 

polarizability 

Dispersion 

relation 

Dispersion 

relation 
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Table 9.2 Sellmeier and Cauchy coefficients 

Sellmeier 

A-2 *3 

Ai a2 a3 (pjm) (|xm) (ixm) 

S1O2 (fused silica) 0.696749 0.408218 0.890815 0.0690660 0.115662 9.900559 

86.5% Si02-13.5% 0.711040 0.451885 0.704048 0.0642700 0.129408 9.425478 

Ge02 

Ge02 0.80686642 0.71815848 0.85416831 0.068972606 0.15396605 11.841931 

Sapphire 1.023798 1.058264 5.280792 0.0614482 0.110700 17.92656 

Diamond 0.3306 4.3356 — 0.1750 0.1060 — 

Cauchy 

Range of hv (eV) n-2 (eV2) «o n2(eV 2) 

1 0> 1 e
 

Diamond 0.05-5.47 -1.07 x 10“s 2.378 8.01 

1 O
 

X
 1.04 x 10~4 

Silicon 0.002-1.08 -2.04 x 10~8 3.4189 8.15 x 10"2 1.25 x 10~2 

Germanium 0.002-0.75 -1.0 x 10“8 4.003 2.2 x 10“' 1.4 x 10-‘ 

SOURCE: Sellmeier coefficients combined from various sources. Cauchy coefficients from D. Y. Smith etal., J. Phys. 
CM 13,3883, 2001. 

Sellmeier 

equation 

Cauchy 

short-form 

dispersion 

equation 

substantial increase as the frequency increases toward a natural frequency of the po¬ 
larization mechanism. In the above example, we considered the electronic polarization 
of an isolated atom with a well-defined natural frequency (o0. In the crystal, however, 
the atoms interact, and further we also have to consider the valence electrons in the 
bonds. The overall result is that n is a complicated function of the frequency or the 
wavelength. One possibility is to assume a number of resonant frequencies, that is, not 
just k0 but a series of resonant frequencies, kuk2,... , and then sum the contributions 
arising from each with some weighing factor A i, A2, etc., 

n 2 1 + 
A,X2 A2k2 A3A2 

k2-k2 + k2-k2 + k2-k2 + "' 
[9.151 

where A i, A2, A3 and k 1, k2, and X3 are constants, called Sellmeier coefficients.3 Equa¬ 
tion 9.15 turns out to be quite a useful semiempirical expression for calculating n at var¬ 
ious wavelengths if the Sellmeier coefficients are known. Higher terms involving A4 and 
higher A coefficients can generally be neglected in representing n versus k behavior over 
typical wavelengths of interest. For example, for diamond, we only need the A\ and A2 

terms. The Sellmeier coefficients are listed in various optical data handbooks. 
There is another well-known useful n-k dispersion relation due originally to 

Cauchy (1836), which has the short form given by 

n 
B 

[9.16] 

I 3 This is also known as the Sellmeier-Herzberger formula. 
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where A, B, and C are material specific constants. Typically, the Cauchy equation is 
used in the visible spectrum for various optical glasses. A more general Cauchy dis¬ 
persion relation is of the form4 

n = n-2(hv)~2 + «o + ti2(hv)2 + n${hv)A 19.17] 

where hv is the photon energy, and no, n_2, «2, and «4 are constants; values for dia¬ 
mond, Si, and Ge are listed in Table 9.2. The general Cauchy equation is usually ap¬ 
plicable over a wide photon energy range. 

Cauchy 

dispersion 

equation in 

photon 

energy 

GaAs DISPERSION RELATION For GaAs, from A. = 0.89 to 4.1 [xm, the refractive index is 
given by the following dispersion relation, 

n2 = 7.10 + 
3.78A2 

k2 - 0.2767 
19.18] 

where k is in microns (jxm). What is the refractive index of GaAs for light with a photon energy 
of 1 eV? 

EXAMPLE 9.2 

GaAs 

dispersion 

relation 

SOLUTION 

At hv = 1 eV, 

Thus, 

he (6.62 x 10"34 J s)(3 x 108 m s"1) 
k = — =---:-= 1.24 p,m 

hv (leV x 1.6 x 10-19 JeV-1) 

- 3.78A2 3.78(1.24)2 
n2 = 7.10 + —-= 7.10 +_ . = 11.71 

k2 - 0.2767 (1.24)2 - 0.2767 

so that n = 3.42 

Note that the n versus k expression for GaAs is actually a Sellmeier-type formula because 
when k2 » k2, then Ax can be simply lumped with 1 to give 1 + Ax = 7.10. 

SELLMEIER EQUATION AND DIAMOND The relevant Sellmeier coefficients for diamond are 
given in Table 9.2. Calculate its refractive index at 550 nm (green light) to three decimal places. 

EXAMPLE 9.3 

SOLUTION 

The Sellmeier dispersion relation for diamond is 

, 0.3306 A.2 4.3356A.2 
n = 1 -I- — -- -(- —z-- 

k2 - (175 nm)2 k2 ~ (106 nm)2 

_ i 0.3306(550 nm)2 4.3356(550 nm)2 

+ (550 nm)2 - (175 nm)2 + (550 nm)2 - (106 nm)2 ‘ 

So that n = 2.423 

which is about 0.1 percent different than the experimental value of 2.426. 

I 4 D. Y. Smith et o/., J. Phys. CM 13, 3883, 2001. 
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EXAMPLE 9.4 CAUCHY EQUATION AND DIAMOND Using the Cauchy coefficients for diamond in Table 9.2, 
calculate the refractive index at 550 nm. 

SOLUTION 

At k = 550 nm, the photon energy is 

he (6.62 x 10~34 Js)(3 x K^ms"1) 1 
hv = — = --- x -- = 2.254 eV 

k 550 x 10-9m 1.6 x 10~19 JeV_1 

Using the Cauchy dispersion relation for diamond with coefficients from Table 9.2, 

n = n-2(hv)~2 + n0 + n2(hv)2 + n4(/iv)4 

= (-1.07 x 10-5)(2.254)-2 + 2.378 + (8.01 x 10“3)(2.254)2 + (1.04 x 10"4)(2.254)4 

= 2.421 

The difference in n from the value in Example 9.3 is 0.08 percent, and is due to the Cauchy co¬ 
efficients quoted in Table 9.2 being applicable over a wider wavelength range at the expense of 
some accuracy. 

9A GROUP VELOCITY AND GROUP INDEX 

Since there are no perfect monochromatic waves in practice, we have to consider the 
way in which a group of waves differing slightly in wavelength will travel along the z 
direction as depicted in Figure 9.5. When two perfectly harmonic waves of frequencies 
co — Sco and co + Sco and wavevectors k — 8 k and k + 8k interfere, as shown in Fig¬ 
ure 9.5, they generate a wavepacket which contains an oscillating field at the mean 
frequency co that is amplitude modulated by a slowly varying field of frequency Sco. 
The maximum amplitude moves with a wave vector 8 k and thus with a group velocity 
that is given by Sco/8k, that is, 

Group 

velocity 
[9.19] 

Figure 9.5 Two slightly different wavelength 
waves traveling in the same direction result in 
a wave packet that has an amplitude variation 
that travels at the group velocity. 

/VWWWW\/ <a+d<0 
+ 

co - da) 
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The group velocity therefore defines the speed with which energy or information 
is propagated since it defines the speed of the envelope of the amplitude variation. The 
maximum electric field in Figure 9.5 advances with a velocity vg, whereas the phase 
variations in the electric field are propagating at the phase velocity v. 

Inasmuch as cd = vk and the phase velocity v= c/n, the group velocity in a medium 
can be readily evaluated from Equation 9.19. In a vacuum, obviously vis simply c and 
independent of the wavelength or k. Thus for waves traveling in a vacuum, co = ck and 
the group velocity is 

da> 
(vacuum) = — = c 

dk 
Phase velocity [9.20] 

On the other hand, suppose that v depends on the wavelength or k by virtue of n 
being a function of the wavelength as in the case for glasses. Then, 

*"*'-ksKr) 
where n — n(X) is a function of the wavelength. The group velocity vg in a medium, 
from differentiating Equation 9.21 in Equation 9.19, is approximately given by 

d(o 
Vg(medium) = — = 

dn 
n — X— 

dX 

This can be written as 

where 

Vg(medium) = 
c 

Ng 

Ng — n 

[9.22] 

[9.23] 

is defined as the group index of the medium. Equation 9.23 defines the group refractive 
index Ng of a medium and determines the effect of the medium on the group velocity via 
Equation 9.22. 

In general, for many materials the refractive index n and hence the group index Ng 
depend on the wavelength of light by virtue of the relative permittivity er being fre¬ 
quency dependent. Then both the phase velocity vand the group velocity vg depend on 
the wavelength and the medium is called a dispersive medium. The refractive index n 
and the group index Ng of pure SiC>2 (silica) glass are important parameters in optical 
fiber design in optical communications. Both of these parameters depend on the wave¬ 
length of light as shown in Figure 9.6. Around 1300 nm, Ng is at a minimum which 
means that for wavelengths close to 1300 nm, Ng is wavelength independent. Thus, 
light waves with wavelengths around 1300 nm travel with the same group velocity and 
do not experience dispersion. This phenomenon is significant in the propagation of 
light in glass fibers used in optical communications. 

Group 

velocity 

in a vacuum 

Group 

velocity 

in a medium 

Group index 
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Figure 9.6 Refractive index n and 
the group index Ng of pure Si02 (silica) 
glass as a function of wavelength. 

500 700 900 1100 1300 1500 1700 1900 

Wavelength (nm) 

EXAMPLE 9.5 GROUP VELOCITY Consider two sinusoidal waves which are close in frequency, that is, waves of 
frequencies co — Sco and co + Sco as in Figure 9.5. Their wavevectors will be k — 8k and k + 8k. 
The resultant wave will be 

Ex(z, t) = E0 cos[(o> — 8co)t — (k — <5fc)z] + E0 cos[(cu + 8co)t — (k + 8k)z] 

By using the trigonometric identity cos A + cos B = 2cos[l(A — 5)] cos[|(A + 5)] we 
arrive at 

Ex(z, t) = 2E0 cos[(<5a>)t — (<$fc)z] cos[o)t — kz] 

As depicted in Figure 9.5, this represents a sinusoidal wave of frequency co which is am¬ 
plitude modulated by a very slowly varying sinusoidal of frequency Sco. The system of waves, 
that is, the modulation, travels along z at a speed determined by the modulating term 
cos[(8a>)t — (8k)z]. The maximum in the field occurs when [{8co)t — (8k)z] = 2mn = constant 
(m is an integer), which travels with a velocity 

Group 

velocity 

This is the group velocity of the waves, as stated in Equation 9.19, since it determines the 
speed of propagation of the maximum electric field along z. 

dz 8co dco 
— - or vQ = — 

dt 8k 9 dk 

EXAMPLE 9.6 GROUP AND PHASE VELOCITIES Consider a light wave traveling in a pure SiC>2 (silica) glass 
medium. If the wavelength of light is 1300 nm and the refractive index at this wavelength is 
1.447, what is the phase velocity, group index (Ng), and group velocity (vg)? 

SOLUTION 

The phase velocity is given by 

c 3 x 108 ms 1 
= 2.073 x 108 m s'1 

n 1.447 
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From Figure 9.6, at X = 1300 nm, Ng = 1.462, so 

V9 = Nc 

3 x 108 m s 

1.462 

-l 

= 2.052 x 108 m s -l 

The group velocity is ~0.7 percent smaller than the phase velocity. 

9.5 MAGNETIC FIELD: IRRADIANCE 
AND POYNTING VECTOR 

Although we have considered the electric field component Ex of the EM wave, we 
should recall that the magnetic field (magnetic induction) component By always 
accompanies Ex in an EM wave propagation. In fact, if vis the phase velocity of an EM 
wave in an isotropic dielectric medium and n is the refractive index, then according to 
electromagnetism, at all times and anywhere in an EM wave,5 

Ex = vBy =-By [9.24] 
n 

where v= (e0srfi0)~l/2 and n = yfe^. Thus, the two fields are simply and intimately 
related for an EM wave propagating in an isotropic medium. Any process that alters Ex 
also intimately changes By in accordance with Equation 9.24. 

As the EM wave propagates in the direction of the wavevector k as shown in 
Figure 9.7, there is an energy flow in this direction. The wave brings with it electro¬ 
magnetic energy. A small region of space where the electric field is Ex has an energy 
density, that is, energy per unit volume, given by \e0erE2x. Similarly, a region of 
space where the magnetic field is By has an energy density \B2/ia0. Since the two 
fields are related by Equation 9.24, the energy densities in the Ex and By fields are the 
same, 

1 

2 
s0srE2x [9.25] 

The total energy density in the wave is therefore e0erE2x. Suppose that an ideal 
“energy meter” is placed in the path of the EM wave so that the receiving area A of this 
meter is perpendicular to the direction of propagation. In a time interval At, a portion 
of the wave of spatial length v At crosses A as shown in Figure 9.7. Thus, a volume 
Av At of the EM wave crosses A in time At. The energy in this volume consequently 
becomes received. If S is the EM power flow per unit area, 

S = Energy flow per unit time per unit area 

giving, 

S = 
{AvAt) (e0erE2) 

A At 
= ve0erE2 = v2e0erExBy [9.26] 

5 This is actually a statement of Faraday's law for EM waves. In vector notation it is often expressed as aA = k X E. 
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<-v At-> 

Figure 9.7 A plane EM wave traveling along k crosses an area A at right 
angles to the direction of propagation. In time At, the energy in the cylindrical 
volume Av At (shown dashed) flows through A. 
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Average 
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Average 
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In an isotropic medium, the energy flow is in the direction of wave propagation. If 
we use the vectors E and B to represent the electric and magnetic fields in the EM 
wave, then the wave propagates in a direction E x B, because this direction is perpen¬ 
dicular to both E and B. The EM power flow per unit area in Equation 9.26 can be 
written as 

S = v2e0SrE x B 19.27] 

where S, called the Poynting vector, represents the energy flow per unit time per unit 
area in a direction determined by E x B (direction of propagation). Its magnitude, 
power flow per unit area, is called the irradiance.6 

The field Ex at the receiver location (say, z = Zi) varies sinusoidally which means 
that the energy flow also varies sinusoidally. The irradiance in Equation 9.26 is the 
instantaneous irradiance. If we write the field as Ex = E0 sin (cot) and then calculate 
the average irradiance by averaging S over one period, we would find the average 
irradiance, 

_ 1 2 
I — ^average — ~ V S0£r E Q 

Since v = c/n and er = nl we can write Equation 9.28 as 

_ 1 2 
I — ^average — ~ CG0nEQ 

= (1.33 x 10"3)n£^ 

[9.28] 

[9.291 

The instantaneous irradiance can only be measured if the power meter can re¬ 
spond more quickly than the oscillations of the electric field, and since this is in the 

6 The term intensity is widely used and interpreted by many engineers as power flow per unit area even though the 
strictly correct term is irradiance. Many optoelectronic data books simply use intensity to mean irradiance. 
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optical frequencies range, all practical measurements invariably yield the average ir- 
radiance because all detectors have a response rate much slower than the frequency of 
the wave. 

9.6 SNELL’S LAW AND TOTAL INTERNAL 
REFLECTION (TIR) 

We consider a traveling plane EM wave in a medium (1) of refractive index ri\ propa¬ 
gating toward a medium (2) with a refractive index «2- Constant phase fronts are joined 
with broken lines, and the wavevector k, is perpendicular to the wave fronts as shown 
in Figure 9.8. When the wave reaches the plane boundary between the two media, a 
transmitted wave in medium 2 and a reflected wave in medium 1 appear. The transmit¬ 
ted wave is called the refracted light. The angles, 0„ 0t, 6r define the directions of the 
incident, transmitted, and reflected waves, respectively, with respect to the normal to 
the boundary plane as shown in Figure 9.8. The wavevectors of the reflected and trans¬ 
mitted waves are denoted as kr and kf, respectively. Since both the incident and re¬ 
flected waves are in the same medium, the magnitudes of kr and k, are the same, kr = 

Figure 9.8 A light wave traveling in a medium with a greater refractive index 
(ni > 02) suffers reflection and refraction at the boundary. 
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Simple arguments based on constructive interference can be used to show that there 
can only be one reflected wave that occurs at an angle equal to the incidence angle. The 
two waves along A, and Bt are in phase. When these waves are reflected to become 
waves Ar and Br, then they must still be in phase, otherwise they will interfere destruc¬ 
tively and destroy each other. The only way the two waves can stay in phase is if 
0r = 0i. All other angles lead to the waves Ar and Br being out of phase and interfering 
destructively. 

The refracted waves A, and B, are propagating in a medium of refracted index 
«2 (< «i) that is different than n\. Hence the waves A, and Bt have different velocities 
than A, and Bt. We consider what happens to a wavefront such as AB, corresponding 
perhaps to the maximum field, as it propagates from medium 1 to 2. We recall that the 
points A and B on this front are always in phase. During the time it takes for the phase 
B on wave B( to reach B', phase A on wave A, has progressed to A7. The wavefront AB 

thus becomes the front A'B' in medium 2. Unless the two waves at A' and B' still have 
the same phase, there will be no transmitted wave. A' and B' points on the front are 
only in phase for one particular transmitted angle 9t. 

If it takes time t for the phase at B on wave 5, to reach B', then BB' = i\t = ct/ri\. 

During this time t, the phase A has progressed to A' where AA' = v2t = ct/n2. A' and 
B' belong to the same front just like A and B, so A B is perpendicular to k, in medium 
1 and A'B' is perpendicular to k, in medium 2. From geometrical considerations, 
AB' = BB'/ sin 0, and AB' = AA'/ sin 0,, so 

AB' = 
V\t 

sin 0i 

Vlt 

sin 0t 

or 

Snell’s law 
sin 0, V\ «2 

sin 0f v2 n i 
[9.30] 

This is Snell’s law7 which relates the angles of incidence and refraction to the re¬ 
fractive indices of the media. 

If we consider the reflected wave, the wave front AB becomes A" B' in the reflected 
wave. In time t, phase B moves to B' and A moves to A". Since they must still be in 
phase to constitute the reflected wave, BB' must be equal to AA". Suppose it takes 
time t for the wavefront B to move to B' (or A to A"). Then, since BB' — AA" = V\t, 

from geometrical considerations, 

AB' = 
Vi t 

sin 0, 

V\t 

sin0r 

so that 0, = 0r. The angles of incidence and reflection are the same. 
When n\> n.2, then obviously the transmitted angle is greater than the incidence 

angle as apparent in Figure 9.8. When the refraction angle 0, reaches 90°, the incidence 

7Wiilebrord van Roijen Snell (1581-1626), a Dutch physicist and mathematician, was born in Leiden and 
eventually became a professor at Leiden University. He obtained his refraction law in 1621 which was published 
by Rene Descartes in France in 1637; it is not known whether Descartes knew of Snell's law or formulated it 
independently. 
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Transmitted 
(refracted) light 

light light 

(a) (b) (c) 

Figure 9.9 Light wave traveling in a more dense medium strikes a less dense medium. 

Depending on the incidence angle with respect to 9C, determined by the ratio of the refractive indices, 

the wave may be transmitted (refracted) or reflected. 

(a) 0, < ec. 

(b) 0, = 0c. 

(c) 0; > 9C and total internal reflection (TIR). 

angle is called the critical angle 0C which is given by 

sin0c = — [9.31] 
n\ 

When the incidence angle 0, exceeds 6C, then there is no transmitted wave but only 
a reflected wave. The latter phenomenon is called total internal reflection (TIR). The 
effect of increasing the incidence angle is shown in Figure 9.9. It is the TIR phenome¬ 
non that leads to the propagation of waves in a dielectric medium surrounded by a 
medium of smaller refractive index as in optical waveguides (e.g., optical fibers). 

Critical angle 

for total 

internal 

reflection 

(TIR) 

OPTICAL FIBERS IN COMMUNICATIONS Figure 9. 10 shows a simplified view of a modem op¬ 
tical communications system. Information is converted into a digital signal (e.g., current pulses) 
which drives a light emitter such as a semiconductor laser. The light pulses from the emitter are 
coupled into an optical fiber, which acts as a light guide. The optical fiber is a very thin glass 
fiber [made of silica (Si02)], almost as thin as your hair, that is able to optically guide the light 
pulses to their destination. The photodetector at the destination converts the light pulses into an 
electric signal, which is then decoded into the original information. 

The core of the optical fiber has a higher refractive index than the surrounding region, 
which is called the cladding as shown in Figure 9.10. Optical fibers for short-distance applica¬ 
tions (e.g., communications in local area networks within a large building) usually have a core 
region that has a diameter of about 100 jxm, and the whole fiber would be about 150—200 |xm 
in diameter. The core and cladding refractive indices, n { and n2, respectively, are normally only 
1-3 percent different. The light propagates along the fiber core because light rays experience 
total internal reflections at the core-cladding interface as shown in Figure 9.10. Only those light 
rays that can exercise TIR travel along the fiber length and can reach the destination. Consider 
a fiber with n t (core) = 1.455, and n2(cladding) = 1.440. The critical angle for a ray traveling 

EXAMPLE 9.7 
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Optical fiber 

Information 

Figure 9.10 An optical fiber link for transmitting digital information in communications. 

The fiber core has a higher refractive index, so the light travels along the fiber inside the fiber core 

by total internal reflection at the core-cladding interface. 

A small hole is made in a plastic bottle full of water to generate a water 
jet. When the hole is illuminated with a laser beam (from a green laser 
pointer), the light is guided by total internal reflections along the jet to the 
tray. Light guiding by a water jet was demonstrated by John Tynaall in 
1854 to the Royal Institution. (Water with air bubbles was used to 
increase the visibility of light, since air bubbles scatter light.) 

in the core is 

ec arcsin arcsin 81.8° 

Those light rays that have angles 6 > 9C satisfy TIR and can propagate along the fiber.8 
Notice that the ray angles with respect to the fiber axis are less than 8.2°. 

8 The light propagation in an optical fiber is much more complicated than the simple zigzagging of light rays with 
TIRs at the core-cladding interface. The waves in the core have to satisfy not only TIR but also have to avoid 
destructive interference so that they are not destroyed as they travel along the guide; see for example, S. O. Kasap, 
Optoelectronics and Photonics: Principles and Practices, Upper Saddle River: Prentice Hall, 2001, chap. 2. 
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9.7 FRESNEL’S EQUATIONS 

9.7.1 Amplitude Reflection and Transmission Coefficients 

Although the ray picture with constant phase wave fronts is useful in understanding 
refraction and reflection, to obtain the magnitude of the reflected and refracted 
waves and their relative phases, we need to consider the electric field in the light 
wave. The electric field in the wave must be perpendicular to the direction of propa¬ 
gation as shown in Figure 9.11. We can resolve the field £, of the incident wave into 
two components, one in the plane of incidence and the other perpendicular to 
the plane of incidence Eit±. The plane of incidence is defined as the plane contain¬ 
ing the incident and the reflected rays which in Figure 9.11 corresponds to the plane 
of the paper.9 Similarly for both the reflected and transmitted waves, we will have 
field components parallel and perpendicular to the plane of incidence, i.e., Er>\\, Er>± 
and Et,\\, Et<±. 

As apparent from Figure 9.11, the incident, transmitted, and reflected waves all 
have a wavevector component along the z direction; that is, they have an effective 
velocity along z. The fields Eit±, Er>j_, and Ett± are all perpendicular to the z direc¬ 
tion. These waves are called transverse electric field (TE) waves. On the other 
hand, waves with Ey, Er>\\, and Ett\\ only have their magnetic field components per¬ 
pendicular to the z direction and these are called transverse magnetic field (TM) 
waves. 

We will describe the incident, reflected, and refracted waves by the exponential 
representation of a traveling wave, i.e., 

Incident wave 
Ei = Eio exp j(cot — k, • r) [9.32] 

Reflected 

Er = Ero exp j(a)t — kr • r) [9.33] wave 

Et = Eto exp j(cot - k, • r) [9.34] Transmitted 
wave 

where r is the position vector; the wavevectors k„ kr, and kf describe, respectively, 
the directions of the incident, reflected, and transmitted waves; and Eio, Ero, and Eto 

are the respective amplitudes. Any phase changes such as 4>r and <f>t in the reflected 
and transmitted waves with respect to the phase of the incident wave are incorporated 
into the complex amplitudes Ero and Eto. Our objective is to find Er0 and Et0 with re¬ 
spect to Eio. 

We should note that similar equations can be stated for the magnetic field compo¬ 
nents in the incident, reflected, and transmitted waves, but these will be perpendicular 
to the corresponding electric fields. The electric and magnetic fields anywhere on the 
wave must be perpendicular to each other as a requirement of electromagnetic wave 
theory. This means that with E\\ in the EM wave we have a magnetic field B± associated 

9The definitions of the field components follow those of S. G. Lipson et al., Optical Physics, 3rd ed., Cambridge, 
MA, Cambridge University Press, 1995, and Grant Fowles, Introduction to Modern Optics, 2nd ed., New York, 
Dover Publications, Inc., 1975, whose clear treatments of this subject are highly recommended. The majority of the 
authors use a different convention which leads to different signs later in the equations; Fresnel's equations are 
related to the specific electric field directions from which they are derived. 
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(a) If Oj < 0C, then some of the wave is 
transmitted into the less dense medium. 
Some of the wave is reflected. 

(b) If Oj > 0C, then the incident wave suffers 
total internal reflection. There is a decaying 
evanescent wave into medium 2. 

Figure 9.11 Light wave traveling in a more dense medium strikes a less dense medium. 

The plane of incidence is the plane of the paper and is perpendicular to the flat interface between the two media. 

The electric field is normal to the direction of propagation. It can be resolved into perpendicular (_L) and parallel (||) 
components. 

Boundary 

condition 

Boundary 

condition 

with it such that B± = (n/c)E\\. Similarly E± will have a magnetic field By associated 
with it such that By — (n/c)E±. 

There are two useful fundamental rules in electromagnetism that govern the be¬ 
havior of the electric and magnetic fields at a boundary between two dielectric media 
which we can arbitrarily label as 1 and 2. These rules are called boundary conditions. 
The first states that the electric field that is tangential to the boundary surface ^tangential 
must be continuous across the boundary from medium 1 to 2, i.e., at the boundary 
y = 0 in Figure 9.11, 

•^tangential (1) — ^tangential (2) [9.35] 

The second rule is that the tangential component of the magnetic field ^tangential to 
the boundary must be likewise continuous from medium 1 to 2 provided that the two 
media are nonmagnetic (relative permeability fir = 1), 

B tangential (1) — ^tangential (2) [9.361 

Using these boundary conditions for the fields at y = 0, and the relationship be¬ 
tween the electric and magnetic fields, we can find the reflected and transmitted waves 
in terms of the incident wave. The boundary conditions can only be satisfied if the 
reflection and incidence angles are equal, 0r = 0„ and the angles for the transmitted 
and incident waves obey Snell’s law, n\ sin 0i = «2 sin Gr. 

Applying the boundary conditions to the EM wave going from medium 1 to 2, the 
amplitudes of the reflected and transmitted waves can be readily obtained in terms of 
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«i, ri2, and the incidence angle 0* alone.10 These relationships are called Fresnel’s 
equations. If we define n = «2/«i, as the relative refractive index of medium 2 to that 
of 1, then the reflection and transmission coefficients for E± are 

Ero,± cos 0, — (n2 — sin2 0,)1/2 

1 £j0,-L cos 0,- + {n2 — sin20l)1/2 
[9.37] 

Reflection 

coefficient 

and 

t _ Eto,j. _ 2 cos 0,- 

± Eiot± cos Bj + (n2 — sin2 0;)1/2 
[9.38] 

Transmission 

coefficient 

There are corresponding coefficients for the E\\ fields with corresponding reflection 
and transmission coefficients /j| and tf 

Er o,|| (n2 — sin2 0,)1//2 — n2 cos 0,- 

11 EiQt || (n2 — sin2 0,)1/2 + n2 cos 0/ 
[9.39] 

Reflection 

coefficient 

Ef0.ii 2n cos 0,- 

" £,-o,n n2 cos Bt + (n2 — sin2 0;)1/2 
[9.40] 

Transmission 

coefficient 

Further, the reflection and transmission coefficients are related by 

Ay -f- /t f|| = 1 &nd H” 1 = fj_ [9.41] 
Transmission 

and reflection 

The significance of these equations is that they allow the amplitudes and phases of 
the reflected and transmitted waves to be determined from the coefficients r±, r\\, fy, and 
fj_. For convenience we take Eio to be a real number so that the phase angles of r±_ and 
f_L correspond to the phase changes measured with respect to the incident wave. For 
example, if r± is a complex quantity, then we can write this as r± = |rj exp(—j<p±) 
where \r±\ and <f>± represent the relative amplitude and phase of the reflected wave 
with respect to the incident wave for the field perpendicular to the plane of incidence. 
Of course, when r±_ is a real quantity, then a positive number represents no phase shift 
and a negative number is a phase shift of 180° (or tt). As with all waves, a negative sign 
corresponds to a 180° phase shift. Complex coefficients can only be obtained from 
Fresnel’s equations if the terms under the square roots become negative, and this can 
only happen when n < 1 (or n\ > nf), and also when 0; > 0C, the critical angle. Thus, 
phase changes other than 0 or 180° occur only when there is total internal reflection. 

Figure 9.12a shows how the magnitudes of the reflection coefficients \r±\ and \r\\\ 
vary with the incidence angle 0,- for a light wave traveling from a more dense medium, 
«i = 1.44, to a less dense medium, «2 = 1-00, as predicted by Fresnel’s equations. Fig¬ 
ure 9.12b shows the changes in the phase of the reflected wave, <f>± and <p\\, with 0,. The 
critical angle Bc as determined from sin Bc = «2/«i in this case is 44°. It is clear that for 
incidence close to normal (small 0,), there is no phase change in the reflected wave. For 

10 These equations are readily available in any electromagnetism textbook. Their derivation from the two boundary 
conditions involves extensive algebraic manipulation which we will not carry out here. The electric and magnetic 
field components on both sides of the boundary are resolved tangentially to the boundary surface and the 
boundary conditions are then applied. We then use such relations as cos ft = (1 - sin ft)1/2 and sin ft as determined 
by Snell's law, etc. 
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Magnitude of reflection coefficients Phase changes in degrees 

Figure 9.12 Internal reflection. 

(a) Magnitude of the reflection coefficients rj| and r± versus the angle of incidence 9, for ni = 1.44 and 
02 = 1.00. The critical angle is 44°. 

(b) The corresponding phase changes <f>\\ and <j>± versus incidence angle. 

Normal 

incidence 

Brewster’s 

polarization 

angle 

example, putting normal incidence (0, = 0) into Fresnel’s equations, we find 

n\ — n2 
'll = r± =- [9.42] 

nt + n2 

This is a positive quantity for n\ > n2 which means that the reflected wave suffers 
no phase change. This is confirmed by 4>± and <p\\ in Figure 9.12b. As the incidence 
angle increases, eventually q becomes zero at an angle of about 35°. We can find this 
special incidence angle, labeled as 0P, by solving the Fresnel equation. Equation 9.39, 
for T|| = 0. The field in the reflected wave is then always perpendicular to the plane of 
incidence and hence well-defined. This special angle is called the polarization angle 
or Brewster’s angle and from Equation 9.39 is given by 

n2 
tan 0P = — [9.431 

«i 

The reflected wave is then said to be linearly polarized because it contains electric 
field oscillations that are contained within a well-defined plane which is perpendicular 
to the plane of incidence and also to the direction of propagation. Electric field oscilla¬ 
tions in unpolarized light, on the other hand, can be in any one of an infinite number 
of directions that are perpendicular to the direction of propagation. In linearly polar¬ 
ized light, however, the field oscillations are contained within a well-defined plane. 
Light emitted from many light sources such as a tungsten light bulb or an LED diode is 
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unpolarized and the field is randomly oriented in a direction that is perpendicular to the 
direction of propagation. 

For incidence angles greater than 9P but smaller than dc, Fresnel’s equation, Equa¬ 
tion 9.39, gives a negative number for ry which indicates a phase shift of 180° as shown 
in 0y in Figure 9.12b. The magnitudes of both /y and increase with 0; as apparent in 
Figure 9.12a. At the critical angle and beyond (past 44° in Figure 9.12), Le., when 0, > 0C, 
the magnitudes of both ry and r± go to unity, so the reflected wave has the same amplitude 
as the incident wave. The incident wave has suffered total internal reflection (TIR). 
When 0, > 0C, in the presence of TIR, the Equations 9.37 to 9.40 are complex quantities 
because then sin 0, > n and the terms under the square roots become negative. The 
reflection coefficients become complex quantities of the type r± = 1 • exp(- j<pj_) and 
7|| = 1 • exp(—y'^u) with the phase angles <p± and 4>\\ being other than 0 or 180°. The re¬ 
flected wave therefore suffers phase changes <j>±_ and 0y in the components E± and E\\. These 
phase changes depend on the incidence angle, as apparent in Figure 9.12b, and on «i and «2- 

Examination of Equation 9.37 for r± shows that for 0, > 0C, we have \r±\ = 1, but 
the phase change <f>± is given by 

i 
sin'tfj n2)l/: 

cos 0j 
9.441 

For the E\\ component, the phase change 0y is given by 

tan + 1 \ 
2 

(sin20,- — n2)1/2 

n2 cos 0i 
[9.45] 

We can summarize that, in internal reflection (ni > nf), the amplitude of the re¬ 
flected wave from TIR is equal to the amplitude of the incident wave but its phase has 
shifted by an amount determined by Equations 9.44 and 9.45.11 The fact that 0y has an 
additional n shift which makes 0y negative for 0/ > 0C is due to the choice for the di¬ 
rection of the reflected optical field Er^ in Figure 9.11. (This it shift can be ignored if 
we simply invert £r>y.) 

The reflection coefficients in Figure 9.12 considered the case in which n\ > n2. 
When light approaches the boundary from the higher index side, that is, ti\ > the 
reflection is said to be internal reflection and at normal incidence there is no phase 
change. On the other hand, if light approaches the boundary from the lower index side, 
that is, «i < >12, then it is called external reflection. Thus in external reflection light be¬ 
comes reflected by the surface of an optically denser (higher refractive index) medium. 
There is an important difference between the two. Figure 9.13 shows how the reflection 
coefficients r±_ and ry depend on the incidence angle 0, for external reflection {n\ = 1 and 
«2 = 1.44). At normal incidence, both coefficients are negative, which means that in 
external reflection at normal incidence there is a phase shift of 180°. Further, ry goes 
through zero at the Brewster angle 6p given by Equation 9.43. At this angle of incidence, 
the reflected wave is polarized in the E±_ component only. Transmitted light in both inter¬ 
nal reflection (when 0, < 0C) and external reflection does not experience a phase shift. 

Phase change 
in TIR 

Phase change 

in TIR 

'' it snouia De apparent that the concepts and the resulting equations apply to a well-defined linearly polarized 
light wave. 
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Figure 9.13 The reflection coefficients 

/"|| and r± versus angle of incidence B\ for 

ni = 1.00 and n2 = 1.44. 
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Figure 9.14 When 9i > 0C, for a plane wave that 

is reflected, there is an evanescent wave at the 

boundary propagating along z. 
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What happens to the transmitted wave when 0,- > 0C? According to the boundary 
conditions, there must still be an electric field in medium 2; otherwise, the boundary 
conditions cannot be satisfied. When 0, > 0C, the field in medium 2 is a wave that trav¬ 
els near the surface of the boundary along the z direction as depicted in Figure 9.14. 
The wave is called an evanescent wave and advances along z with its field decreasing 
as we move into medium 2, i.e.. 

z,t) txe a2y exp j(a)t - kizz) [9.46] 

where kiz = sin 0, is the wavevector of the incident wave along the z axis, and <22 is 
an attenuation coefficient for the electric field penetrating into medium 2, 

oti = 

2nni 
sin20; — 1 [9.47] 
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where X is the free-space wavelength. According to Equation 9.46, the evanescent 
wave travels along z and has an amplitude that decays exponentially as we move from 
the boundary into medium 2 (along y) as shown in Figure 9.11b. The field of the 
evanescent wave is e~l in medium 2 when y = 1 /a 2 = <5 which is called the penetra¬ 
tion depth. It is not difficult to show that the evanescent wave is correctly predicted 
by Snell’s law when 0f > 0C. The evanescent wave propagates along the boundary 
(along z) with the same speed as the z component velocity of the incident and re¬ 
flected waves. In Equations 9.32 to 9.34 we had assumed that the incident and 
reflected waves were plane waves, that is, of infinite extent. If we were to extend the 
plane wavefronts on the reflected wave, these would cut the boundary as shown in 
Figure 9.14. The evanescent wave traveling along z can be thought of as arising from 
these plane wavefronts at the boundary as in Figure 9.14. (The evanescent wave is 
important in light propagation in optical waveguides such as in optical fibers.) If the 
incident wave is a narrow beam of light (e.g., from a laser pointer), then the reflected 
beam would have the same cross section. There would still be an evanescent wave at 
the boundary, but it would exist only within the cross-sectional area of the reflected 
beam at the boundary. 

9.7.2 Intensity, Reflectance, and Transmittance 

It is frequently necessary to calculate the intensity or irradiance of the reflected and 
transmitted waves when light traveling in a medium of index n\ is incident at a bound¬ 
ary where the refractive index changes to ni- In some cases we are simply interested in 
normal incidence where 0, = 0°. For example, in laser diodes light is reflected from the 
ends of an optical cavity where there is a change in the refractive index. 

Reflectance R measures the intensity of the reflected light with respect to that of 
the incident light and can be defined separately for electric field components parallel 
and perpendicular to the plane of incidence. The reflectances R±_ and R\\ are defined by 

R± = 
\E,C,A2 

|£i„.xP = l/il2 and [9.481 

From Equations 9.37 to 9.40 with normal incidence, these are simply given by 

R = R± = R\\ = [9.491 

Since a glass medium has a refractive index of around 1.5, this means that typically 
4 percent of the incident radiation on an air-glass surface will be reflected back. 

Transmittance T relates the intensity of the transmitted wave to that of the inci¬ 
dent wave in a similar fashion to the reflectance. We must, however, consider that the 
transmitted wave is in a different medium and further its direction with respect to the 
boundary is also different by virtue of refraction. For normal incidence, the incident 
and transmitted beams are normal and the transmittances are defined and given by 

"2\EU,±\1 

nil^io.xl2 
and 

n2\EtoAl\2 _ /wA 

nilE^nl2 \n\) 
[9.50] 

Reflectance 
at normal 
incidence 
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Transmit¬ 

tance at 

normal 

incidence 

EXAMPLE 9.8 

or 

T= 
4ni«2 

(«i +n2)2 
[9.51] 

Further, the fraction of light reflected and fraction transmitted must add to unity. Thus 
R + T= 1. 

REFLECTION OF LIGHT FROM A LESS DENSE MEDIUM (INTERNAL REFLECTION) A ray of light 
which is traveling in a glass medium of refractive index n\ = 1.460 becomes incident on a less 
dense glass medium of refractive index n2 = 1.440. Suppose that the free-space wavelength (A,) 
of the light ray is 1300 nm. 

a. What should be the minimum incidence angle for TIR? 

b. What is the phase change in the reflected wave when 0; = 87° and when 0/ = 90° ? 

c. What is the penetration depth of the evanescent wave into medium 2 when 0, = 80° and 
when 0, = 90° ? 

SOLUTION 

a. 

b. 

c. 

The critical angle 0C for TIR is given by sin 0C = n2/n\ — 1.440/1.460, so 0C = 80.51°. 

Since the incidence angle 0/ > 0C, there is a phase shift in the reflected wave. The phase 
change in Er<± is given by <p±. With n\ = 1.460, n2 = 1.440, and 0, = 87°, 

2"!1/2 

tan (M- 
(sin2 0f — n2)1/2 

sin2 (87°) 
/1.440 V 

~ V 1.460/ 

cos(87°) cos 0; 

= 2.989 = tan [i (143.0°)] 

so the phase change is 143°. For the Er<\\ component, the phase change is 

(sin2 $i - n2)l/2 
tan G*+r) - n2cos 0; ■?“(W 

so 

tan G*+r)= (Hi) “(t) = GisS) 
which gives 

01, = 143.95° - 180° = -36.05° 

We can repeat the calculation with 0, = 90° to find 0j_ = 180° and 0y = 0°. 
Note that as long as 0; > 0C, the magnitude of the reflection coefficients are unity. Only 

the phase changes. 

The amplitude of the evanescent wave as it penetrates into medium 2 is 

EtjXy* *) % Eto,± exp(—a2y) 

We ignore the z dependence, exp j(a>t — kzz), as this only gives a propagating property 
along z. The field strength drops to e~l when y = 1 fa2 = 8, which is called the penetration 
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depth. The attenuation constant 012 is 

a2 = 
Inn- -.09 

1/2 

i.e., 

<*2 = 

2^(1.440) 

(1300 x 10-9 m) 

f/1.460 \2 2 0 I172 fc) Sin<87)-'J 104 x 106 m-1 

so the penetration depth is 8 = 1 /a2 = 1 /(1.104 x 106 m) = 9.06 x 10-7 m, or 0.906 p,m. 
For 90°, repeating the calculation we find a2 = 1 164 x 106m_1,so5 = l/a2 =0.859 pm. 
We see that the penetration is greater for smaller incidence angles. The values for the 
refractive indices and wavelength are typical of those values found in optical fiber commu¬ 
nications. 

REFLECTION AT NORMAL INCIDENCE. INTERNAL AND EXTERNAL REFLECTION Consider the 
reflection of light at normal incidence on a boundary between a glass medium of refractive 
index 1.5 and air of refractive index 1. 

EXAMPLE 9.9 

a. If light is traveling from air to glass, what is the reflection coefficient and the intensity of 
the reflected light with respect to that of the incident light? 

b. If light is traveling from glass to air, what is the reflection coefficient and the intensity of 
the reflected light with respect to that of the incident light? 

c. What is the polarization angle in the external reflection in part (a)? How would you make 
a polaroid device that polarizes light based on the polarization angle? 

SOLUTION 

a. The light travels in air and becomes partially reflected at the surface of the glass which cor¬ 
responds to external reflection. Thus n\ — 1 and n2 = 1.5. Then, 

n 1 - n 2 

n 1 -I- n2 

1 - 1.5 

1 + 1.5 
-0.2 

This is negative which means that there is a 180° phase shift. The reflectance (R), 
which gives the fractional reflected power, is 

R=r] = 0.04 or 4% 

b. The light travels in glass and becomes partially reflected at the glass-air interface which 
corresponds to internal reflection. Thus ti\ = 1.5 and n2 = 1. Then, 

ni — n2 

n\ -I- n2 

1.5 - 1 

1.5+ 1 
= 0.2 

There is no phase shift. The reflectance is again 0.04 or 4 percent. In both cases (a) and 
(b), the amount of reflected light is the same. 

c. Light is traveling in air and is incident on the glass surface at the polarization angle. Here 
n\ = 1, n2 = 1.5, and tan 0P = (n2/m) = 1.5, so 9P = 56.3°. 

If we were to reflect light from a glass plate keeping the angle of incidence at 56.3°, then 
the reflected light will be polarized with an electric field component perpendicular to the plane 
of incidence. The transmitted light will have the field greater in the plane of incidence; that is, 
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it will be partially polarized. By using a stack of glass plates one can increase the polarization 
of the transmitted light. (This type of pile-of-plates polarizer was invented by Dominique F. J. 
Arago in 1812.) 

EXAMPLE 9.10 ANTIREFLECTION COATINGS ON SOLAR CELLS When light is incident on the surface of a 
semiconductor, it becomes partially reflected. Partial reflection is an important consideration in 
solar cells where transmitted light energy into the semiconductor device is converted to electric 
energy. The refractive index of Si is about 3.5 at wavelengths around 700-800 nm. Thus the re¬ 
flectance with ni(air) = 1 and n2(Si) 3.5 is 

R=(-——) = (-——) =0, 
Vn,+n2/ \ 1 + 3.5/ 

309 

This means that 30 percent of the light is reflected and is not available for conversion to 
electric energy, a considerable reduction in the efficiency of the solar cell. 

However, we can coat the surface of the semiconductor device with a thin layer of a 
dielectric material such as Si3N4 (silicon nitride) that has an intermediate refractive index. 
Figure 9.15 illustrates how the thin dielectric coating reduces the reflected light intensity. In 
this case ni(air) = 1, ^(coating) 1.9, and «3(Si) = 3.5. Light is first incident on the air¬ 
coating surface, and some of it becomes reflected; this reflected wave is shown as A in Figure 
9.15. Wave A has experienced a 180° phase change on reflection as this is an external reflec¬ 
tion. The wave that enters and travels in the coating then becomes reflected at the coating- 
semiconductor surface. This wave, which is shown as B, also suffers a 180° phase change since 
n-i > n2. When wave B reaches A, it has suffered a total delay of traversing the thickness d of 
the coating twice. The phase difference is equivalent to kc(2d) where kc = 2tz/Xc is the 
wavevector in the coating and is given by 2n/Xc where Xc is the wavelength in the coating. 
Since Xc — X/n2, where X is the free-space wavelength, the phase difference A</> between A and 
B is (2jrn2/X)(2d). To reduce the reflected light, A and B must interfere destructively, and this 
requires the phase difference to be n or odd multiples of n, mn where m = 1,3,5,... is an odd 
integer. Thus 

2d = mn or d = m 
(2nn2 

Thus, the thickness of the coating must be multiples of the quarter wavelength in the coating and 
depends on the wavelength. 

Figure 9.15 Illustration of how an 

antireflection coating reduces the 

reflected light intensity. 
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To obtain a good degree of destructive interference between waves A and B, the two am¬ 
plitudes must be comparable. It turns out that we need n2 = Vnin3* When n2 = then 
the reflection coefficient between the air and coating is equal to that between the coating and the 
semiconductor. In this case we would need V53 or 1.87. Thus, Si3N4 is a good choice as an 
antireflection coating material on Si solar cells. 

Taking the wavelength to be 700 nm, d = (700 nm)/ [4( 1.9)] = 92.1 nm or odd multiples of d. 

DIELECTRIC MIRRORS A dielectric mirror consists of a stack of dielectric layers of alternating 
refractive indices as schematically illustrated in Figure 9.16 where n\ is smaller than n2. The 
thickness of each layer is a quarter wavelength or Aiayer/4, where Aiayer is the wavelength of light 
in that layer, or X0/n, where X0 is the free-space wavelength at which the mirror is required to 
reflect the incident light and n is the refractive index of the layer. Reflected waves from the in¬ 
terfaces interfere constructively and give rise to a substantial reflected light. If there are a suffi¬ 
cient number of layers, the reflectance can approach unity at the wavelength X0. Figure 9.16 also 
shows schematically a typical reflectance versus wavelength behavior of a dielectric mirror with 
many layers. 

The reflection coefficient rn for light in layer 1 being reflected at the 1-2 boundary is 
fi2 = («i — n2)/(n\ + n2) and is a negative number indicating a 7t phase change. The 
reflection coefficient for light in layer 2 being reflected at the 2-1 boundary is r2l = (n2 — «i)/ 
(«i + n2) which is —r[2 (positive) indicating no phase change. Thus the reflection coefficient 
alternates in sign through the mirror. Consider two arbitrary waves A and B which are reflected 
at two consecutive interfaces. The two waves are therefore already out of phase by tc due to re¬ 
flections at the different boundaries. Further, wave B travels an additional distance which is 
twice (A.2/4) before reaching wave A and therefore experiences a phase change equivalent to 
2(A.2/4) or X2/2, that is, tc. The phase difference between A and B is then 71 + tc or 2tc. Thus 
waves A and B are in phase and interfere constructively. We can similarly show that waves B 

and C also interfere constructively and so on, so all reflected waves from the consecutive 
boundaries interfere constructively. After several layers (depending on n\ and n2), the trans¬ 
mitted intensity will be very small and the reflected light intensity will be close to unity. Di¬ 
electric mirrors are widely used in modem vertical cavity surface emitting semiconductor 
lasers. 

EXAMPLE 9.11 

A 

A ) > 

B <- - 

C <- —<-J 

1 2 1 2 
«1 n2 n 1 n2 

Reflectance 

Figure 9.16 Schematic illustration of the principle of the dielectric mirror with many low and high refractive index 

layers and its reflectance. 
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Lossless 

propagation 

Complex 

dielectric 

constant 

9.8 COMPLEX REFRACTIVE INDEX 
AND LIGHT ABSORPTION 

Generally when light propagates through a material, it becomes attenuated in the di¬ 
rection of propagation as illustrated in Figure 9.17. We distinguish between absorption 
and scattering both of which give rise to a loss of intensity in the regular direction of 
propagation. In absorption, the loss in the power in the propagating EM wave is due 
to the conversion of light energy to other forms of energy, e.g., lattice vibrations (heat) 
during the polarization of the molecules of the medium, local vibrations of impurity 
ions, and excitation of electrons from the valence band to the conduction band. On the 
other hand, scattering is a process by which the energy from a propagating EM wave 
is redirected as secondary EM waves in various directions away from the original di¬ 
rection of propagation; this is discussed in Section 9.11. 

It is instructive to consider what happens when a monochromatic light wave such as 

E — E0 exp j(cot — kz) [9.52] 

is propagating in a dielectric medium. The electric field E in Equation 9.52 is either 
parallel to x or y since propagation is along z- As the wave travels through the medium, 
the molecules become polarized. This polarization effect is represented by the relative 
permittivity er of the medium. If there were no losses in the polarization process, then 
the relative permittivity er would be a real number and the corresponding refractive 
index n = would also be a real number. However, we know that there are always 
some losses in all polarization processes. For example, when the ions of an ionic crys¬ 
tal are displaced from their equilibrium positions by an alternating electric field and 
made to oscillate, some of the energy from the electric field is coupled and converted to 
lattice vibrations (intuitively, “sound” and heat). These losses are generally accounted 
for by describing the whole medium in terms of a complex relative permittivity 
(or dielectric constant) er, that is, 

er = e'r- je" [9.53] 

where the real part e'r determines the polarization of the medium with losses ignored 
and the imaginary part e" describes the losses in the medium. For a lossless medium, 
obviously er = e'r. The loss e" depends on the frequency of the wave and usually 
peaks at certain natural (resonant) frequencies. If the medium has a finite conductivity 
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(e.g., due to a small number of conduction electrons), then there will be a Joule loss 
due to the electric field in the wave driving these conduction electrons. This type of 
light attenuation is called free carrier absorption. In such cases, e" and a are 
related by 

e n 
r 

a 

e0co 
[9.54] 

Conduction 

loss 

where sc is the absolute permittivity and a is the conductivity at the frequency of the 
EM wave. Since er is a complex quantity, we should also expect to have a complex 
refractive index. 

An EM wave that is traveling in a medium and experiencing attenuation due to 
absorption can be generally described by a complex propagation constant k, that is, 

k = k! - jk" [9.55] 

where k! and k" are the real and imaginary parts. If we put Equation 9.55 into Equa¬ 
tion 9.52, we will find the following, 

E = E0 exp(—k"z) exp j(a>t — k'z) [9.56] 

The amplitude decays exponentially while the wave propagates along z. The real 
k' part of the complex propagation constant (wavevector) describes the propagation 
characteristics, e.g., phase velocity v= co/k'. The imaginary k" part describes the rate 
of attenuation along z. The intensity I at any point along z is 

I a |E|2 a exp(—2k"z) 

Complex 

propagation 

constant 

Attenuated 

propagation 

so the rate of change in the intensity with distance is 

dl_ 

dz 
-2k" I [9.57] 

Imaginary 

part k" 

where the negative sign represents attenuation. 
Suppose that k0 is the propagation constant in a vacuum. This is a real quantity as 

a plane wave suffers no loss in free space. The complex refractive index N with real 
part n and imaginary part K is defined as the ratio of the complex propagation constant 
in a medium to propagation constant in free space, 

i.e.. 

N = n- jK 
k 

kp 
[9.58a] 

k" 
and K = — 

ka 
[9.58b] 

The real part n is simply and generally called the refractive index and K is called 
the extinction coefficient. In the absence of attenuation, 

Complex 

refractive 

index 

Refractive 

index and 

extinction 

coefficient 

k' 

k0 
k" = 0 k = k' and 
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Figure 9.18 Optical properties of an 

amorphous silicon film in terms of real (n) and 

imaginary (K) parts of the complex refractive 

index. 

We know that in the absence of loss, the relationship between the refractive index n 
and the relative permittivity er is n = yfFr. This relationship is also valid in the presence 
of loss except that we must use complex refractive index and complex relative permit- 

Complex || tivity, that is, 

refractive » N = n - jK = JTr = Je'r - je'r' [9.59] 
index 

By squaring both sides we can relate n and K directly to e'r and e". The final result is 
Complex 
refractive n — K — £r and 2nK = er [9.60] 

in^ex Optical properties of materials are typically reported either by showing the fre¬ 
quency dependences of n and K or e'r and e". Clearly we can use Equation 9.60 to ob¬ 
tain one set of properties from the other. Figure 9.18 shows the real (n) and imaginary 
(K) parts of the complex refractive index of amorphous silicon (noncrystalline form of 
Si) as a function of photon energy (hv). For photon energies below the bandgap energy, 
K is negligible and n is close to 3.5. Both n and K change strongly as the photon energy 
increases far beyond the bandgap energy. 

If we know the frequency dependence of the real part e'r of the relative permittivity 
of a material, we can also determine the frequency dependence of the imaginary part e", 
and vice versa. This may seem remarkable, but it is true provided that we know the fre¬ 
quency dependence of either the real or imaginary part over as wide a range of frequen¬ 
cies as possible (ideally from dc to infinity) and the material is linear, i.e., it has a relative 
permittivity that is independent of the applied field; the polarization response must be lin¬ 
early proportional to the applied field.12 The relationships that relate the real and imagi¬ 
nary parts of the relative permittivity are called Kramers-Kronig relations. If e'r (a>) and 
e"(cu) represent the frequency dependences of the real and imaginary parts, respectively, 
then one can be determined from the other as depicted schematically in Figure 9.19. 

The optical properties n and K can be determined by measuring the reflectance 
from the surface of a material as a function of polarization and the angle of incidence 
(based on Fresnel’s equations). 

I 12 In addition the material system should be passive—contain no sources of energy. 
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Kramers-Kronig 
relations 

£r'(G>) 
* ^ 

£ n cr '((0) 

0) 

Figure 9.19 Kramers-Kronig relations 
allow frequency dependences of the real and 
imaginary parts of the relative permittivity to 
be related to each other. The material must be 
a linear system. 

It is instructive to mention that the reflection and transmission coefficients that we 
derived in Section 9.7 were based on using a real refractive index, that is, neglecting 
losses. We can still use the reflection and transmission coefficients if we simply use the 
complex refractive index N instead of n. For example, consider a light wave traveling 
in free space incident on a material at normal incidence (0, = 90°). The reflection co¬ 
efficient is now 

N - 1 n - jK - 1 

r~ ~N+ 1 “ ~n - jK + 1 

The reflectance is then 

n - jK - 1 2 _ (n - l)2 + K2 

n - jK + 1 ” in + l)2 + K2 

which reduce to the usual forms when the extinction coefficient K= 0. 

[9.611 
Reflection 

coefficient 

[9.62] Reflectance 

COMPLEX REFRACTIVE INDEX Spectroscopic ellipsometry measurements on a silicon crystal 
at a wavelength of 826.6 nm show that the real and imaginary parts of the complex relative per¬ 
mittivity are 13.488 and 0.038, respectively. Find the complex refractive index, the reflectance 
and the absorption coefficient a at this wavelength, and the phase velocity. 

EXAMPLE 9.12 

SOLUTION 

We know that e'r = 13.488 and e" = 0.038. Thus, from Equation 9.60, we have 

n2- K2 = 13.488 and 2nK = 0.038 

We can take K from the second equation and substitute for it in the first equation, 

2 , / 0.038 \ „ „ 

n ~\~2n~) = 13488 

This is a quadratic equation in n2 that can be easily solved on a calculator to find n = 3.67. Once 
we know n, we can find K = 0.038/2n = 0.00517. If we simply take the square root of the real 
part of er, we would still find n — 3.67, because the extinction coefficient K is small. The re¬ 
flectance of the Si crystal is 

R= in - l)2 + K2 = (3.67 — l)2 + 0.005172 = 

in + l)2 + K2 (3.67 + l)2 + 0.005172 
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which is the same as simply using (n — 1 )2/(n + l)2 = 0.327, because K is small. 
The absorption coefficient or describes the loss in the light intensity I via I = I0 exp(-az). 

By virtue of Equation 9.57, 

a = 2k" = 2k0K = 2(-—-- )(0.00517) = 7.9 x 104 m"1 
\ 826.6 x 10-9/ 

Almost all of this absorption is due to band-to-band absorption (photogeneration of electron- 
hole pairs). 

The phase velocity is given by 

V 
c 

n 

3 x 108 m s 1 

3^67 
= 8.17 x 107 ms-1 

EXAMPLE 9.13 COMPLEX REFRACTIVE INDEX OF InP An InP crystal has a refractive index (real part) n of 
3.549 at a wavelength of 620 nm (photon energy of 2 eV). The reflectance of the air-InP crys¬ 
tal surface at this wavelength is 0.317. Calculate the extinction coefficient K and the absorption 
coefficient a of InP at this wavelength. 

SOLUTION 

The reflectance R is given by 

(n - l)2 + K2 

Cn + l)2 + K2 
0.317 

_ (3-549 - l)2 + K2 

which on solving gives K = 0.302. 
The absorption coefficient is 

a = 2kaK = 2\-—-- |(0.302) = 6.1 x 106 m-1 
\620 xl0-9/ 

EXAMPLE 9.14 FREE CARRIER ABSORPTION COEFFICIENT AND CONDUCTIVITY Consider a semiconductor 
sample with a conductivity o, and a refractive index n. Show that the absorption coefficient due 
to free carrier absorption (due to conductivity) is given by 

a 
a 

n 

An n-type Ge has a resistivity of about 5 x 10-3 £2 m. Calculate the imaginary part e" of the rel¬ 
ative permittivity at a wavelength of 10 |xm where the refractive index is 4. Find the attenuation 
coefficient a due to free carrier absorption. 

Imaginary 

relative 

permittivity 

and 

conductivity 

SOLUTION 

The relationship between the conductivity and the absorption coefficient is given by 

< = — [9.63] 
e0a> 

The relationship between the imaginary part e" of the relative permittivity and the extinction 
coefficient K is 

2nK = e" 
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where n is the refractive index (the real part of N). Since the absorption coefficient from Exam¬ 
ple 9.13 is 

then 

/ \ ( £,f \ 
a = 2k" = 2k0K =21 — ) ( — ) 

V X )\2n) 

where co is the angular frequency of the EM radiation, <x> = 2tcc/X. Substituting for a in terms 
of e” gives 

a = [9.65] 

The frequency a> is 

Absorption 

and 

imaginary 

relative 

permittivity 

Absorption 

and 

conductivity 

(O = 
2nc F2tt(3 x 108ms 

X L 10 x 10~6 m 

The relationship between the conductivity and e" is given by 

3 £2 m)_1 

1.88 x 1014 rad s -l 

„ _ a _ (5 x 10 

'"r (8.85 x 10-12 Fm-1 ><1.88 x 1014 rad s -] 
i.e.. e" = 0.120 

The absorption coefficient due to free carriers is given by 

_ / 1 f 1 1 (5 x 10-3 £2m)-1 

" “ \ce0)n ~ L(3 x 108 mS-1)(8.85 x lQ-^Fm-1)] 4 

COMPLEX REFRACTIVE INDEX AND RESONANCE ABSORPTION Equation 9.12 is a simple ex¬ 
pression for the electronic polarizability ae due to an oscillating field. It is based on the Lorentz 

model in which there is a restoring force acting against polarization of the atom or the molecule. 
o>0 is a resonant frequency, or a natural frequency, associated with this type of electronic polar¬ 
ization. The same type of expression will also apply to ionic polarization, except that the reso¬ 
nant frequency coQ will be lower, and the mass me has to be changed to an effective mass of the 
ions.13 In practice there will be some loss mechanism that absorbs energy from the oscillating 
field and dissipates it. For example, in ionic polarization, this would involve energy transfer from 
light to lattice vibrations. In mechanics it is well known that the loss forces (frictional forces) 
are always proportional to the velocity dx/dt. If we include the energy loss in ac polarization. 
Equation 9.11 would have an additional term — y dx/dt on the right-hand side. If we then fol¬ 
low the same steps to obtain ae, we would find 

Ze2 

me{o>l- co1 + jyco) 
[9.66] 

which is a complex number with real and imaginary parts (ae = a’e - j'a"). 

EXAMPLE 9.15 

Electronic 

polarizability 

with loss 

13 Both electronic and ionic polarizabilities have similar expressions. The ionic polarizability in an oscillating field 
was derived in Chapter 7, and looks almost exactly like Equation 9.66. 
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seem strange that the crystal is both highly reflecting and highly absorbing. The light that is in¬ 
cident is strongly reflected, and the light that is inside the crystal becomes strongly absorbed. 
This phenomenon is known as infrared reflectance, and occurs over a band of frequencies, 
called the Reststrahlen band; in the present case from co0 to roughly 3<o0. 

9.9 LATTICE ABSORPTION 

In optical absorption, some of the energy from the propagating EM wave is converted 
to other forms of energy, for example, to heat by the generation of lattice vibrations. 
There are a number of absorption processes that dissipate the energy from the wave. 
One important mechanism is called lattice absorption (Reststrahlen absorption) 
and involves the vibrations of the lattice atoms as illustrated in Figure 9.21. The crys¬ 
tal in this example consists of ions, and as an EM wave propagates it displaces the 
oppositely charged ions in opposite directions and forces them to vibrate at the fre¬ 
quency of the wave. In other words, the medium experiences ionic polarization. It is 
the displacements of these ions that give rise to ionic polarization and its contribution 
to the relative permittivity sr. As the ions and hence the lattice is made to vibrate by 
the passing EM wave, as shown in Figure 9.21, some energy is coupled into the nat¬ 
ural lattice vibrations of the solid. This energy peaks when the frequency of the wave 
is close to the natural lattice vibration frequencies. Typically these frequencies are in 
the infrared region. Most of the energy is then absorbed from the EM wave and con¬ 
verted to lattice vibrational energy (heat). We associate this absorption with the reso¬ 
nance peak or relaxation peak of ionic polarization loss (imaginary part of the relative 
permittivity e"). 

Figure 9.22 shows the infrared resonance absorption peaks in the extinction co¬ 
efficient K versus wavelength characteristics of GaAs and CdTe; both crystals have 
substantial ionic bonding. These absorption peaks in Figure 9.22 are usually called 
Reststrahlen bands because absorption occurs over a band of frequencies (even 
though the band may be narrow), and in some cases may even have identifiable fea¬ 
tures. Indeed, if we were to plot the reflectance (R) versus wavelength, it would be 
similar to that shown in Figure 9.20b, and the band would be identified with the high 
reflectance region. 

Ions at equilibrium positions in the crystal 

©©©©©©©©©©©©©© 

Forced oscillations by the EM wave 

Figure 9.21 Lattice absorption through a 
crystal. The field in the EM wave oscillates 
the ions which consequently generate 
"mechanical" waves in the crystal; energy 
is thereby transferred from the wave to 
lattice vibrations. 

jfii 

h K> b li 
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Figure 9.22 Lattice or Reststrahlen absorption in 
CdTe and GaAs in terms of the extinction coefficient 
versus wavelength. For reference, n versus A for CdTe 
is also shown. 

Although Figure 9.21 depicts an ionic solid to visualize absorption due to lattice 
waves, energy from a passing EM wave can also be absorbed by various ionic im¬ 
purities in a medium as these charges can couple to the electric field and oscillate. 
Bonding between an oscillating ion and the neighboring atoms causes the mechanical 
oscillations of the ion to be coupled to neighboring atoms. This leads to a generation 
of lattice waves which takes away energy from the EM wave. 

EXAMPLE 9.16 RESTSTRAHLEN ABSORPTION Figure 9.22 shows the infrared extinction coefficient K of 
GaAs and CdTe. Consider CdTe. Calculate the absorption coefficient a and the reflectance Roi 

CdTe at the Reststrahlen peak, and also at 50 |xm and at 100 pm. What is your conclusion? 

SOLUTION 

At the resonant peak, X « 72 jxm, K 6, and n « 5, so the corresponding free-space wavevec- 
tor is 

K 
2tc 

T 

2 n 

72 x 10-6 m 
= 8.7 x 104 m"1 

The absorption coefficient a, by definition, is 2k" in Equation 9.57, so 

a = 2k" = 2k0K = 2(8.7 x 104 m_1)(6) = 1.0 x 106 m"1 

which corresponds to an absorption depth 1/a of about 1 jxm. The reflectance is 

(n - l)2 + K1 (5 - l)2 + 62 

(n + l)2 + K2 " (5 + l)2 + 62 
or 72% 

Repeating the above calculations at X = 50 |xm, we get a = 8.3 x 102 m_1, and R = 0.11 
or 11 percent. There is a sharp increase in the reflectance from 11 to 72 percent as we approach 
the resonant peak. At A = 100 (xm, a = 6.3 x 103 m"1 and R = 0.31 or 31 percent, which is 
again smaller than the peak reflectance. R is maximum around the Reststrahlen peak. 
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9.10 BAND-TO-BAND ABSORPTION 

The photon absorption process for photogeneration, that is, the creation of electron-hole 
pairs (EHPs), requires the photon energy to be at least equal to the bandgap energy Eg of 
the semiconductor material to excite an electron from the valence band (VB) to the 
conduction band (CB). The upper cut-off wavelength (or the threshold wavelength) kg 

for photogenerative absorption is therefore determined by the bandgap energy Eg of the 
semiconductor, so h(c/kg) = Eg or 

x^m) = [9-701 

For example, for Si, Eg = 1.12 eV and is 1.11 |xm whereas for Ge, Eg = 0.66 eV 
and the corresponding kg = 1.87 |xm. It is clear that Si photodiodes cannot be used 
for optical communications at 1.3 and 1.55 fim, whereas Ge photodiodes are com¬ 
mercially available for use at these wavelengths. Table 9.3 lists some typical bandgap 
energies and the corresponding cut-off wavelengths of various photodiode semicon¬ 
ductor materials. 

Incident photons with wavelengths shorter than kg become absorbed as they travel 
in the semiconductor, and the light intensity, which is proportional to the number of 
photons, decays exponentially with distance into the semiconductor. The light inten¬ 
sity I at a distance x from the semiconductor surface is given by 

I(x) = I0 exp(—ax) [9.71] 

where l0 is the intensity of the incident radiation and a is the absorption coefficient 
that depends on the photon energy or wavelength k. The absorption coefficient a is a 
material property. Most of the photon absorption (63%) occurs over a distance 1/a, 
and 1 /a is called the penetration depth 8. Figure 9.23 shows the a versus k charac¬ 
teristics of various semiconductors where it is apparent that the behavior of a with the 
wavelength k depends on the semiconductor material. 

Absorption in semiconductors can be understood in terms of the behavior of the 
electron energy (E) with the electron momentum (tik) in the crystal, called the crystal 

Cut-off 

wavelength 

and bandgap 

Absorption 

coefficient 

Table 9.3 Bandgap energy Eg at 300 K, cut-off wavelength kg, and type of 
bandgap (D = direct and I = indirect) for some photodetector materials 

Semiconductor Eg (eV) kg (jun) Type 

InP 1.35 0.91 D 

GaAso.88Sbo.12 1.15 1.08 D 

Si 1.12 1.11 I 

In0.7Ga0.3AS0.64P0.36 0.89 1.4 D 

Ino.53Ga0.47As 0.75 1.65 D 

Ge 0.66 1.87 I 

InAs 0.35 3.5 D 

InSb 0.18 7 D 
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Figure 9.23 Absorption coefficient a versus 

wavelength k for various semiconductors. 

I SOURCE: Data selectively collected and combined 
I from various sources. 

<— Photon energy (eV) 

E E 

Figure 9.24 Electron energy E versus crystal momentum fik and photon absorption. 

(a) Photon absorption in a direct bandgap semiconductor. 

(b) Photon absorption in an indirect bandgap semiconductor (VB = valence band; CB = conduction band). 

momentum. If k is the wavevector of the electron’s wavefunction in the crystal, then 
the momentum of the electron within the crystal is fik. E versus fik behaviors for 
electrons in the conduction and valence bands of direct and indirect bandgap semi¬ 
conductors are shown in Figure 9.24a and b, respectively. In direct bandgap semi¬ 
conductors such as III-V semiconductors (e.g., GaAs, In As, InP, GaP) and in many of 
their alloys (e.g., InGaAs, GaAsSb) the photon absorption process is a direct process 
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which requires no assistance from lattice vibrations. The photon is absorbed and the 
electron is excited directly from the valence band to the conduction band without a 
change in its k-vector, or its crystal momentum tik, inasmuch as the photon momen¬ 
tum is very small. The change in the electron momentum from the valence to the con¬ 
duction band is 

fikce, — tikvB = Photon momentum « 0 

This process corresponds to a vertical transition on the electron energy (E) versus 
electron momentum (tik) diagram as shown in Figure 9.24a. The absorption coefficient 
of these semiconductors rises sharply with decreasing wavelength from kg as apparent 
for GaAs and InP in Figure 9.23. 

In indirect bandgap semiconductors such as Si and Ge, the photon absorption for 
photon energies near Eg requires the absorption and emission of lattice vibrations, that 
is, phonons,14 during the absorption process as shown in Figure 9.24. If K is the 
wavevector of a lattice wave (lattice vibrations travel in the crystal), then tiK represents 
the momentum associated with such a lattice vibration; that is, fiK is a phonon 
momentum. When an electron in the valence band is excited to the conduction band, 
there is a change in its momentum in the crystal, and this change in the momentum can¬ 
not be supplied by the momentum of the incident photon which is very small. Thus, the 
momentum difference must be balanced by a phonon momentum, 

tikeb — tik\B — Phonon momentum = tiK 

The absorption process is said to be indirect as it depends on lattice vibrations 
which in turn depend on the temperature. Since the interaction of a photon with a va¬ 
lence electron needs a third body, a lattice vibration, the probability of photon absorp¬ 
tion is not as high as in a direct transition. Furthermore, the cut-off wavelength is not 
as sharp as for direct bandgap semiconductors. During the absorption process, a 
phonon may be absorbed or emitted. If & is the frequency of the lattice vibrations, then 
the phonon energy is h$. The photon energy is hv where v is the photon frequency. 
Conservation of energy requires that 

hv = Eg ± h& 

Thus, the onset of absorption does not exactly coincide with Eg, but typically it is 
very close to Eg inasmuch as M is small (< 0.1 eV). The absorption coefficient ini¬ 
tially rises slowly with decreasing wavelength from about kg as apparent in Figure 9.23 
for Si and Ge. 

FUNDAMENTAL ABSORPTION A GaAs infrared LED emits at about 860 nm. A Si photode¬ 
tector is to be used to detect this radiation. What should be the thickness of the Si crystal that 
absorbs most of this radiation? 

815 

EXAMPLE 9.17 

14 As much as an electromagnetic radiation is quantized in terms of photons, lattice vibrations in the crystal are 
quantized in terms of phonons. A phonon is a quantum of lattice vibration. If K is the wavevector of a vibrational 
wave in a crystal lattice and co is its angular frequency, then the momentum of the wave ishK and its energy is fico. 
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SOLUTION 

According to Figure 9.23, at k & 0.8 jxm, Si has a « 6 x 104 m-1, so the absorption depth 

= 1.7 x 10"5 m *-i--L- , 
a 6 x 104 m-1 

or 17 |xm 

If the crystal thickness is S, then 63 percent of the radiation will be absorbed. If the thick¬ 
ness is 2S, then the fraction of absorbed radiation, from Equation 9.71, will be 

Fraction of absorbed radiation = 1 — exp[—ar(2<$)] = 0.86 or 86% 

9.11 LIGHT SCATTERING IN MATERIALS 
Scattering of an EM wave implies that a portion of the energy in a light beam is di¬ 
rected away from the original direction of propagation as illustrated for a small dielec¬ 
tric particle scattering a light beam in Figure 9.25. There are various types of scattering 
processes. 

Consider what happens when a propagating wave encounters a molecule, or a small 
dielectric particle (or region), which is smaller than the wavelength. The electric field in 
the wave polarizes the particle by displacing the lighter electrons with respect to the 
heavier positive nuclei. The electrons in the molecule couple and oscillate with the elec¬ 
tric field in the wave (ac electronic polarization). The oscillation of charge “up” and 
“down,” or the oscillation of the induced dipole, radiates EM waves all around the 
molecule as depicted in Figure 9.25. We should remember that an oscillating charge is 
like an alternating current which always radiates EM waves (like an antenna). The net 
effect is that the incident wave becomes partially reradiated in different directions and 
hence loses intensity in its original direction of propagation. We may think of the process 
as the particle absorbing some of the energy via electronic polarization and reradiating 
it in different directions. It may be thought that the scattered waves constitute a spheri¬ 
cal wave emanating from the scattering molecule, but this is not generally the case as the 
reemitted radiation depends on the shape and polarizability of the molecule in different 
directions. We assumed a small particle so that at any time the field has no spatial varia¬ 
tion through the particle, whose polarization then oscillates with the electric field oscil¬ 
lation. Whenever the size of the scattering region, whether an inhomogeneity or a small 

Figure 9.25 Rayleigh scattering involves 
the polarization of a small dielectric 
particle or a region that is much smaller 
than the light wavelength. 

The field forces dipole oscillations in the 
particle (by polarizing it), which leads to 
the emission of EM waves in "many" 
directions so that a portion of the light 
energy is directed away from the incident 
beam. 

A dielectric particle smaller than the wavelength 

Scattered waves 
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particle or a molecule, is much smaller than the wavelength X of the incident wave, the 
scattering process is generally termed Rayleigh scattering. In this type of scattering, 
typically the particle size is smaller than one-tenth of the wavelength. 

Rayleigh scattering of waves in a medium arises whenever there are small inho¬ 
mogeneous regions in which the refractive index is different than the medium (which 
has some average refractive index). This means a local change in the relative permit¬ 
tivity and polarizability. The result is that the small inhomogeneous region acts like a 
small dielectric particle and scatters the propagating wave in different directions. In the 
case of optical fibers, dielectric inhomogeneities arise from fluctuations in the relative 
permittivity that is part of the intrinsic glass structure. As the fiber is drawn by freez¬ 
ing a liquid-like flow, random thermodynamic fluctuations in the composition and 
structure that occur in the liquid state become frozen into the solid structure. Conse¬ 
quently, the glass fiber has small fluctuations in the relative permittivity which leads to 
Rayleigh scattering. Nothing can be done to eliminate Rayleigh scattering in glasses as 
it is part of their intrinsic structure. 

It is apparent that the scattering process involves electronic polarization of the mol¬ 
ecule or the dielectric particle. We know that this process couples most of the energy at 
ultraviolet frequencies where the dielectric loss due to electronic polarization is maxi¬ 
mum and the loss is due to EM wave radiation. Therefore, as the frequency of light in¬ 
creases, the scattering becomes more severe. In other words, scattering decreases with 
increasing wavelength. For example, blue light which has a shorter wavelength than red 
light is scattered more strongly by air molecules. When we look at the sun directly, it ap¬ 
pears yellow because the blue light has been scattered in the direct light more than the 
red light. When we look at the sky in any direction but the sun, our eyes receive scat¬ 
tered light which appears blue; hence the sky is blue. At sunrise and sunset, the rays 
from the sun have to traverse the longest distance through the atmosphere and have the 
most blue light scattered which gives the sun its red color at these times. 

9.12 ATTENUATION IN OPTICAL FIBERS 

As light propagates through an optical fiber, it becomes attenuated by a number of 
processes that depend on the wavelength of light. Figure 9.26 shows the attenuation 
coefficient, as dB per km, of a typical silica-glass-based optical fiber as a function of 
wavelength. The sharp increase in the attenuation at wavelengths beyond 1.6 |xm in the 
infrared region is due to energy absorption by “lattice vibrations” of the constituent 
ions of the glass material. Fundamentally, energy absorption in this region corresponds 
to the stretching of the Si-O bonds in ionic polarization induced by the EM wave. 
Absorption increases with wavelength as we approach the resonance wavelength of 
the Si-0 bond which is around 9 (xm. In the case of Ge-O glasses, this is further away, 
around 11 |xm. There is another intrinsic material absorption in the region below 
500 nm, not shown in Figure 9.26, which is due to photons exciting electrons from the 
valence band to the conduction band of the glass. 

There is a marked attenuation peak centered at 1.4 p,m, and a barely discernible 
minor peak at about 1.24 |xm. These attenuation regions arise from the presence of 
hydroxyl ions as impurities in the glass structure inasmuch as it is difficult to remove all 
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Figure 9.26 Illustration of typical 
attenuation versus wavelength 
characteristics of a silica-based optical 
fiber. 

There are two communications channels 
at 1310 and 1550 nm. 

traces of hydroxyl (water) products during fiber production. Further, hydrogen atoms 
can easily diffuse into the glass structure at high temperatures during production which 
leads to the formation of hydrogen bonds in the silica structure and OH ions. Energy is 
absorbed mainly by the stretching vibrations of the OH bonds within the silica structure 
which has a fundamental resonance in the infrared region (beyond 2.7 |im) but over¬ 
tones or harmonics at lower wavelengths (or higher frequencies). The first overtone at 
around 1.4 |im is the most significant as can be seen in Figure 9.26. The second over¬ 
tone is around 1 |xm, and in high-quality fibers this is negligible. A combination of the 
first overtone of the OH vibration and the fundamental vibrational frequency of Si02 
gives rise to a minor loss peak at around 1.24 pm. There are two important windows in 
the attenuation versus wavelength behavior where the attenuation exhibits minima. The 
window at around 1.3 pm is the region between two neighboring OH- absorption 
peaks. This window is widely used in optical communications at 1310 nm. The window 
at around 1.55 |xm is between the first harmonic absorption of OH- and the infrared lat¬ 
tice absorption tail and represents the lowest attenuation. Current technological drive is 
to use this window for long-haul communications. It can be seen that it is important to 
keep the hydroxyl content in the fiber within tolerable levels. 

There is a background attenuation process that decreases with wavelength and is 
due to the Rayleigh scattering of light by the local variations in the refractive index. 
Glass has a noncrystalline or an amorphous structure which means that there is no 
long-range order to the arrangement of the atoms but only a short-range order, typi¬ 
cally a few bond lengths. The glass structure is as if the structure of the melt has been 
suddenly frozen. We can only define the number of bonds a given atom in the structure 
will have. Random variations in the bond angle from atom to atom lead to a disordered 
structure. There is therefore a random local variation in the density over a few bond 
lengths which leads to fluctuations in the refractive index over few atomic lengths. 
These random fluctuations in the refractive index give rise to light scattering and hence 

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 

Wavelength (pm) 
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light attenuation along the fiber. It should be apparent that since a degree of structural 
randomness is an intrinsic property of the glass structure, this scattering process is un¬ 
avoidable and represents the lowest attenuation possible through a glass medium. As 
one may surmise, attenuation by scattering in a medium is minimum for light propa¬ 
gating through a “perfect” crystal. In this case the only scattering mechanisms will be 
due to thermodynamic defects (vacancies) and the random thermal vibrations of the 
lattice atoms. 

As mentioned above, the Rayleigh scattering process decreases with wavelength 
and, according to Lord Rayleigh, it is inversely proportional to X4. The expression for 
the attenuation (Xr in a single component glass due to Rayleigh scattering is approxi¬ 
mately given by 

87r3 Rayleigh 

<xr « —j(n2 - iffrkTf [9.72] scattering 

in silica 

where X is the free-space wavelength, n is the refractive index at the wavelength of 
interest, fa is the isothermal compressibility (at Tf) of the glass, k is the Boltzmann 
constant, and 7} is a quantity called the fictive temperature (roughly the softening tem¬ 
perature of glass) where the liquid structure during the cooling of the fiber is frozen to 
become the glass structure. Fiber is drawn at high temperatures, and as the fiber cools 
eventually the temperature drops sufficiently for the atomic motions to be so sluggish 
that the structure becomes essentially “frozen-in” and remains like this even at room 
temperature. Thus 7} marks the temperature below which the liquid structure is frozen, 
and hence the density fluctuations are also frozen into the glass structure. It is appar¬ 
ent that Rayleigh scattering represents the lowest attenuation one can achieve using a 
glass structure. By proper design, the attenuation window at 1.5 |xm may be lowered 
to approach the Rayleigh scattering limit. 

RAYLEIGH SCATTERING LIMIT What is the attenuation due to Rayleigh scattering at around the EXAMPLE 9.18 
X = 1.55 pm window given that pure silica (Si02) has the following properties: Tf= 1730 °C 
(softening temperature), — 7 x 10-11 m2 N-1 (at high temperatures), n = 1.4446 at 1.5 pm? 

SOLUTION 

We simply calculate the Rayleigh scattering attenuation using 

— (n2 - 1 YfrkTf 

<*r » 3(155x 10-6)4<l44462 " 1)2(7 x 10_11)(l-38 x 10~23)(1730 + 273) 

= 3.27 x 10"5 m"1 or 3.27 x 10"2 km"1 

Attenuation in dB per km is then 

adB = 4.34a* = (4.34)(3.27 x 10“2 km"1) = 0.142 dB km"1 

This represents the lowest possible attenuation for a silica glass fiber at 1.55 pm. 
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9.13 LUMINESCENCE, PHOSPHORS, AND WHITE LEDS 

We know from our general experience that certain substances, known as phosphors, can 
absorb light and then reemit light even after the excitation light source has been turned 
off; this is an example of luminescence. In general, luminescence is the emission of 
light by a material, called a phosphor, due to the absorption and conversion of energy 
into electromagnetic radiation as illustrated in Figure 9.27a and b. The luminescent ra¬ 
diation emitted by the phosphor material is considered to be quite separate from the 
thermal radiation emitted by virtue of its temperature. Luminescence is light emitted by 
a nonthermal source when it is excited, in contrast to the emission of radiation from a 
heated object such as the tungsten filament of a light bulb; the latter is called incandes¬ 
cence. Typically the emission of light occurs from certain dopants, impurities, or even 
defects, called luminescent or luminescence centers, purposefully introduced into a 
host matrix, which may be a crystal or glass as shown in Figure 9.27c. The luminescent 
center is also called an activator. There are many examples of phosphors. For example, 
in ruby, the Cr3+ ions are the luminescent centers in the sapphire (A1203) crystal host. 
Cr3+ ions can absorb UV or violet light and then emit red light. This phosphor system is 
written as Al203:Cr3+. The excitation and emission involves only the Cr3+ ion. In other 
cases, the activator excitation may also involve the host as discussed later. 

Luminescence is normally categorized according to the source of excitation 
energy. Photoluminescence involves excitation by photons (light) as in Figure 9.27a. 
X-ray luminescence involves incident X-rays exciting a phosphor to emit light. 
Cathodoluminescence, as shown in Figure 9.27b, is light emission when the excita¬ 
tion is the bombardment of the phosphor with energetic electrons as in TV cathode ray 
tubes. Electroluminescence is light emission due to the passage of an electric current. 
Electroluminescence in semiconductive materials appears as a result of an excited 
electron transiting down to the ground energy level, which would correspond to the re¬ 
combination of an electron and a hole; the excited electron is the conduction band 
(CB), and its ground state corresponds to a hole in the valence band (VB). The direct 
electron-hole recombination mechanism generally occurs very quickly. For example, 
typical minority carrier lifetimes are in the range of nanoseconds, so light emission 
from a semiconductor stops within nanoseconds after the removal of the excitation. 
Such quick luminescence processes occurring over a nanosecond time scale or shorter 
are normally identified as fluorescence. The emission of light from a fluorescent tube 

Emitted light Emitted light 
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(a) Photoluminescence 

Heat 
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Host matrix (e.g., A1203) 

(c) A typical phosphor = host + activators 

Figure 9.27 Photoluminescence, cathodoluminescence, and a typical phosphor. 
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This flashlight uses a white LED instead of an 
incandescent light bulb. The flashlight can operate 
continuously for 200 hours and can project an intense 
spot over 30 ft. White LEDs use a phosphor to 
generate yellow light from the blue light emitted from 
the LED's semiconductor chip. The mixture of blue and 
yellow light appears as white. 

is actually a fluorescence process. The tube contains a gas mixture of argon and mer¬ 
cury. The Ar and Hg gas atoms become excited by the electrical discharge process and 
emit light mainly in the ultraviolet region. This UV light is absorbed by the fluorescent 
coating on the inside of the tube. The excited activators in the phosphor coating then 
emit radiation in the visible region. A number of phosphors are used to obtain “white” 
light from the tube. 

There are also phosphors from which light emission may continue for millisec¬ 
onds to hours after the cessation of excitation. These slow luminescence processes are 
normally referred to as phosphorescence (also known as afterglow). 

Many phosphors are based on activators doped into a host matrix; for example, 
Eu3+ (europium ion) in a Y203 (yttrium oxide) matrix is a widely used modem phos¬ 
phor. When excited by UV radiation, it provides an efficient luminescence emission in 
the red (around 613 nm). It is used as the red-emitting phosphor in color TV tubes and 
in modem tricolor fluorescent lamps. In very general terms, we can represent the energy 
of an activator in a host matrix by the highly simplified energy diagram in Figure 9.28. 

Energy of luminescent center in host Figure 9.28 Photoluminescence: light absorption, 
excitation, nonradiative decay and light emission, and 
return to the ground state Ej. 

The energy levels have been displaced horizontally for 
clarity. 
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The ground state of the activator is Ex. Upon excitation by an incident radiation of 
suitable energy hvex the activator becomes excited to E2. From this energy level, it de¬ 
cays, or relaxes, down relatively quickly (on a time scale of the order of picoseconds) 
to an energy level E'2 by emitting phonons or lattice vibrations. This type of decay is 
called radiationless or nonradiative decay. From E\, the activator decays down to E\ 
by emitting a photon (spontaneous emission), which is the emitted luminescent radi¬ 
ation. The emitted photon energy ishvem, which is less than the excitation photon energy 
hvex. The return from E[ to the ground state E\ involves phonon emissions. Further, 
for some activators, E\ is either very close to E\, or it is E\ .The energy levels such as 
E2, E'2, E[, etc., are not well-defined single levels but involve finely spaced multi¬ 
levels. The higher levels may form multilevel narrow energy “bands.” In this exam¬ 
ple, the activator absorbed the incident radiation and was directly excited, which is 
known as activator excitation. The Cr3+ ions in Al203:Cr3+ can be excited directly 
by blue light and would then emit in the red. There are many phosphors in which the 
excitation involves the host. In host excitation, the host matrix absorbs the incident 
radiation and transfers the energy to the activator, which then becomes excited to E2 
in Figure 9.28, and so on. In X-ray phosphors, for example, the X-rays are absorbed 
by the host, which subsequently transfers the energy to the activators. It is apparent 
from Figure 9.28 that the emitted radiation (hvem) has a longer wavelength than the 
exciting radiation (/ivex), that is, hvem < hvcx. The downshift in the light frequency 
from absorbed to emitted radiation is called the Stoke’s shift. It should be empha¬ 
sized that the energy levels of the activator (as shown in Figure 9.28) also depend on 
the host, because the internal electric fields within the host crystal act on the activator 
and shift these levels up and down. The emission characteristics depend firstly on the 
activator, and secondly on the host. 

There are a number of host excitation mechanisms. In one possible process, which 
involves a semiconductor host, as depicted in Figure 9.29, an incident photon initially ex¬ 
cites a valence band (VB) electron to the conduction band (CB). The electron then ther- 
malizes, i.e., loses the excess energy as it collides with lattice vibrations, and falls close 
to Ec, and wanders around in the crystal. In one process, a in Figure 9.29, the electron can 
be captured into an excited state D of a luminescent center or an activator. The electron 
then falls down in energy to the ground state A of the activator releasing a photon, which 
is the luminescent emission. The electron at the ground state then recombines with a hole 
in the VB. Thus the activator acts as a radiative recombination center. In some cases D 
and A may be separate centers representing donor and acceptor-like centers, hence the la¬ 
bels D and A. In other cases, the radiative recombination center may simply be a single 
energy level in the bandgap, which is shown as R in Figure 9.29. The electron can emit a 
photon as it is captured into R, shown as process b in Figure 9.29, or emit the photon after 
it is captured by R, as it recombines with a hole, shown as process c in Figure 9.29. 
Processes a and b occur in various ZnS-based phosphors. For example, in ZnS:Cu+ 
phosphors, the activator is Cu+, which has an energy level at A in Figure 9.29. The lumi¬ 
nescent emission is enhanced by using a coactivator, such as A1 in ZnS:Cu+. A1 acts as a 
shallow donor D, and the luminescence is due to process a in Figure 9.29. 

There may also be traps in the semiconductor because of various crystal defects, or 
there may be added impurities. The electron can become captured by a trap at a local¬ 
ized energy level Et in the bandgap, but close to Ec. These electron traps temporarily 
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Thermalization CB 

Figure 9.29 Optical absorption generates an EHP. 

Both carriers thermalize. There are a number of recombination processes via a dopant that can result 
in a luminescent emission. 

capture an electron from the conduction band and thereby immobilize it. The time the 
electron spends trapped at Et depends on the energy depth of the trap from the con¬ 
duction band, Ec — Et. After a while a strong lattice vibration returns the electron back 
into the conduction band (by thermal excitation). The time interval between photogen¬ 
eration and recombination can be relatively long if the electron remains captured at Et 
for a considerable length of time. In fact, the electron may become trapped and de- 
trapped many times before it finally recombines, so the emission of light can persist for 
a relatively long time after the cessation of excitation (e.g., milliseconds or longer) as 
indicated by process d in Figure 9.29. 

It is also possible to excite electrons into the CB by bombarding the material with 
a high-energy electron beam, which leads to cathodoluminescence. Color CRT dis¬ 
plays are typically coated uniformly with three sets of phosphor dots which exhibit 
cathodoluminescence in the blue, red, and green wavelengths. In electroluminescence, 
an electric current, either ac or dc, is used to inject electrons into the CB which then re¬ 
combine with holes and emit light. For example, passing a current through certain 
semiconducting phosphors such as ZnS doped with Mn causes light emission by elec¬ 
troluminescence. The emission of light from a light emitting diode (LED) is an example 
of injection electroluminescence in which the applied voltage causes charge carrier 
injection and recombination in a device (diode) that has a junction between a p-type 
and an n-type semiconductor. 

Zinc sulfide with various activators has been one of the traditional phosphors. The 
ZnS: Ag+ in which Ag+ is the activator, is still used as a blue emitting phosphor, though 
in some cases Cd is substituted for some of the Zn. ZnS:Cu+ emits in the green, which 
is also a useful phosphor. Most modem phosphors, on the other hand, have been based 
on using rare earth activators in various hosts. For example, Y203:Eu3+ absorbs UV 
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Table 9.4 Selected phosphor examples 

Phosphor Activator 
Useful 
Emission 

Example 
Excitation Comment or Application 

Y203:Eu3+ Eu3+ Red UV Fluorescent lamp, color TV 

BaMgAlioOi7:Eu2+ Eu2+ Blue uv Fluorescent lamp 

CeMgAlnOi9:Tb3+ Tb3+ Green UV Fluorescent lamp 

Y3Al50i2:Ce3+ Ce3+ Yellow Blue, violet White LED 

Sr2Si04:Eu3+ Eu3+ Yellow Violet White LED (experimental) 

ZnS:Ag+ Ag+ Blue Electron beam Color TV blue phosphor 

Zno.68Cdo.32S:Ag+ Ag+ Green Electron beam Color TV green phosphor 

ZnS:Cu+ Cu+ Green Electron beam Color TV green phosphor 

(a) 

350 450 550 650 750 
Wavelength (nm) 

(b) 

Figure 9.30 
(a) A typical "white" LED structure. 

(b) The spectral distribution of light emitted by a white LED. Blue luminescence is emitted by the GalnN chip and 
"yellow" phosphorescence or luminescence is produced by a phosphor. The combined spectrum looks "white." 

radiation and emits in the red. Y3Al5Oi2:Ce3+ absorbs blue light and emits yellow light. 
Some of the most popular activators are Eu3+ for red, Eu2+ for blue, and Tb3+ for green. 
Table 9.4 summarizes a number of phosphors commonly used in various applications. 

Recent inexpensive white LEDs that have appeared on the market seem to emit 
white light by emitting a mixture of blue and yellow light which are registered visually 
by the eye as appearing white. (Yellow consists of red and green mixed together, so 
mixing blue and yellow generates “white.”) The production of white LEDs became 
possible due to development of bright blue-emitting LEDs based on gallium-indium- 
nitride (GalnN). The white LED uses a semiconductor chip emitting at a short wave¬ 
length (blue, violet, or ultraviolet) and a phosphor to convert some of the blue light to 
yellow light as depicted in Figure 9.30a. The phosphor absorbs light from the diode 
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and undergoes luminescent emission at a longer wavelength. Obviously, the quality 
and spectral characteristics of the combined emission vary with different designs; Fig¬ 
ure 9.30b shows example spectra involved in the blue and yellow emissions and the 
overall “white” emission from a white LED. Typical phosphors have been based on 
yttrium-aluminum- (Y3AI5O12) garnets (YAGs) as the host material. This host is doped 
with one of the rare earth elements for the activator. Cerium is a common dopant ele¬ 
ment in YAG phosphors; that is, the phosphor is Y3Al5Oi2:Ce3+, which is able to effi¬ 
ciently absorb the blue and emit the yellow. White LEDs are soon expected to challenge 
the existing incandescent sources for general lighting. 

9.14 POLARIZATION 

A propagating EM wave has its electric and magnetic fields at right angles to the 
direction of propagation. If we place a z axis along the direction of propagation, then 
the electric field can be in any direction in the plane perpendicular to the z axis. The 
term polarization of an EM wave describes the behavior of the electric field vector in 
the EM wave as it propagates through a medium. If the oscillations of the electric field 
at all times are contained within a well-defined line, then the EM wave is said to be 
linearly polarized as shown in Figure 9.31a. The field vibrations and the direction of 
propagation (z) define a plane of polarization (plane of vibration), so linear polariza¬ 
tion implies a wave that is plane-polarized. By contrast, if a beam of light has waves 
with the E field in each in a random direction but perpendicular to z, then this light 
beam is unpolarized. A light beam can be linearly polarized by passing the beam 

Figure 9.31 
(a) A linearly polarized wave has its electric field oscillations defined along a line perpendicular to the direction of 
propagation z. The field vector E and z define a plane of polarization. 

(b) The 5-field oscillations are contained in the plane of polarization. 

(c) A linearly polarized light at any instant can be represented by the superposition of two fields 5X and Ey with the 
right magnitude and phase. 
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through a polarizer, such as a polaroid sheet, a device that only passes electric field os¬ 
cillations lying on a well-defined plane parallel to its transmission axis. 

Suppose that we arbitrarily place the jc and y axes and describe the electric field in 
terms of its components Ex and Ey along x and y (we are justified to do this because Ex 
and Ey are perpendicular to z). To find the electric field in the wave at any space and 
time location, we add Ex and Ey vectorially. Both Ex and Ey can individually be de¬ 
scribed by a wave equation which must have the same angular frequency a> and 
wavenumber k. However, we must include a phase difference 0 between the two: 

Ex = Exo cos (cot — kz) 19.731 

and 

Ey = Eyo cos (cot — kz + 0) [9.74] 

where 0 is the phase difference between Ey and Ex\ 0 can arise if one of the compo¬ 
nents is delayed (retarded). 

The linearly polarized wave in Figure 9.31a has the E oscillations at —45° to the 
jc axis as shown in Figure 9.31b. We can generate this field by choosing Exo = Eyo 
and 0 = ±180° (±tt) in Equations 9.73 and 9.74. Put differently, Ex and Ey have the 
same magnitude, but they are out of phase by 180°. If u* and vty are the unit vectors 
along jc and y, using 0 = n in Equation 9.74, the field in the wave is 

E =s uxEx + uyEy = u XEX0 cos (cot — kz) — cos (cot — kz) 

or 

E = E0cos(<wf — kz) [9.75] 

where 

E0 = uXEX0 - uyEyo [9.76] 

Equations 9.75 and 9.76 state that the vector Ec is at —45° to the jc axis and propagates 
along the z direction. 

There are many choices for the behavior of the electric field besides the simple 
linear polarization in Figure 9.31. For example, if the magnitude of the field vector E 
remains constant but its tip at a given location on z traces out a circle by rotating in a 
clockwise sense with time, as observed by the receiver of the wave, then the wave is said 
to be right circularly polarized15 as in Figure 9.32. If the rotation of the tip of E is coun¬ 
terclockwise, the wave is said to be left circularly polarized. From Equations 9.73 
and 9.74, it should be apparent that a right circularly polarized wave has Exo = Eyo = A 
(an amplitude) and 0 = tc/2. This means that, 

Ex = A cos (cot — kz) [9.77] 

and 

Ey — — A sin(o>t — kz) [9.78] 

15 There is a difference in this definition in optics and engineering. The definition here follows that in optics which is 
more prevalent in optoelectronics. 
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Figure 9.32 

(a) A right circularly polarized light that is 
traveling along z (out of paper). The field 
vector E is always at right angles to z, rotates 
clockwise around zwith time, and traces out 
a full circle over one wavelength of distance 
propagated. 

(b) An elliptically polarized light. 

It is relatively straightforward to show that Equations 9.77 and 9.78 represent a 
circle that is 

E\ + E2 = A2 [9.79] 

as shown in Figure 9.32. 
When the phase difference <p is other than 0, ±n, or ±nj2, the resultant wave is 

elliptically polarized and the tip of the vector in Figure 9.32 traces out an ellipse. 

9.15 OPTICAL ANISOTROPY 

An important characteristic of crystals is that many of their properties depend on the 
crystal direction; that is, crystals are generally anisotropic. The dielectric constant er 
depends on electronic polarization which involves the displacement of electrons with 
respect to positive atomic nuclei. Electronic polarization depends on the crystal direc¬ 
tion inasmuch as it is easier to displace electrons along certain crystal directions. This 
means that the refractive index n of a crystal depends on the direction of the electric 
field in the propagating light beam. Consequently, the velocity of light in a crystal 
depends on the direction of propagation and on the state of its polarization, i.e., the di¬ 
rection of the electric field. Most noncrystalline materials, such as glasses and liquids, 
and all cubic crystals are optically isotropic, that is, the refractive index is the same in 
all directions. For all classes of crystals excluding cubic structures, the refractive index 
depends on the propagation direction and the state of polarization. The result of opti¬ 
cal anisotropy is that, except along certain special directions, any unpolarized light ray 
entering such a crystal breaks into two different rays with different polarizations and 
phase velocities. When we view an image through a calcite crystal, an optically 
anisotropic crystal, we see two images, each constituted by light of different polariza¬ 
tion passing through the crystal, whereas there is only one image through an optically 
isotropic crystal as depicted in Figure 9.33. Optically anisotropic crystals are called 
birefringent because an incident light beam may be doubly refracted. 

Experiments and theories on “most anisotropic crystals,” i.e., those with the high¬ 
est degree of anisotropy, show that we can describe light propagation in terms of three 
refractive indices, called principal refractive indices n\, «2, and /13, along three mu¬ 
tually orthogonal directions in the crystal, say x, y, and z, called principal axes. These 
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Figure 9.33 A line viewed through 
a cubic sodium chloride (halite) crystal 
(optically isotropic) and a calcite 
crystal (optically anisotropic). 

indices correspond to the polarization state of the EM wave along these axes. In addi¬ 
tion, anisotropic crystals may possess one or two optic axes. An optic axis is a special 
direction in the crystal along which the velocity of propagation does not depend on the 
state of polarization. The propagation velocity along the optic axis is the same what¬ 
ever the polarization of the EM wave. 

Crystals that have three distinct principal indices also have two optic axes and are 
called biaxial crystals. On the other hand, uniaxial crystals have two of their princi¬ 
pal indices the same («i = ni) and have only one optic axis. Table 9.5 summarizes 
crystal classifications according to optical anisotropy. Uniaxial crystals, such as 
quartz, that have n3 > n\, are called positive, and those such as calcite that have 
n3 < n\ are called negative uniaxial crystals. 

Table 9.5 Principal refractive indices of some optically isotropic 
and anisotropic crystals (near 589 nm, yellow Na-D line) 

Optically Isotropic n~n0 

Glass (crown) 1.510 

Diamond 2.417 

Fluorite (CaF2> 1.434 

Uniaxial—Positive n0 ne 

Ice 1.309 1.3105 

Quartz 1.5442 1.5533 

Rutile (TiC>2) 2.616 2.903 

Uniaxial—Negative n0 n€ 

Calcite (CaCOj) 1.658 1.486 

Tourmaline 1.669 1.638 

Lithium niobate 2.29 2.20 

(LiNBOj) 

Biaxial n\ n2 «3 

Mica (muscovite) 1.5601 1.5936 1.5977 
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Figure 9.34 Two polaroid analyzers are placed with 
their transmission axes, along the long edges, at right 
angles to each other. 

The ordinary ray, undeflected, goes through the left 
polarizer, whereas the extraordinary wave, deflected, goes 
through the right polarizer. The two waves therefore have 
orthogonal polarizations. 

9.15.1 Uniaxial Crystals and Fresnel’s Optical Indicatrix 

For our discussions of optical anisotropy, we will consider uniaxial crystals such as 
calcite and quartz. All experiments and theories lead to the following basic principles.16 

Any EM wave entering an anisotropic crystal splits into two orthogonal linearly 
polarized waves that travel with different phase velocities; that is, they experience 
different refractive indices. These two orthogonally polarized waves in uniaxial crys¬ 
tals are called ordinary (o) and extraordinary (e) waves. The o-wave has the same 
phase velocity in all directions and behaves like an ordinary wave in which the field is 
perpendicular to the phase propagation direction. The e-wave has a phase velocity that 
depends on its direction of propagation and its state of polarization, and further the 
electric field in the e-wave is not necessarily perpendicular to the phase propagation 
direction. These two waves propagate with the same velocity only along a special 
direction called the optic axis. The 0-wave is always perpendicularly polarized to the 
optic axis and obeys the usual Snell’s law. 

The two images observed through the calcite crystal in Figure 9.33 are due to 
o-waves and e-waves being refracted differently, so when they emerge from the crys¬ 
tal they have been separated. Each ray constitutes an image, but the field directions are 
orthogonal. The fact that this is so is easily demonstrated by using two polaroid ana¬ 
lyzers with their transmission axes at right angles as in Figure 9.34. If we were to view 
an object along the optic axis of the crystal, we would not see two images because the 
two rays would experience the same refractive index. 

As mentioned, we can represent the optical properties of a crystal in terms of 
three refractive indices along three orthogonal axes, the principal axes of the crystal, 
shown as x, y, and z in Figure 9.35a. These are special axes along which the polariza¬ 
tion vector and the electric field are parallel. (Put differently, the electric displace¬ 
ment17 D and the electric field E vectors are parallel.) The refractive indices along 
these jc, y, and z axes are the principal indices n\, ri2, and «3, respectively, for electric 

14 These statements can be proved by solving Maxwell's equations in an anisotropic medium. 

17 Electric displacement D at any point is defined by D = £0E + P where E is the electric field and P is the 
polarization at that point. 
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(a) Fresnel's ellipsoid (for nj = n2 < n3; 
quartz) 

(b) An EM wave propagating along OP at 
an angle 0 to optic axis. 

Figure 9.35 

field oscillations along these directions (not to be confused with the wave propagation 
direction). For example, for a wave with a polarization parallel to the x axes, the re¬ 
fractive index is nj. 

The refractive index associated with a particular EM wave in a crystal can be 
determined by using Fresnel’s refractive index ellipsoid, called the optical indica- 
trix,18 which is a refractive index surface placed in the center of the principal axes, 
as shown in Figure 9.35a, where the x, y, and z axis intercepts are m, n2, and n3. If all 
three indices were the same, wi = «2 = «3 = «0, we would have a spherical surface 
and all electric field polarization directions would experience the same refractive index 
n0. Such a spherical surface would represent an optically isotropic crystal. For posi¬ 
tive uniaxial crystals such as quartz, n\ = n2 < «3, which is the ellipsoid example 
shown in Figure 9.35a. 

Suppose that we wish to find the refractive indices experienced by a wave travel¬ 
ing with an arbitrary wavevector k, which represents the direction of phase propaga¬ 
tion. This phase propagation direction is shown as OP in Figure 9.35b and is at an 
angle 6 to the z axis. We place a plane perpendicular to OP and passing through the 
center O of the indicatrix. This plane intersects the ellipsoid surface in a curve ABA'B' 
which is an ellipse. The major (BOB') and minor (AOA') axes of this ellipse determine 
the field oscillation directions and the refractive indices associated with this wave. Put 
differently, the original wave is now represented by two orthogonally polarized EM 
waves. 

The line AOA!, the minor axis, corresponds to the polarization of the ordinary 
wave, and its semiaxis AA! is the refractive index nc = n2 of this o-wave. The electric 
displacement and the electric field are in the same direction and parallel to AOA'. If 

,e Thore ore various names in the literature with various subtle nuances: the Fresnel ellipsoid, optical indicatrix, 
index ellipsoid, reciprocal ellipsoid, Poinsot ellipsoid, ellipsoid of wave normals. 
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x x 

(a) (b) 

Figure 9.36 Eq — ^o-wave ond Eq — ^d-wave- 

(a) Wave propagation along the optic axis. 

(b) Wave propagation normal to the optic axis. 

we were to change the direction of OP, we would always find the same minor axis, 
i.e., n0 is either n\ or «2 whatever the orientation of OP (try orientating OP to be along 
y and along x). This means that the o-wave always experiences the same refractive 
index in all directions. (The o-wave behaves just like an ordinary wave, hence the 
name.) 

The line BOB' in Figure 9.35b, the major axis, corresponds to the electric dis¬ 
placement field (D) oscillations in the extraordinary wave, and its semiaxis OB is the 
refractive index ne(9) of this e-wave. This refractive index is smaller than «3 but greater 
than «2 (= no)- The e-wave therefore travels more slowly than the o-wave in this 
particular direction and in this crystal. If we change the direction of OP, we find 
that the length of the major axis changes with the OP direction. Thus, ne(9) depends on 
the wave direction 9. As apparent, ne = nQ when OP is along the z axis, that is, when the 
wave is traveling along z as in Figure 9.36a. This direction is the optic axis, and all 
waves traveling along the optic axis have the same phase velocity whatever their po¬ 
larization. When the e-wave is traveling along the y axis, or along the x axis, ne{9) = 
«3 = ne and the e-wave has its slowest phase velocity as shown in Figure 9.36b. Along 
any OP direction that is at an angle 9 to the optic axis, the e-wave has a refractive index 
ne(9) given by 

1 

ne(0)2 

cos2 9 sin2 9 
y. I y, 

n‘ nt 
[9.80] 

Clearly, for 9 = 0°, ne{0°) = na and for 9 = 90°, ne(90°) = ne. 
The major axis BOB' in Figure 9.35b determines the e-wave polarization by defin¬ 

ing the direction of the displacement vector D and not E. Although D is perpendicular 
to k, this is not true for E. The electric field Ee.wave of the e-wave is orthogonal to that 
of the owave, and it is in the plane determined by k and the optic axis. Ee_wave is 
orthogonal to k only when the e-wave propagates along one of the principal axes. In 
birefringent crystals it is usual to take the ray direction as the direction of energy flow, 

Refractive 

index of the 

e-wave 



832 chapter 9 • Optical Properties of Materials 

that is the direction of the Poynting vector (S). The Ee.wave is then orthogonal to the ray 
direction. For the 0-wave, the wavefront propagation direction k is the same as the 
energy flow direction S. For the e-wave, however, the wavefront propagation direction 
k is not the same as the energy flow direction S. 

9.15.2 Birefringence of Calcite 

Consider a calcite crystal (CaCOs) which is a negative uniaxial crystal and also well 
known for its double refraction. When the surfaces of a calcite crystal have been 
cleaved, that is, cut along certain crystal planes, the crystal attains a shape that is called 
a cleaved form and the crystal faces are rhombohedrons (parallelogram with 78.08° 
and 101.92°). A cleaved form of the crystal is called a calcite rhomb. A plane of the cal¬ 
cite rhomb that contains the optical axis and is normal to a pair of opposite crystal sur¬ 
faces is called a principal section. 

Consider what happens when an unpolarized or natural light enters a calcite crystal 
at normal incidence and thus also normal to a principal section to this surface, but at an 
angle to the optic axis as shown in Figure 9.37. The ray breaks into ordinary (o) and 
extraordinary (e) waves with mutually orthogonal polarizations. The waves propagate 
in the plane of the principal section as this plane also contains the incident light. The 
o-wave has its field oscillations perpendicular to the optic axis. It obeys Snell’s law 
which means that it enters the crystal undeflected. Thus the direction of E-field 
oscillations must come out of the paper so that it is normal to the optic axis and also to 
the direction of propagation. The field E± in the 0-ray is shown as dots, oscillating into 
and out of the paper. 

The e-wave has a polarization orthogonal to the 0-wave and in the principal sec¬ 
tion. The e-wave polarization is in the plane of the paper, indicated as E\\, in Figure 
9.37. It travels with a different velocity and diverges from the 0-wave. Clearly, the 

Optic axis 

e-wave 

o-wave 

Figure 9.37 An EM wave that is off the optic axis of a calcite crystal splits into two waves called ordinary and 
extraordinary waves. 

These waves have orthogonal polarizations and travel with different velocities. The o-wave has a polarization that is 
always perpendicular to the optical axis. / 
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e-wave does not obey the usual Snell’s law inasmuch as the angle of refraction is not 
zero. We can determine the e-ray direction by noting that the e-wave propagates side¬ 
ways as in Figure 9.37b at right angles to E\\. 

9.15.3 Dichroism 

In addition to the variation in the refractive index, some anisotropic crystals also exhibit 
dichroism, a phenomenon in which the optical absorption in a substance depends on 
the direction of propagation and the state of polarization of the light beam. A dichroic 
crystal is an optically anisotropic crystal in which either the e-wave or the o-wave is 
heavily attenuated (absorbed). This means that a light wave of arbitrary polarization en¬ 
tering a dichroic crystal emerges with a well-defined polarization because the other or¬ 
thogonal polarization would have been attenuated. Generally dichroism depends on the 
wavelength of light. For example, in a tourmaline (aluminum borosilicate) crystal, the 
o-wave is much more heavily absorbed with respect to the e-wave. 

9.16 BlREFRINGENT RETARDING PLATES 

Consider a positive uniaxial crystal such as a quartz (ne > nQ) plate that has the optic 
axis (taken along z) parallel to the plate faces as in Figure 9.38. Suppose that a linearly 
polarized wave is normally incident on a plate face. If the field E is parallel to the optic 
axis (shown as E||), then this wave will travel through the crystal as an e-wave with a 
velocity c/ne slower than the o-wave since ne > nQ. Thus, the optic axis is the “slow axis” 
for waves polarized parallel to it. If E is at right angles to the optic axis (shown as E±), 
then this wave will travel with a velocity c/n0, which will be the fastest velocity in the 
crystal. Thus the axis perpendicular to the optic axis (say x) will be the “fast axis” for 
polarization along this direction. When a light ray enters a crystal at normal incidence 
to the optic axis and plate surface, then the o- and e-waves travel along the same 
direction as shown in Figure 9.38. We can of course resolve a linear polarization at an 
angle a to z into E± and E\\. The o-wave corresponds to the propagation of E± and 
the e-wave to the propagation of E(| in the crystal. When the light comes out at the 

z = Slow axis 

= n-x 

-► y 

Figure 9.38 A retarder plate. 

The optic axis is parallel to the plate face. The 
o- and e-waves travel in the same direction but at 
different speeds. 

x = fast axis 
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Figure 9.39 Input and output polarizations 
of light through (a) a half-wavelength plate 
and (b) through a quarter-wavelength plate. 

Half-wavelength plate: <j> = n 

Optic axis 

Output 

z 

Relative 

phase 

through 

retarder plate 

opposite face, these two components E±_ and E\\ would have been phase shifted by 0. 
Depending on the initial angle a of E and the length of the crystal, which determines 
the total phase shift 0 through the plate, the emerging beam can have its initial linear 
polarization rotated, or changed into an elliptically or circularly polarized light as sum¬ 
marized in Figure 9.39. 

If L is the thickness of the plate, then the o-wave experiences a phase change given 
by k0.wave L through the plate where fc0.wave is the wavevector of the o-wave; kQ.wave = 
(2n/k)n0, where A is the free-space wavelength. Similarly, the e-wave experiences a 
phase change (2jt/X)neL through the plate. Thus, the phase difference 0 between the 
orthogonal components E± and E\\ of the emerging beam is 

2 71 
0 = —(ne - n0)L [9.81] 

A 

The phase difference 0 expressed in terms of full wavelengths is called the retardation 
of the plate. For example, a phase difference 0 of 180° is a half-wavelength retardation. 

The polarization of the exiting-beam depends on the crystal-type, (ne — n0), and 
the plate thickness L. We know that depending on the phase difference 0 between the 
orthogonal components of the field, the EM wave can be linearly, circularly, or ellipti¬ 
cally polarized. 

A half-wave plate retarder has a thickness L such that the phase difference 0 is 
7r or 180°, corresponding to a half wavelength (A/2) of retardation. The result is that 
E|| is delayed by 180° with respect to E±. If we add the emerging E± and E\\ with this 
phase shift 0, E would be at an angle —a to the optic axis and still linearly polarized. 
E has been rotated counterclockwise through 2a. 
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A quarter-wave plate retarder has a thickness L such that the phase difference <f> 
is tt/2 or 90°, corresponding to a quarter wavelength If we add the emerging E± 
and E\\ with this phase shift <j>, the emerging light will be elliptically polarized if 
0 < a < 45° and circularly polarized if a = 45°. 

QUARTZ HALF-WAVE PLATE What should be the thickness of a half-wave quartz plate for a 
wavelength X « 707 nm given the extraordinary and ordinary refractive indices are n0 = 1.541 
and ne = 1.549? 

EXAMPLE 9.19 

SOLUTION 

Half-wavelength retardation is a phase difference of n, so from Equation 9.81 

2iz 
<j> = —(ne — n0)L = 7T 

X 

giving 

±(707 x IQ"9 m) 

0ne - na) ~ (1.549 - 1.541) 
= 44.2 pm 

This is roughly the thickness of a sheet of paper. 

9.17 OPTICAL ACTIVITY AND CIRCULAR 
BIREFRINGENCE 

When a linearly polarized light wave is passed through a quartz crystal along its optic 
axis, it is observed that the emerging wave has its E-vector (plane of polarization) 
rotated, which is illustrated in Figure 9.40. This rotation increases continuously with 
the distance traveled through the crystal (about 21.7° per mm of quartz). The rotation of 
the plane of polarization by a substance is called optical activity. In very simple intuitive 
terms, optical activity occurs in materials in which the electron motions induced by the 
external electromagnetic field follows spiraling or helical paths (orbits).19 Electrons 
flowing in helical paths resemble a current flowing in a coil and thus possess a magnetic 
moment. The optical field in light therefore induces oscillating magnetic moments which 
can be either parallel or antiparallel to the induced oscillating electric dipoles. Wavelets 
emitted from these oscillating induced magnetic and electric dipoles interfere to consti¬ 
tute a forward wave that has its optical field rotated either clockwise or counterclockwise. 

If 0 is the angle of rotation, then 0 is proportional to the distance L propagated in 
the optically active medium as depicted in Figure 9.40. For an observer receiving the 
wave through quartz, the rotation of the plane of polarization may be clockwise (to the 
right) or counterclockwise (to the left) which are called dextrorotatory and levorotatory 
forms of optical activity. The structure of quartz is such that atomic arrangements spi¬ 
ral around the optic axis either in clockwise or counterclockwise sense. Quartz thus 
occurs in two distinct crystalline forms, right-handed and left-handed, which exhibit 

'9 The explanation of optical activity involves examining both induced magnetic and electric dipole moments which 
will not be described here in detail. 
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i Dextro 

Figure 9.40 An optically active material such as quartz rotates the plane of polarization of the 
incident wave: The optical field E rotated to E . 

If we reflect the wave back into the material, E^ rotates back to E. 

Optical 

activity 

dextrorotatory and levorotatory types of optical activity, respectively. Although we 
used quartz as an example, there are many substances that are optically active, includ¬ 
ing various biological substances and even some liquid solutions (e.g., com symp) that 
contain various organic molecules with a rotatory power. 

The specific rotatory power (0 /L) is defined as the extent of rotation per unit 
distance traveled in the optically active substance. Specific rotatory power depends on 
the wavelength. For example, for quartz this is 49° per mm at 400 nm but 17° per mm 
at 650 nm. 

Optical activity can be understood in terms of left and right circularly polarized 
waves traveling at different velocities in the crystal, i.e., experiencing different refrac¬ 
tive indices. Due to the helical twisting of the molecular or atomic arrangements in the 
crystal, the velocity of a circularly polarized wave depends on whether the optical field 
rotates clockwise or counterclockwise. A vertically polarized light with a field E at the 
input can be thought of as two right- and left-handed circularly polarized waves ER and 
Ei that are symmetrical with respect to the y axis, i.e., at any instant a = ft, as shown 
in Figure 9.41. If they travel at the same velocity through the crystal, then they remain 
symmetrical with respect to the vertical (a = P remains the same) and the resultant is 
still a vertically polarized light. If, however, these travel at different velocities through 
a medium, then at the output E'L and E^ are no longer symmetrical with respect to the 
vertical, a' ^ ft', and their resultant is a vector E' at an angle 0 to the y axis. 

Suppose that nR and are the refractive indices experienced by the right- and left- 
handed circularly polarized light, respectively. After traversing the crystal length L, the 
phase difference between the two optical fields E^ and E'L at the output leads to a new 
optical field E' that is E rotated by 6, given by 

Q = -r(nL-nR)L [9.82] 
A 

where A is the free-space wavelength. For a left-handed quartz crystal, and for 589 nm 
light propagation along the optic axis, nR = 1.54427 and ni = 1.54420, which means 
6 is about 21.4° per mm of crystal. 

In a circularly birefringent medium, the right- and left-handed circularly polar¬ 
ized waves propagate with different velocities and experience different refractive 
indices nR and tii. Since optically active materials naturally rotate the optical field, it is 
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Input 
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a 

-> X 

Output 

y y 

Slow Fast 

Figure 9.41 Vertically polarized wave at the input can be thought of as two right- and left- 
handed circularly polarized waves that are symmetrical; i.e., at any instant a — f). 

If these travel at different velocities through a medium, then at the output they are no longer 
symmetric with respect to y, a ^ and the result is a vector E at an angle 6 to y. 

not unreasonable to expect that a circularly polarized light with its optical field rotat¬ 
ing in the same sense as the optical activity will find it easier to travel through the 
medium. Thus, an optically active medium possesses different refractive indices for 
right- and left-handed circularly polarized light and exhibits circular birefringence. It 
should be mentioned that if the direction of the light wave is reversed in Figure 9.40, 
the ray simply retraces itself and E' becomes E. 

ADDITIONAL TOPICS 

9.18 ELECTRO-OPTIC EFFECTS20 

Electro-optic effects refer to changes in the refractive index of a material induced by 
the application of an external electric field, which therefore “modulates” the optical 
properties. We can apply such an external field by placing electrodes on opposite faces 
of a crystal and connecting these electrodes to a battery. The presence of such a field 
distorts the electron motions in the atoms or molecules of the substance or distorts the 
crystal structure resulting in changes in the optical properties. For example, an applied 
external field can cause an optically isotropic crystal such as GaAs to become birefrin- 
gent. In this case, the field induces principal axes and an optic axis. Typically changes 
in the refractive index are small. The frequency of the applied field has to be such that 

20 An extensive discussion and applications of the electro-optic effects may be found in S. O. Kasap, 
Optoelectronics and Photonics: Principles and Practices, Prentice Hall, 2001, Upper Saddle River, NJ, ch. 7. 
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the field appears static over the time scale it takes for the medium to change its prop¬ 
erties, that is, respond, as well as for any light to cross the substance. The electro-optic 
effects are classified according to first- and second-order effects. 

If we were to take the refractive index n to be a function of the applied electric 
field E, that is, n = «(£), we can of course expand this as a Taylor series in E. The new 
refractive index n' is 

n' = n + a\E + CI2E2 + • • • [9.831 

where the coefficients a\ and <12 are called the linear electro-optic effect and second- 
order electro-optic effect coefficients. Although we would expect even higher terms in 
the expansion in Equation 9.83, these are generally very small and their effects negli¬ 
gible within the highest practical fields. The change in n due to the first E term is called 
the Pockels effect. The change in n due to the second E2 term is called the Kerr 
effect,21 and the coefficient 02 is generally written as XK where K is called the Kerr 
coefficient. Thus, the two effects are 

Pockels effect 

and 

An = a\E [9.84] 

Kerr effect An = a2E2 = (XK)E2 [9.85] 

All materials exhibit the Kerr effect. It may be thought that we will always find 
some (nonzero) value for a\ for all materials, but this is not true and only certain 
crystalline materials exhibit the Pockels effect. If we apply a field E in one direction 
and then reverse the field and apply —E, then according to Equation 9.84, A n should 
change sign. If the refractive index increases for E, it must decrease for —E. Revers¬ 
ing the field should not lead to an identical effect (the same An). The structure has to 
respond differently to E and —E. There must therefore be some asymmetry in the struc¬ 
ture to distinguish between E and —E. In a noncrystalline material, An for E would be 
the same as An for —E as all directions are equivalent in terms of dielectric properties. 
Thus a\ — 0 for all noncrystalline materials (such as glasses and liquids). Similarly, if 
the crystal structure has a center of symmetry, then reversing the field direction has an 
identical effect and a\ is again zero. Only crystals that are noncentrosymmetric22 
exhibit the Pockels effect. For example, a NaCl crystal (centrosymmetric) exhibits no 
Pockels effect, but a GaAs crystal (noncentrosymmetric) does. 

The Pockels effect expressed in Equation 9.84 is an oversimplification because in re¬ 
ality we have to consider the effect of an applied field along a particular crystal direction 
on the refractive index for light with a given propagation direction and polarization. For 
example, suppose that x, y, and z are the principal axes of a crystal with refractive indices 
n\, «2, and n$ along these directions. For an optically isotropic crystal, these would be the 
same whereas for a uniaxial crystal such as LiNb03 n\ = «2 7^ «3 as depicted in the xy 
cross section in Figure 9.42a. Suppose that we suitably apply a voltage across a crystal 
and thereby apply an external dc field Ea. In the Pockels effect, the field will modify the 

Field induced 

refractive 

index 

21 John Kerr (1824-1907) was a Scottish physicist who was a faculty member at Free Church Training College for 
Teachers, Glasgow (1857-1901) where he set up an optics laboratory and demonstrated the Kerr effect (1875). 

22 A crystal is a center of symmetry about a point O, if any atom (or point) with a position vector r from O also 
appears when we invert r, that is, take —r. 



9.18 Electro-Optic Effects 839 

y 

(a) (b) 

Figure 9.42 

(a) Cross section of the optical indicatrix 
with no applied field, nj = r»2 = n0. 

(b) Applied field along y in LiNbC>2 
modifies the indicatrix and changes nj and 
n2 to n\ and r>2. 

optical indicatrix. The exact effect depends on the crystal structure. For example, a crys¬ 
tal like GaAs, optically isotropic with a spherical indicatrix, becomes birefringent with 
two different refractive indices. In the case of LiNbOs (lithium niobate), which is an op- 
toelectronically important uniaxial crystal, a field Ea along the y direction changes the 
principal refractive indices n\ and n2 (both equal to n0) to n[ and n'2 as illustrated in Fig¬ 
ure 9.42b. Moreover, in some crystals such as KDP (KH2PO4, potassium dihydrogen 
phosphate), the field Ea along z rotates the principal axes by 45° about z and changes the 
principal indices. Rotation of principal axes in LiNbC>3 is small and can be neglected. 

As an example consider a wave propagating along the z direction (optic axis) in a 
LiNbC>3 crystal. This wave will experience the same refractive index (n\ = n2 = no) 

whatever the polarization as in Figure 9.42a. However, in the presence of an applied 
field Ea parallel to the principal y axis as in Figure 9.42b, the light propagates as two 
orthogonally polarized waves (parallel to x and y) experiencing different refractive 
indices n\ and n'2. The applied field thus induces a birefringence for light traveling 
along the z axis. (The field induced rotation of the principal axes in this case, though 
present, is small and can be neglected.) Before the field Ea is applied, the refractive in¬ 
dices n\ and n2 are both equal to nQ. The Pockels effect then gives the new refractive 
indices n\ and n'2 in the presence of Ea as 

n\ « «i + ^n\r22Ea and n2^n2- ^n\r22Ea [9.86] Pockels effect 

where r22 is a constant, called a Pockels coefficient, that depends on the crystal struc¬ 
ture and the material. The reason for the seemingly unusual subscript notation is that 
there are more than one constant and these are elements of a tensor that represents the 
optical response of the crystal to an applied field along a particular direction with 
respect to the principal axes (the exact theory is more mathematical than intuitive). We 
therefore have to use the correct Pockels coefficients for the refractive index changes 
for a given crystal and a given field direction.23 If the field were along z, the Pockels 
coefficient in Equation 9.86 would be ri3. Table 9.6 shows some typical values for 
Pockels coefficients of various crystals. 

23 The reader should not be too concerned with the subscripts but simply interpret them as identifying the right 
Pockels coefficient value for the particular electro-optic problem at hand. 
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Table 9.6 Pockels and Kerr (K) coefficients in various materials 

Material Crystal Indices 

Pockels Coefficients 

x 10~12 m/V Comment 

LiNb03 Uniaxial n0 = 2.272 

ne = 2.187 

r13 = 8.6; r33 = 30.8 

f22 = 3.4; r5i = 28 

X % 500 nm 

KDP Uniaxial n0= 1.512 

ne= 1.470 

r4i = 8.8; r& = 10.5 X % 546 nm 

GaAs Isotropic na = 3.6 r4t = 1.5 X 546 nm 

Figure 9.43 Transverse Pockels cell phase modulator. A linearly polarized input light into 

an electro-optic crystal emerges as a circularly polarized light. 

It is clear that the control of the refractive index by an external applied field (and 
hence a voltage) is a distinct advantage that enables the phase change through a Pockels 
crystal to be controlled or modulated; such a phase modulator is called a Pockels cell. 
In the longitudinal Pockels cell phase modulator the applied field is in the direction of 
light propagation, whereas in the transverse phase modulator the applied field is trans¬ 
verse to the direction of light propagation. 

Consider the transverse phase modulator in Figure 9.43. In this example, the applied 
electric field Ea — V/d is applied parallel to the y direction, normal to the direction of 
light propagation along z. Suppose that the incident beam is linearly polarized (shown 
as E) say at 45° to the y axes. We can represent the incident light in terms of polariza¬ 
tions (E* and Ev) along the x and y axes. These components E* and Ey experience re¬ 
fractive indices n\ and n'2, respectively. Thus, when E* traverses the distance L, its phase 
changes by 0i, 

<t>i ) 
When the component Ey traverses the distance L, its phase changes by 02, given 

by a similar expression except that r22 changes sign. Thus the phase change A0 
between the two field components is 

Transverse 

Pockels effect A 0 = 0i — 02 = 
In ■> L 
-n0r22-V 
A d 

[9.87] 
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The applied voltage thus inserts an adjustable phase difference A 0 between the two 
field components. The polarization state of the output wave can therefore be controlled by 
the applied voltage and the Pockels cell is a polarization modulator. We can change the 
medium from a quarter-wave to a half-wave plate by simply adjusting V. The voltage V = 
V\/2, the half-wave voltage, corresponds to A0 = n and generates a half-wave plate. 

H CD Selected Topics and Solved Problems 

Selected Topics 

Real and Imaginary Dielectric Constant 

Optical Dispersion and Absorption 

j, .......mi i laStiil I i ii i,.inn 

Solved Problems 

Fresnel’s Equations 

Complex Refractive Index and Light Absorption 

Dispersion: Refractive Index versus Wavelength 

Behavior 
Kite       M.nm*,—- 

DEFINING TERMS 

Absorption is the loss in the power of electromagnetic 

radiation that is traveling in a medium. The loss is due 

to the conversion of light energy to other forms of 

energy, such as lattice vibrations (heat) during the 

polarization of the molecules of the medium, local 

vibrations of impurity ions, excitation of electrons from 

the valence band to the conduction band, and so on. 

Activator is a luminescent center in a host crystal or 

glass in which it is excited, by some external excitation 

such as UV light; following excitation, the activator 

emits radiation to return to its ground state, or become 

de-excited. 

Anisotropy (optical) refers to the fact that the refrac¬ 

tive index n of a crystal depends on the direction of 

propagation of light and on the state of its polarization, 

that is, the direction of the electric field. 

Antireflection coating is a thin dielectric layer 

coated on an optical device or component to reduce 

the reflection of light and increase the transmitted 

light intensity. 

Attenuation is the decrease in the optical power (or 

irradiance) of a traveling wave in the direction of prop¬ 

agation due to absorption and scattering. 

Attenuation coefficient a represents the spatial rate 

of attenuation of an EM wave along the direction of 

propagation. If P0 is the optical power at some location 

O, and if it is P at a distance L from O along the direc¬ 

tion of propagation, then P = Pa exp(-arL). 

Birefringent crystals such as calcite are optically 

anisotropic which leads to an incident light beam be¬ 

coming separated into ordinary and extraordinary waves 

with orthogonal polarizations; incident light becomes 

doubly refracted because these two waves experience 

different refractive indices n0 and ne. 

Brewster’s angle or polarization angle (6P) is the 

angle of incidence that results in the reflected wave 

having no electric field in the plane of incidence (plane 

defined by the incident ray and the normal to the sur¬ 

face). The electric field oscillations in the reflected 

wave are in the plane perpendicular to the plane of 

incidence. 

Circularly birefringent medium is a medium in 

which right and left circularly polarized waves propa¬ 

gate with different velocities and experience different 

refractive indices hr and »/> 

Circularly polarized light is light where the magni¬ 

tude of the field vector E remains constant but its tip at 

a given location on the direction of propagation traces 

out a circle by rotating either in a clockwise sense, right 

circularly polarized, with time, as observed by the 
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receiver of the wave, or in a counterclockwise sense, 

left circularly polarized. 

Complex propagation constant (k1 - jk”) describes 

the propagation characteristics of an electromagnetic 

wave that is experiencing attenuation as it travels in a 

lossy medium. If k = k' — jk” is the complex propaga¬ 

tion constant, then the electric field component of a plane 

wave traveling in a lossy medium can be described by 

E = Ea exp(—k”z) exp j(a>t — k'z) 

The amplitude decays exponentially while the wave 

propagates along z. The real k' part of the complex 

propagation constant (wavevector) describes the prop¬ 

agation characteristics, that is, the phase velocity 

v=(o/k'. The imaginary k" part describes the rate of 

attenuation along z. 

Complex refractive index N with real part n and ima¬ 

ginary part K is defined as the ratio of the complex prop¬ 

agation constant k in a medium to propagation constant 

kc in free space, 

N=n-jK = rr(d(l!'-ik'') 
The real part n is simply called the refractive index, 

and K is called the extinction coefficient. 

Critical angle (Qc) is the angle of incidence that 

results in a refracted wave at 90° when the incident 

wave is traveling in a medium of lower refractive 

index and is incident at a boundary with a material with 

a higher refractive index. 

Dielectric mirror is made from alternating high and 

low refractive index quarter-wave-thick multilayers 

such that constructive interference of partially reflected 

waves gives rise to a high degree of wavelength- 

selective reflectance. 

Dispersion relation is a relationship between the 

refractive index n and the wavelength k of the EM wave, 

n = n(A); the wavelength usually refers to the ffee- 

space wavelength. The relationship between the angular 

frequency co and the propagation constant k, the a>-k 

curve, is also called the dispersion relation. 

Dispersive medium has a refractive index n that 

depends on the wavelength; that is, n is not a constant. 

Electro-optic effects refer to changes in the refractive 

index of a material induced by the application of an 

external electric field, which therefore “modulates” the 

optical properties; the applied field is not the electric 

field of any light wave, but a separate external field. 

Extinction coefficient is the imaginary part of the 

complex refractive index N. 

Fluorescence is luminescence that occurs over very 

short time scales, usually less than 10-8 seconds (or 

10 ns). In fluorescence, the onset and decay of lumi¬ 

nescent emission, due to the onset and cessation of ex¬ 

citation of the phosphor, is very short, appearing to be 

almost instantaneous. 

Fresnel’s equations describe the amplitude and phase 

relationships between the incident, reflected, and 

transmitted waves at a dielectric-dielectric interface in 

terms of the refractive indices of the two media and the 

angle of incidence. 

Group index (Ng) represents the factor by which the 

group velocity of a group of waves in a dielectric 

medium is reduced with respect to propagation in free 

space, Ng = c/vg where vg is the group velocity. 

Group velocity (vg) is the velocity at which energy, 

or information, is transported by a group of waves; vg 

is determined by dco/dk whereas phase velocity is 

determined by (o/k. 

Instantaneous irradiance is the instantaneous flow 

of energy per unit time per unit area and is given by the 

instantaneous value of the Poynting vector S. 

Irradiance (average) is the average flow of energy 

per unit time per unit area where averaging is typically 

carried out by the light detector (over many oscillation 

periods). Average irradiance can also be defined math¬ 

ematically by the average value of the Poynting vector 

S. The instantaneous irradiance can only be measured 

if the power meter can respond more quickly than the 

oscillations of the electric field, and since this is in the 

optical frequencies range, all practical measurements 

invariably yield the average irradiance. 

Kerr effect is a second-order effect in which the 

change in the refractive index n depends on the square 

of the electric field, that is, An = a^E1, where is a 

material dependent constant. 

Kramers-Kronig relations relate the real and imagi¬ 

nary parts of the relative permittivity. If we know the 

complete frequency dependence of the real part e'r (co). 
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using the Kramer-Kronig relation, we can find the fre¬ 

quency dependence of the imaginary part e”{(o). 

Luminescence is the emission of light by a material, 

called a phosphor, due to the absorption and conversion 

of energy into electromagnetic radiation. Typically the 

emission of light occurs from certain dopant impurities 

or even defects, called luminescent or luminescence 

centers or activators purposefully introduced into a 

host matrix, which may be a crystal or glass, which can 

accept the activators. Photoluminescence involves ex¬ 

citation by photons (light). Cathodoluminescence is 

light emission when the excitation is the bombardment 

of the phosphor with energetic electrons as in TV cath¬ 

ode ray tubes. Electroluminescence is light emission 

due to the passage of an electric current as in the LED. 

Optic axis is an axis in the crystal structure along which 

there is no double refraction for light propagation along 

this axis. 

Optical activity is the rotation of the plane of polar¬ 

ization of plane polarized light by a substance such as 

quartz. 

Optical indicatrix (Fresnel’s ellipsoid) is a refractive 

index surface placed in the center of the principal axes 

x, y, and z of a crystal; the axis intercepts are ni, n2, and 

«3. We can represent the optical properties of a crystal 

in terms of three refractive indices along three orthog¬ 

onal axes, the principal axes of the crystal, x, y, and z. 

Phase of a traveling wave is the quantity (kx — cvt) 

which determines the amplitude of the wave at posi¬ 

tion jc and at time t given the propagation constant 

k(= 2n/X) and angular frequency co. In three dimen¬ 

sions it is the quantity (k • r — cot) where k is the 

wavevector and r is the position vector. 

Phase velocity is the rate at which a given phase on a 

traveling wave advances. It represents the velocity of a 

given phase rather than the velocity at which informa¬ 

tion is carried by the wave. Two consecutive peaks of a 

wave are separated by a wavelength X, and it takes 

a time period 1 /v for one peak to reach the next (or the 

time separation of two consecutive peaks at one loca¬ 

tion); then the phase velocity is defined as v = Xv. 

Phosphor is a substance made of an activator and a 

host matrix (crystal or glass) that exhibits lumines¬ 

cence upon suitable excitation. 

Phosphorescence is a slow luminescence process in 

which luminescent emission occurs well after the ces¬ 

sation of excitation, even after minutes or hours. 

Pockels effect is a linear change in the refractive 

index n of a crystal due to an application of an external 

electric field E, other than the field of the light wave, 

that is. An = a\E, where a\ is a constant that depends 

on the crystal structure. 

Polarization of an EM wave describes the behavior of 

the electric field vector in the EM wave as it propagates 

through a medium. If the oscillations of the electric 

field at all times are contained within a well-defined 

line, then the EM wave is said to be linearly polar¬ 

ized. The field vibrations and the direction of propa¬ 

gation, e.g., z direction, define a plane of polarization 

(plane of vibration), so linear polarization implies a 

wave that is plane-polarized. 

Poynting vector (S) represents the energy flow per 

unit time per unit area in a direction determined by 

E x B (direction of propagation), S = v2e0erE. x B. 

Its magnitude, power flow per unit area, is called the 

irradiance. 

Principal axes of the crystal, normally labeled, x, y, 

and z, are special axes along which the polarization 

vector and the electric field are parallel. Put differently, 

the electric displacement D and the electric field E 

vectors are parallel. The refractive indices along these 

x, y, and z axes are the principal indices n\, ni, and «3, 

respectively, for electric field oscillations along these 

directions (not to be confused with the wave propaga¬ 

tion direction). 

Reflectance is the fraction of power in the reflected 

electromagnetic wave with respect to the incident 

power. 

Reflection coefficient is the ratio of the amplitude of 

the reflected EM wave to that of the incident wave. It 

can be positive, negative, or a complex number which 

then represents a phase change. 

Refraction is a change in the direction of a wave 

when it enters a medium with a different refractive 

index. A wave that is incident at a boundary between 

two media with different refractive indices experiences 

refraction and changes direction in passing from one to 

the other medium. 
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Refractive index n of an optical medium is the ratio 

of the velocity of light in a vacuum to its velocity in the 

medium n = c/v. 

Retarding plates are optical devices that change the 

state of polarization of an incident light beam. For 

example, when a linearly polarized light enters a 

quarter-wave plate, it emerges from the device either 

as circularly or elliptically polarized light, depending 

on the angle of the incident electric field with respect 

to the optic axis of the retarder plate. 

Scattering is a process by which the energy from a 

propagating EM wave is redirected as secondary EM 

waves in various directions away from the original 

direction of propagation. There are a number of scat¬ 

tering processes. In Rayleigh scattering, fluctuations in 

the refractive index, inhomogeneities, etc., lead to the 

scattering of light that decreases with the wavelength 
as X4. 

Snell’s law is a law that relates the angles of incidence 

and refraction when an EM wave traveling in one 

medium becomes refracted as it enters an adjacent 

medium. If light is traveling in a medium with index ti\ 

is incident on a medium of index ni, and if the angles 

of incidence and refraction (transmission) are #,■ and 6h 

then according to Snell’s law, 

sin $t n2 

sin0, n\ 

Specific rotatory power is defined as the amount 

of rotation of the optical field in a linearly polarized 

light per unit distance traveled in the optically active 

substance. 

Stoke’s shift in luminescence is the shift down in the 

frequency of the emitted radiation with respect to that 

of the exciting radiation. 

Total internal reflection (TIR) is the total reflection 

of a wave traveling in a medium when it is incident at 

a boundary with another medium of lower refractive 

index. The angle of incidence must be greater than the 

critical angle 9C which depends on the refractive 

indices sin 6c > tii/n\. 

Transmission coefficient is the ratio of the amplitude of 

the transmitted wave to that of the incident wave when 

the incident wave traveling in a medium meets a bound¬ 

ary with a different medium (different refractive index). 

Transmittance is the fraction of transmitted intensity 

when a wave traveling in a medium is incident at a 

boundary with a different medium (different refractive 
index). 

Wavefront is a surface where all the points have the 

same phase. A wavefront on a plane wave is an infinite 

plane perpendicular to the direction of propagation. 

Wavenumber or propagation constant is defined as 

2n/k where X is the wavelength. It is the phase shift in 

the wave over a distance of unit length. 

Wavepacket is a group of waves with slightly different 

frequencies traveling together and forming a “group.” 

This wavepacket travels with a group velocity vg that 

depends on the slope of co versus k characteristics of the 

wavepacket, i.e., vg = dco/dk. 

Wavevector is a vector denoted as k that describes the 

direction of propagation of a wave and has the magni¬ 

tude of the wavenumber, k = 2n/k. 

QUESTIONS AND PROBLEMS 

9.1 Refractive index and relative permittivity Using n = calculate the refractive index n of the 

materials in the table given their low-frequency relative permittivities sr (LF). What is your conclusion? 

Material 

a-Se Ge NaCl MgO 

Sr (LF) 6.4 16.2 5.90 9.83 

n (~ 1-5 |im) 2.45 4.0 1.54 1.71 
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9.2 Refractive index and bandgap Diamond, silicon, and germanium all have the same diamond unit 

cell. All three are covalently bonded solids. Their refractive indices (n) and energy bandgaps (Eg) are 

shown in the table, (a) Plot n versus Eg and (b) plot n4 versus 1 /Eg. What is your conclusion? According 

to Moss’s rule, very roughly, 

n4Eg K = Constant 

What is the value of AT? 

Material 

Diamond Silicon Germanium 

Bandgap, Eg (eV) 5 1.1 0.66 

n 2.4 3.46 4.0 

*9.3 Temperature coefficient of refractive index Suppose that we could write the relationship between 

the refractive index n (at frequencies much less than ultraviolet light) and the bandgap Eg of a semicon¬ 

ductor as suggested by Herv6 and Vandamme, 

n 2 
= 1 + 

2 

where Eg is in eV, A = 13.6 eV, and B = 3.4 eV. (B depends on the incident photon energy.) Temperature 

dependence in n results from dEJdT and dB/dT. Show that the temperature coefficient of refractive 

index (TCRI) is given by,24 

TCRI = - 
n 

dn 

dT 

(n2 - l)3/2 

13.6n2 . dT 
+ B' 

where B' is dB/dT. Given that = 2.5 x 10 5 eV K 1, calculate TCRI for two semiconductors: Si with 

n ~ 3.5 and dEg/dT «-3x 10-4 eV K-1, and AlAs with n 3.2 and dEg/dT —4 x 10-4 eV K-1. 

9.4 Sellmeier dispersion equation Using the Sellmeier equation and the coefficients in Table 9.2, calculate 

the refractive index of fused silica (SiC>2) and germania (GeCh) at 1550 nm. Which is larger, and why? 

9.5 Dispersion (n versus X) in GaAs By using the dispersion relation for GaAs, calculate the refractive 

index n and the group index Ng of GaAs at a wavelength of 1300 nm. 

9.6 Cauchy dispersion equation Using the Cauchy coefficients and the general Cauchy equation, calcu¬ 

late the refractive index of a silicon crystal at 200 jxm and at 2 pm, over two orders of magnitude wave¬ 

length change. What is your conclusion? Would you expect a significant chnge in n for tuo > Eg ? 

9.7 Cauchy dispersion relation for zinc selenide ZnSe is a II-VI semiconductor and a very useful opti¬ 

cal material used in various applications such as optical windows (especially high-power laser win¬ 

dows), lenses, prisms, etc. It transmits over 0.50 to 19 pm. n in the 1-11 pm range described by a 

Cauchy expression of the form 

n = 2.4365 + 
0.0485 

A2 

0.0061 
+ 

X4 
- 0.0003A2 

in which X is in |xm. What is ZnSe’s refractive index n and group index Ng at 5 |xm? 

*9.8 Dispersion (n versus X) Consider an atom in the presence of an oscillating electric field as in Figure 9.4, 

The applied field oscillates harmonically in the +x and — x directions and is given by E — E0 exp(jcot). 

The energy losses can be represented by a frictional force whose magnitude is proportional to the velocity 

Moss's rule 

Herve- 

Vandamme 

relationship 

ZnSe dispersion 

relation 

I 24 P. J. L. Herve and L. K. J. Vandamme, J. Appl. Phys., 77, 5476, 1995 and references therein. 
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Electronic 

polarizability 

Complex 

refractive index 

Dispersion in 

diamond 

dx/dt. If y is the proportionality constant per electron and per unit electron mass, then Newton’s second 

law for Z electrons in the polarized atom is 

d^x 2 
Zme = — ZeE0e\p(jcot) — Zmeco^x — Zmey 

dtz 

dx 

7t 

9.9 

where co0 = (P/Zme)l/2 is the natural frequency of the system composed of Z electrons and a +Ze nu¬ 

cleus and fi is a force constant for the restoring Coulombic force between the electrons and the nucleus. 

Show that the electronic polarizability ae is 

^ _ /^induced _ __ 

E me(a>l — a)2 + jyco) 

What does a complex polarizability represent? Since ae is a complex quantity, so is er and hence 

the refractive index. By writing the complex refractive index N = %fsir where er is related to ae by the 

Clausius-Mossotti equation, show that 

N2- 1_NZe2_ 

N2 4- 2 3e0me(a% — (o2 + jy<o) 

where N is the number of atoms per unit volume. What are your conclusions? 

Dispersion and diamond Consider applying the simple electronic polarizability and Clausius- 

Mossotti equations to diamond. Neglecting losses, 

Ze2 

me(a>l - m2) 

and 

er - 1 _ NZe2 
sr + 2 3s0me (co* — co2) 

For diamond we can take Z = 4 (valence electrons only as these are the most responsive), iV=1.8 x 

1029 atoms m“3, er(DC) = 5.7. Find co0 and then find the refractive index at A = 0.5 pm and 5 pm. 

9.10 Electric and magnetic fields in light The intensity (irradiance) of the red laser beam from a He-Ne 

laser in air has been measured to be about 1 mW cm-2. What are the magnitudes of the electric and mag¬ 

netic fields? What are the magnitudes if this 1 mW cm“2 beam were in a glass medium with a refractive 

index n = 1.45 and still had the same intensity? 

9.11 Reflection of light from a less dense medium (internal reflection) A ray of light which is traveling 

in a glass medium of refractive index n\ = 1.450 becomes incident on a less dense glass medium of re¬ 

fractive index ni = 1.430. Suppose that the free-space wavelength (A) of the light ray is 1 pm. 

a. What should be the minimum incidence angle for TIR? 

b. What is the phase change in the reflected wave when 0/ = 85° and when 0/ = 90° ? 

c. What is the penetration depth of the evanescent wave into medium 2 when 0,- = 85° and when 

0/ = 90° ? 

9.12 Internal and external reflection at normal incidence Consider the reflection of light at normal incidence 

on a boundary between a GaAs crystal medium of refractive index 3.6 and air of refractive index 1. 

a. If light is traveling from air to GaAs, what is the reflection coefficient and the intensity of the re¬ 

flected light in terms of the incident light? 

b. If light is traveling from GaAs to air, what is the reflection coefficient and the intensity of the re¬ 

flected light in terms of the incident light? 

9.13 Antireflection coating 

a. Consider three dielectric media with flat and parallel boundaries with refractive indices m, n*i, and 

n$. Show that for normal incidence the reflection coefficient between layers 1 and 2 is the same as 

that between layers 2 and 3 if /12 = What is the significance of this? 



Questions and Problems 847 

b. Consider a Si photodiode that is designed for operation at 900 nm. Given a choice of two possible 

antireflection coatings, Si02 with a refractive index of 1.5 and Ti02 with a refractive index of 2.3, 

which would you use and what would be the thickness of the antireflection coating you chose? The 

refractive index of Si is 3.5. 

9.14 Optical fibers in communications Optical fibers for long-haul applications usually have a core re¬ 

gion that has a diameter of about 10 pm, and the whole fiber would be about 125 pm in diameter. The 

core and cladding refractive indices, n\ and ft 2, respectively, are normally only 0.3-0.5 percent differ¬ 

ent. Consider a fiber with n\ (core) = 1.4510, and f%2(cladding) = 1.4477, both at 1550 nm. What is the 

maximum angle that a light ray can make with the fiber axis if it is still to propagate along the fiber? 

9.15 Optical fibers in communications Consider a short-haul optical fiber that has n \ (core) = 1.455 and 

2 (cladding) = 1.440 at 870 nm. Assume the core-cladding interface behaves like the flat interface be¬ 

tween two infinite media as in Figure 9.11. Consider a ray that is propagating that has an angle of inci¬ 

dence 85° at the core-cladding interface. Can this ray exercise total internal reflection? What would be 

its penetration depth into the cladding? 

9.16 Complex refractive index Spectroscopic ellipsometry measurements on a silicon crystal at a wave¬ 

length of 620 nm show that the real and imaginary parts of the complex relative permittivity are 15.2254 

and 0.172, respectively. Find the complex refractive index. What is the reflectance and absorption coef¬ 

ficient at this wavelength? What is the phase velocity? 

9.17 Complex refractive index Spectroscopic ellipsometry measurements on a germanium crystal at a 

photon energy of 1.5 eV show that the real and imaginary parts of the complex relative permittivity 

are 21.56 and 2.772, respectively. Find the complex refractive index. What is the reflectance and ab¬ 

sorption coefficient at this wavelength? How do your calculations match with the experimental values 

of n =4.653 and K = 0.298, R= 0.419 and a = 4.53 x 106 m-1 ? 

9.18 An ft-type germanium sample has a conductivity of about 300 Q 1 m 1. Calculate the imaginary part e" 

of the relative permittivity at a wavelength of 20 pm. Find the attenuation coefficient a due to free car¬ 

rier absorption. The refractive index of germanium at the specified wavelength is n = 4. 

9.19 Reststrahlen absorption in CdTe Figure 9.22 shows the infrared extinction coefficient K of CdTe. 

Calculate the absorption coefficient a and the reflectance R of CdTe at 60 pm and 80 pm. 

9.20 Reststrahlen absorption in GaAs Figure 9.22 shows the infrared extinction coefficient K of 

GaAs as a function of wavelength. Optical measurements show that K peaks at k = 37.1 pm where 

AT ^ 11.6 and n & 6.6. Calculate the absorption coefficient a and the reflectance R at this wavelength. 

9.21 Fundamental absorption Consider the semiconductors in Figure 9.23, and those semiconductors 

listed in Table 9.3. 

a. Which semiconductors can be candidates for a photodetector that can detect light in optical com¬ 

munications at 1550 nm? 

b. For amorphous Si (a-Si), one definition of an optical gap is the photon energy that results in an op¬ 

tical absorption coefficient a of 104 cm-1. What is the optical gap of a-Si in Figure 9.23? 

c. Consider a solar cell from crystalline Si. What is the absorption depth of light at 1000 nm, and at 

500 nm? 

9.22 Quartz half-wave plate What are the possible thicknesses of a half-wave quartz plate for a wave¬ 

length k ^ 1.01 pm given the extraordinary and ordinary refractive indices are nQ = 1.534 and ne = 

1.543, respectively? 

9.23 Pockels cell modulator What should be the aspect ratio d/L for the transverse LiNiOs phase modula¬ 

tor in Figure 9.43 that will operate at a free-space wavelength of 1.3 pm and will provide a phase shift 

A<f> of it (half wavelength) between the two field components propagating through the crystal for an ap¬ 

plied voltage of 20 V? The Pockels coefficient >*22 is 3.2 x 10“12 m/V and nQ = 2.2. 

Free carrier 

absorption 
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A 
Bragg’s Diffraction Law 

and X-ray Diffraction 

Bragg’s Diffraction Condition 

X-rays are electromagnetic (EM) waves with wavelengths typically in the range from 0.01 nm to a 
few nanometers. This wavelength region is comparable with typical interplanar spacings in crys¬ 

tals. When an X-ray beam impinges on a crystal, the waves in the beam interact with the planes of 

atoms in the crystal and, as a result, the waves become scattered and the X-ray beam becomes dif¬ 

fracted. An analogy with radio waves may help. Radio waves with wavelengths in the range 1-10 m 

(short waves and VHF waves) easily interact with objects of comparable size. It is well known that 

these radio waves become scattered by objects of comparable size such as trees, houses, and build¬ 
ings. However, long-wave radio waves with wavelengths in kilometers do not become scattered 

by these objects because the object sizes now are much smaller than the wavelength. 

When X-rays strike a crystal, the EM waves penetrate the crystal structure. Each plane of 

atoms in the crystal reflects a portion of the waves. The reflected waves from different planes 

then interfere with each other and give rise to a diffracted beam which is at a well-defined angle 

26 to the incident beam as depicted in Figure A.l. Some of the incident beam goes through the 
crystal undiffracted and some of the beam becomes diffracted. Further, the diffracted rays exist 

only in certain directions. These diffraction directions correspond to well-defined diffraction 

angles 26, as defined in Figure A.l. The diffraction angle 26, the wavelength of the X-rays A, 

and the interplanar separation d of the diffraction planes within the crystal are related through 

the Bragg diffraction condition, that is, 

2dsin6 = nk n= 1,2,3,... [A.1] 

Figure A.1 A schematic illustration of 
X-ray diffraction by a crystal. 

X-rays penetrate the crystal and then 
become diffracted by a series of atomic 
planes. 

848 
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Incident X-ray beam Diffracted beam 

Figure A.2 Diffraction involves 

X-ray waves being reflected by 

various atomic planes in the crystal. 

These waves interfere constructively to 

form a diffracted beam only for 

certain diffraction angles that satisfy 

the Bragg condition. 

Consider X-rays penetrating a crystal structure and becoming reflected by a given set of 

atomic planes as shown in Figure A.2. We can consider an X-ray beam to be many parallel waves 

that are in phase. These waves penetrate the crystal structure and become reflected at successive 

atomic planes. The interplanar separation of these planes is d. Waves reflected from adjacent atomic 
planes interfere constructively to constitute a diffracted beam only when the path difference be¬ 
tween the rays is an integer multiple of the wavelength—a requirement of constructive interference. 

This will only be the case for certain directions of reflection. For simplicity, we will consider two 

waves A and B in an X-ray beam being reflected from two consecutive atomic planes in the crys¬ 

tal. The angle between the X-rays and the atomic planes is 6 as defined in Figure A.2. Initially the 

waves A and B are in phase. Wave A is reflected from the first plane, whereas wave B is reflected 

from the second plane. When wave A is reflected at O, wave B is at P. Wave B becomes reflected 

from O' on the second plane and then moves along reflected B'. Wave B has to travel a further dis¬ 

tance, PO'Q, equivalent to 2d sin 6 before reaching wave A. The path difference between the two 
reflected waves A' and B' is PO'Q or 2d sin 6. For constructive interference this must be nk where 

n is an integer. Otherwise the reflected waves will interfere destructively and cancel each other out. 
Thus the condition for the existence of a diffracted beam is that the path difference between A' and 

B' should be a multiple of the wavelength k; which is Equation A.l. The diffraction condition in 

Equation A. 1 is referred to as Bragg’s law. The angle 6 is called the Bragg angle, whereas 26 is 
called the diffraction angle. The index n is called the order of diffraction. The incidence angle 6 is 

the angle between the incident X-ray and the atomic planes within the crystal and not the angle at 
the actual crystal surface. The crystal surface, whatever shape, does not affect the diffraction 

process because X-rays penetrate the crystal and then become diffracted by a series of parallel 
atomic planes. The Bragg diffraction condition has much wider applications than just crystallogra¬ 

phy; for example, it is of central importance to the operation of modem semiconductor lasers. 

X-ray Diffraction and Study of Crystal Structures 

When an X-ray beam is incident on a single crystal, the scattered beam from a given set of planes 

in the crystal is at an angle 26 that satisfies the Bragg law. In three dimensions, all directions 

from the crystal that are at an angle 26 to the incident beam define a cone as shown in Figure A.3a 
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Diffracted 

(a) All 20 directions around the incident 
beam define a diffraction cone. The 
diffracted beam lies on the cone, but 
its exact direction depends on the 
exact orientation of the diffraction 
planes to the incident beam. 

(b) Laue technique. A single crystal is 
irradiated with a beam of white X-rays. 
Diffracted X-rays give a spot diffraction 
pattern on a photographic plate. 

(c) Powdered crystal technique. A sample of 
powdered crystal is irradiated with a 
monochromatic (single wavelength) X-ray 
beam. Diffracted X-rays give diffraction 
rings on a photographic plate. 

Figure A.3 

with its apex at the crystal. This is called a diffraction cone. There are many such diffraction 

cones, each corresponding to a different set of diffraction planes with a distinct set of Miller in¬ 
dices (hkl). Although all lines lying on a diffraction cone satisfy the Bragg condition, the exact 

direction of the diffracted beam depends on the exact orientation (or tilt) of the diffracting planes 

to the incident ray. When a monochromatic X-ray beam is incident on a single crystal, as illus¬ 
trated in Figure A. 3a, the diffracted beam is along one particular direction on the diffraction cone 

for that set of diffraction planes (hkl) with a particular orientation to the incident beam. 
The Laue technique of studying crystal structures involves irradiating a single crystal with 

a white X-ray beam that has a wide range of wavelengths. A photographic plate is used to capture 
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the diffraction pattern as shown in Figure A.3b. Effectively we are scanning the wavelength k 

and picking up diffractions from various (hkl) planes each time the Bragg condition is satisfied. 

Thus, whenever k and d for a particular set of (hkl) planes satisfy the Bragg condition, there is 

a diffraction. The diffraction pattern is a spot pattern where each spot is the result of diffraction 

from a given set of (hkl) planes oriented in a particular way to the incident beam. By using a 

range of wavelengths we ensure that the required wavelength is available for obtaining diffrac¬ 

tion for a given set of planes. The relative positions of the spots are used to determine the crys¬ 

tal structure. 
One of the simplest methods for studying crystal structures is the powder technique which 

involves irradiating a powdered crystal, or a polycrystalline sample, with a collimated X-ray 

beam of known wavelength (monochromatic) as shown in Figure A.3c. Powdering the crystal 
enables a given set of (hkl) planes to receive the X-rays at many different angles 0 and at many 

different orientations, or tilts. Put differently, it allows the angle 0 to be scanned for differently 

oriented crystals. Since all possible crystal orientations are present by virtue powdering, the dif¬ 

fracted rays form diffraction cones and the diffraction pattern developed on a photographic plate 

has diffraction rings as shown in Figure A.3c. 
Each diffraction ring in the powder technique in Figure A.3c represents diffraction from a 

given set of (hkl) planes. Whenever the angle 0 satisfies the Bragg law for a given set of atomic 
planes, with Miller indices (hkl) and with an interplanar separation dhkt, there is a diffracted 

beam. An X-ray detector placed at an angle 20 with respect to the through-beam will register a 

peak in the detected X-ray intensity, as shown in Figure A.4a. The instrument that allows this 

type of X-ray diffraction study is called a diffractometer. The variation of the detected intensity 

with the diffraction angle 20 represents the diffraction pattern of the crystal. The particular dif¬ 

fraction pattern depicted in Figure A.4b is for aluminum, an FCC crystal. Different crystals 

exhibit different diffraction patterns. 
In the case of cubic crystals, the interplanar spacing d is related to the Miller indices of a 

plane (hkl). The separation dhki between adjacent (hkl) planes is given by 

dhlrl = 
'h2 + k2 + l2 

where a is the lattice parameter (side of the cubic unit cell). When we substitute for d = dkki in 

the Bragg condition in Equation A.l, square both sides, and rearrange the equation, we find 

(sin 0)2 
n2k2 

4 a2 
(h2 + k2 +12) [A.31 

This is essentially Bragg’s law for cubic crystals. The diffraction angle increases with 

(h2 + k2 + l2). Higher-order Miller indices, those with greater values of (h2 + k2 + l2), give 
rise to wider diffraction angles. For example, the diffraction angle for (111) is smaller than that 

for (200) because (h2 + k2 +12) is 3 for (111) and 4 for (200). Furthermore, with k and a val¬ 
ues that are typically involved in X-ray diffraction, second- and higher-order diffraction peaks, 

n = 2,3,..., can be ruled out. 
In the case of the simple cubic crystal all possible (hkl) planes give rise to diffraction peaks 

with diffraction angles satisfying the Bragg law or Equation A.3. The latter equation therefore 

defines a diffraction pattern for the simple cubic crystal structure because it generates all the 

possible values of 20 for all the planes in the cubic crystal. In the case of FCC and BCC crystals, 

however, not all (hkl) planes give rise to diffraction peaks predicted by Equation A.3. Examination 

Interplanar 

separation in 

cubic crystals 

Bragg 

condition for 

cubic crystals 



852 Appendix A 

(a) A schematic illustration of a diffractometer for X-ray diffraction 

studies of crystals. 
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(b) A schematic diagram illustrating the intensity of X-rays as detected in (a) versus the diffraction angle, 

26, for an FCC crystal (e.g., Al). 

Figure A.4 A schematic diagram of a diffractometer and the diffraction pattern obtained from an FCC 

crystal. 

of the diffraction pattern in Figure A.4b for an FCC crystal shows that only those planes with 

Miller indices that are either all odd or all even integers give rise to diffraction peaks. There are 

no diffractions from those planes with mixed odd and even integers. 
The Bragg law for the cubic crystals in Equation A.3 is a necessary diffraction condition 

but not sufficient because diffraction involves the interaction of EM waves with the electrons in 

the crystal. To determine whether there will be a diffraction peak from a set of planes in a crys¬ 
tal we also have to consider the distributions of the atoms and their electrons in the crystal. In 

FCC and BCC structures diffractions from certain planes are missing because the atoms on these 

planes give rise to out-of-phase reflections. 



appendix 

B 
Flux, Luminous Flux, and the 

Brightness of Radiation 

Niany optoelectronic light emitting devices are compared by their luminous efficiencies, which 

requires a knowledge of photometry. Radiometry is the science of radiation measurement, for 

example, the measurement of emitted, absorbed, reflected, transmitted radiation energy; radia¬ 
tion is understood to mean electromagnetic energy in the optical frequency range (ultraviolet, 

visible, and infrared). Photometry, on the other hand, is a subset of radiometry in which radia¬ 

tion is measured with respect to the spectral responsivity of the eye, that is, over the visible 

spectrum and by taking into account the spectral visual sensitivity of the eye under normal light 

adapted conditions, i.e., photopic conditions. 

Flux (<t>) in radiometry has three related definitions, radiant, luminous and photon flux, 

which correspond to the rate of flow of radiation energy, perceptible visual energy, and pho¬ 

tons, respectively. (Notice that, in radiometry, these fluxes are not defined in terms of flow per 

unit area.) For example, radiant flux is the energy flow per unit time in the units of Watts. Ra¬ 

diometric quantities, such as radiant flux <I>e, radiant energy flow per unit time, usually have a sub¬ 
script e and invariably involve energy or power. Radiometric spectral quantities, such as spectral 

radiant flux <t>x, refer to the radiometric quantity per unit wavelength; i.e., = d$>e/dX is the 

radiant flux per unit wavelength. 

Luminous flux or photometric flux d>v, is the visual “brightness” of a source as observed 
by an average daylight adapted eye and is proportional to the radiant flux (radiation power emit¬ 

ted) of the source and the efficiency of the eye to detect the spectrum of the emitted radiation. 

While the eye can see a red color source, it cannot see an infrared source, and the luminous flux 

of the infrared source would be zero. Similarly, the eye is less efficient in the violet than in the 

green region, and less radiant flux is needed to have a green source at the same luminous flux 

as the blue source. Luminous flux <t>„ is measured in lumens (lm), and at a particular wave¬ 

length it is given by 

= 4>e X K X IJeye 

where <t>e is the radiant flux (in Watts), K is a conversion constant (standardized to be 633 lm/W), 

T]eye (also denoted as V) is the luminous efficiency (luminous efficacy) of the daylight adapted 
eye, which is unity at 555 nm; r)eye depends on the wavelength. By definition, a 1 W light source 

emitting at 555 nm (green, where r)eye = 1) emits a luminous flux of 633 lm. The same 1 W light 
source at 650 nm (red), where r)eye = 0.11, emits only 70 lm. When we buy a light bulb, we are 

essentially paying for lumens because it is luminous flux that the eye perceives. A typical 60 W 

incandescent lamp provides roughly 900 lm. Fluorescent tubes provide more luminous flux 

Luminous 

flux in lumens 
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output than incandescent lamps for the same electric power input as they have more spectral 
emission in the visible region and make better use of the eye’s spectral sensitivity. Some exam¬ 

ples are 100 W incandescent lamps, 1300-1800 lm, depending on the filament operating tem¬ 

perature (hence bulb design), and 25 W compact fluorescent lamps, 1500-1750 lm. 

Luminous efficacy of a light source (such as a lamp) in the lighting industry is the effi¬ 
ciency with which an electric light source converts the input electric power (W) into an emitted 

luminous flux (lm). A 100 W light bulb producing 1700 lm has an efficacy of 17 lm/W. While 

at present the LED efficacies are below those of fluorescent tubes, rapid advances in LED tech¬ 

nologies are bringing the expected efficacies to around 50 lm/W or higher. LEDs as solid-state 

lamps have much longer lifetimes and much higher reliability, and hence are expected to be 

more economical than incandescent and fluorescent lamps. 

From left to right: Michael Faraday, Thomas Henry Huxley, Charles Wheatstone, David 
Brewster and John Tyndall. Professor Tyndall has been attributed with the first demonstra¬ 
tion (1854) of light being guided along a water jet, which is based in total internal 
reflection. 

I SOURCE: Courtesy of AIR Emilio Segre Visual Archives, Zeleny Collection. 
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C 
Major Symbols and Abbreviations 

A 

a 

a (subscript) 

ac 

a0 
Ay, Ap 

APF 

area; cross-sectional area; amplification 

lattice parameter; acceleration; amplitude of vibrations; half-channel thick¬ 

ness in a JFET (Ch. 6) 

acceptor, e.g., Na = acceptor concentration (m-3) 
alternating current 

Bohr radius (0.0529 nm) 
voltage amplification, power amplification 

atomic packing factor 

B, B magnetic field vector (T), magnetic field 

B frequency bandwidth 

Bc critical magnetic field 

Bm maximum magnetic field 

B0, Be Richardson-Dushman constant, effective Richardson-Dushman constant 

BC base collector 
BCC body-centered cubic 

BE base emitter 

BJT bipolar junction transistor 

C capacitance; composition; the Nordheim coefficient (£2 m) 

c speed of light (3 x 108 m s-1); specific heat capacity (J K-1 kg-1) 

Cdep depletion layer capacitance 
Cm molar heat capacity (J K-1 mol-1) 

Cdiff diffusion (storage) capacitance of a forward-biased pn junction 

cs specific heat capacity (J K-1 kg-1) 

Cv heat capacity per unit volume (J K-1 m-3) 

CB conduction band; common base 
CE common emitter 

CMOS complementary MOS 

CN coordination number 

CVD chemical vapor deposition 

D diffusion coefficient (m2 s-1); thickness; electric displacement (C m-2) 
d density (kg m-3); distance; separation of the atomic planes in a crystal, 

separation of capacitor plates; piezoelectric coefficient; mean grain size 

(Ch. 2) 

855 
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d (subscript) 

dc 

dy 

E 

Eat Ed 
EC,EV 

Ee\ 
Eft Epo 

Emag 

•E 

“Ebr 

£loc 

e 

e (subscript) 

eff (subscript) 
EHP 

EM 

EMF (emf) 

F 

f 
m 

FCC 

FET 

G 

GPh 
Gp 

9(E) 

9 

9d 
9m 

H ,H 

h 
ft 

h (subscript) 

hFEt hfe 

HCP 
HF 

/ 

I 

I, i (subscript) 

4r 

ht h 

donor, e.g., Nd = donor concentration (m-3) 
direct current 

piezoelectric coefficients 

energy; electric field (V m-1) (Ch. 9) 
acceptor and donor energy levels 

conduction band edge, valence band edge 
exchange interaction energy 

Fermi energy, Fermi energy at 0 K * _ 

bandgap energy 

magnetic energy 

electric field (V m-1) 

dielectric strength or breakdown field (V m-1) 
local electric field 

electronic charge (1.602 x 10"19 C) 

electron, e.g., fie = electron drift mobility; electronic 

effective, e.g., fie{{ = effective drift mobility 

electron-hole pair 

electromagnetic 
electromagnetic force (V) 

force (N); function 

frequency; function 

Fermi-Dirac function 

face-centered cubic 

field effect transistor 

rate of generation 

rate of photogeneration 

parallel conductance (£2-1) 
density of states 

conductance; transconductance (A/ V); piezoelectric voltage coefficient (Ch. 7) 

incremental or dynamic conductance (A/V) 
mutual transconductance (A/V) 

magnetic field intensity (strength), magnetizing field (A m-1) 

Planck’s constant (6.6261 x 10-34 J s) 

Planck’s constant divided by 27r (ft = 1.0546 x 10-34 J s) 

hole, e.g., ixh = hole drift mobility 
dc current gain, small-signal (ac) current gain in the common emitter 

configuration 

hexagonal close-packed 
high frequency 

electric current (A); moment of inertia (kg m2) (Ch. 1) 

light intensity (W m-2) 

quantity related to ionic polarization 
breakdown current 

base, collector, and emitter currents in a BJT 
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instantaneous current (A); small-signal (ac) current, i = SI 
intrinsic, e.g., n,- = intrinsic concentration 

small signal base, collector, and emitter currents (SIB, 8IC, SIE) in a BJT 
integrated circuit 

current density (A m-2) 

total angular momentum vector 

imaginary constant: V-T 

critical current density (A m-2) 
pyroelectric current density 

junction FET 

spring constant (Ch. 1); phonon wavevector (m-1); bulk modulus (Pa); 

dielectric constant (Ch. 7) 
Boltzmann constant (k — R/NA = 1.3807 x 10-23 J K-1); wavenumber 

(k = 2n/k), wavevector (m-1); electromechanical coupling factor (Ch. 7) 

kinetic energy 

total orbital angular momentum 

length; inductance 

length; mean free path; orbital angular momentum quantum number 
channel length in a FET 

electron and hole diffusion lengths 

lengths of the n- and p-regions outside depletion region in a pn junction 

natural logarithm of x 

linear combination of atomic orbitals 

magnetization vector (A m-1), magnetization (A m-1) 

multiplication in avalanche effect 

relative atomic mass; atomic mass; “atomic weight” (g mol-1) 
remanent or residual magnetization (A m-1); reduced mass of two bodies A 

and B, Mr = MAMB/(MA + MB) 
saturation magnetization (Am-1) 

mass (kg) 

mass of the electron in free space (9.10939 x 10-31 kg) 

effective mass of the electron in a crystal 

effective mass of a hole in a crystal 
magnetic quantum number 

spin magnetic quantum number 
metal-oxide-semiconductor (transistor) 

metal-oxide-semiconductor FET 

number of atoms or molecules; number of atoms per unit volume (m-3) 

(Chs. 7 and 9); number of turns on a coil (Ch. 8) 
Avogadro’s number (6.022 x 1023 mol-1) 

electron concentration (number per unit volume); atomic concentration; 
principal quantum number; integer number; refractive index (Ch. 9) 

heavily doped n-region 

number of atoms per unit volume 
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NC,NV 

Nd, N^- 

ne, n0 
Hi 

ft no* Ppo 

ftpoi Pno 

Ns 
nv 

P 

P»P 

P 

P+ 
Pav 

Pe 
PE 

Pinduced 

Po 
PET 

PZT 

Q 
Q' 

<1 

R 

R 

Ki> %y 
r 

r 

r 

Rh 

r0 
rm:» 

S 
5 

‘S'band 

Sj 
SCL 

T 

T 

t 

t 

tan S 

effective density of states at the conduction and valence band edges (m-3) 
donor and ionized donor concentrations (m-3) 

refractive index for extraordinary and ordinary waves in a birefringent crystal 
intrinsic concentration (m-3) 

equilibrium majority carrier concentrations (m~3) 

equilibrium minority carrier concentrations (m~3) 

concentration of electron scattering centers 

velocity density function; vacancy concentration (m-3) 

probability; pressure (Pa); power (W) or power loss (W) 

electric dipole moment (C m) 
hole concentration (m-3); momentum (kg m s-1); pyroelectric coefficient 

(C m~2 K-1) (Ch. 7) 

heavily doped p-region 
average dipole moment per molecule 

electron momentum (kg ms-1) 

potential energy 

induced dipole moment (C m) 

permanent dipole moment (C m) 
polyester, polyethylene terephthalate 

lead zirconate titanate 

charge (C); heat (J); quality factor 
rate of heat flow (W) 

charge (C); an integer number used in lattice vibrations (Ch. 4) 

gas constant (NAk = 8.3145 J mol-1 K-1); resistance; radius; reflection coef¬ 

ficient (Ch. 3); rate of recombination (Ch. 5) 

reflectance (Ch. 9) 

pyroelectric current and voltage responsivities 

position vector 

radial distance; radius; interatomic separation; resistance per unit length 

reflection coefficient (Ch. 9) 

Hall coefficient (m3 C-1) 

bond length, equilibrium separation 

root mean square 

total spin momentum, intrinsic angular momentum; Poynting vector (Ch. 9) 

cross-sectional area of a scattering center; Seebeck coefficient, thermoelectric 
power (V m-1); strain (Ch. 7) 

number of states per unit volume in the band 
strain along direction j 

space charge layer 

temperature in Kelvin; transmission coefficient 

transmittance 
time (s); thickness (m) 

transmission coefficient 

loss tangent 
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Tc 
Tc 

Tj 
TC 

TCC 
TCR 

U 

V 

Vbr 

Vo 

Vp 

Vr 

V^v 

V2 

Vdx 

^nms 

l>th 

VB 

W 

Wn,wp 

X 

Y 

z 

p 

Pi 

Y 

Fph 

A 
V2 

Curie temperature 
critical temperature (K) 
mechanical stress along direction j (Pa) 

thermocouple 
temperature coefficient of capacitance (K-1) 

temperature coefficient of resistivity (K-1) 

total internal energy 
mean speed (of electron) (ms-1) 

voltage; volume; PE function of the electron, PE(x) 

breakdown voltage 

built-in voltage 

pinch-off voltage 

reverse bias voltage 

velocity (m s-1); instantaneous voltage (V) 

mean square velocity; mean square voltage 
drift velocity in the x direction 

effective velocity or rms velocity of the electron 

Fermi speed 

group velocity 
thermal velocity 

valence band 

width; width of depletion layer with applied voltage; dielectric loss 
width of depletion region with no applied voltage 

width of depletion region on the n-side and on the p-side with no applied 

voltage 

atomic fraction 

admittance (£2-1); Young’s modulus (Pa) 

impedance (£2); atomic number, number of electrons in the atom 

polarizability; temperature coefficient of resistivity (K-1); absorption coeffi¬ 
cient (m-1); gain or current transfer ratio from emitter to collector of a BJT 

current gain Ic/h of a BJT; Bohr magneton (9.2740 x 10-24 J T_1); spring 

constant (Ch. 4) 

Schottky coefficient 
emitter injection efficiency (Ch. 6); gyromagnetic ratio (Ch. 8); Griineisen 

parameter (Ch. 4); loss coefficient in the Lorentz oscillator model 

flux (m-2 s-1), photon flux (photons m-2 s-1) 

small change; skin depth (Ch. 2); loss angle (Ch. 7); domain wall thickness 

(Ch. 8); penetration depth (Ch. 9) 

change, excess (e.g.. An = excess electron concentration) 

d2/dx2 + d2/dy2 + d2/dz2 
e0sr, permittivity of a medium (C V-1 m-1 or F m-1); elastic strain 
permittivity of free space or absolute permittivity (8.8542 x 10-12CV-1m-1 

orFm-1) 
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£r 

V 
e 

K 

X 

H 

Ho 

Hr 

» Hm 

Hd 

Hh, He 
V 

n 

n Li i*t 

n 
p 
Pe 

Pnet 

PJ2 

a 

aP 

<Jo 

<*s 
T 

<t> 
<D 

<t>e 

<*>m 

4>n 
<f> 
^ V 

X 

* (X,t) 
\fr(x) 

0k(x) 

0hyb 

0) 

0>i 

a>0 

relative permittivity or dielectric constant 
efficiency; quantum efficiency; ideality factor 

angle; an angular spherical coordinate; thermal resistance; angle between a 

light ray and normal to a surface (Ch. 9) 
thermal conductivity (W m-1 K-1); dielectric constant 

wavelength (m); thermal coefficient of linear expansion (K-1); electron 

mean free path in the bulk crystal (Ch. 2); characteristic length (Ch. 8) 

magnetic dipole moment (A m2) (Ch. 3) 

HoHri magnetic permeability (H m_1); chemical potential (Ch. 5) 
absolute permeability (4n x 10-7 H m-1) 

relative permeability 

magnetic dipole moment (A m2) (Ch. 8) 

drift mobility (m2 V-1 s_1) 
hole drift mobility, electron drift mobility (m2 V-1 s-1) 

frequency (Hz); Poisson’s ratio; volume fraction (Ch. 7) 

pi, 3.14159...; piezoresistive coefficient (Pa-1) 
longitudinal and transverse piezoresistive coefficients (Pa-1) 

Peltier coefficient (V) 

resistivity (£2 m); density (kg m-3); charge density (C m-3) 

energy density (J m-3) 

net space charge density (C m-3) 

Joule heating per unit volume (W m-3) 

electrical conductivity (£2-1 m-1); surface concentration of charge (C m-2) 

(Ch. 7) 

polarization charge density (C m-2) 

free surface charge density (C m-2) 
Stefan’s constant (5.670 x 10-8 W m-2 K-4) 

time constant; mean electron scattering time; relaxation time; torque (N m) 

mean time to generate an electron-hole pair 

angle; an angular spherical coordinate 

work function (J or eV), magnetic flux (Wb) 

radiant flux (W) 

metal work function (J or eV) 
energy required to remove an electron from an n-type semiconductor (J or eV) 

luminous flux (lumens) 

volume fraction; electron affinity; susceptibility (x« is electrical; Xm is 
magnetic) 

total wavefunction 
spatial dependence of the electron wavefunction under steady-state conditions 

Bloch wavefunction, electron wavefunction in a crystal 

hybrid orbital 

angular frequency (2tvv); oscillation frequency (rad s-1) 

ionic polarization resonance frequency (angular) 
resonance or natural frequency (angular) of an oscillating system. 
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D 
Elements to Uranium 

Element Symbol Z 

Atomic 
Mass 

(g mol-1) 
Electronic 
Structure 

Density (g cm 3) 
(*at 0 °C, 1 atm) 

Crystal in 
Solid State 

Hydrogen H 1 1.008 Is1 0.00009* HCP 

Helium He 2 4.003 Is2 0.00018* FCP 

Lithium Li 3 6.941 [He^s1 0.54 BCC 

Beryllium Be 4 9.012 [He]2s2 1.85 HCP 
Boron B 5 10.81 [He]2 s2pl 2.5 Rhombohedral 

Carbon C 6 12.01 [He]2 s2p2 2.3 Hexagonal 

Nitrogen N 7 14.007 [He]2s2p3 0.00125* HCP 

Oxygen O 8 16.00 [He]2 s2pA 0.00143* Monoclinic 

Fluorine F 9 18.99 [He]2 s2p5 0.00170* Monoclinic 

Neon Ne 10 20.18 [He]2i2p6 0.00090* FCC 

Sodium Na 11 22.99 [Ne]35! 0.97 BCC 

Magnesium Mg 12 24.31 [Ne]352 1.74 HCP 

Aluminum A1 13 26.98 [Ne]3jV 2.70 FCC 

Silicon Si 14 28.09 [Ne]3.s2p2 2.33 Diamond 

Phosphorus P 15 30.97 [Ne]3j2p3 1.82 Triclinic 

Sulfur S 16 32.06 [Ne]3s2p4 2.0 Orthorhombic 

Chlorine Cl 17 35.45 [Ne]3s2/?5 0.0032* Orthorhombic 

Argon Ar 18 39.95 [Ne]3s2p6 0.0018* FCC 
Potassium K 19 39.09 [Ar]4s* 0.86 BCC 

Calcium Ca 20 40.08 [Ar]4s2 1.55 FCC 

Scandium Sc 21 44.96 [Ar]3dl4s2 3.0 HCP 

Titanium Ti 22 47.87 [ArtfdHs2 4.5 HCP 

Vanadium V 23 50.94 [Ar]3dHs2 5.8 BCC 

Chromium Cr 24 52.00 [Ar] 3ds4sl 7.19 BCC 

Manganese Mn 25 54.95 [Ar]3rf54s2 7.43 BCC 

Iron Fe 26 55.85 [Ax]3d64s2 7.86 BCC 

Cobalt Co 27 58.93 [Ax]3d74s2 8.90 HCP 

Nickel Ni 28 58.69 [Ar]3d*4s2 8.90 FCC 

Copper Cu 29 63.55 [Ar]3rf104s' 8.96 FCC 

Zinc Zn 30 65.39 [Ar]3d104 s2 7.14 HCP 

Gallium Ga 31 69.72 [Ar\3dxHs2px 5.91 Orthorhombic 

Germanium Ge 32 72.61 [Pu]3dxHs2p2 5.32 Diamond 
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Atomic 
Mass 

n mr\l 1 Element Symbol Z (g mol *) 

Arsenic As 33 74.92 

Selenium Se 34 78.96 

Bromine Br 35 79.90 

Krypton Kr 36 83.80 

Rubidium Rb 37 85.47 

Strontium Sr 38 87.62 

Yttrium Y 39 88.90 

Zirconium Zr 40 91.22 

Niobium Nb 41 92.91 
Molybdenum Mo 42 95.94 

Technetium Tc 43 (97.91) 
Ruthenium Ru 44 101.07 
Rhodium Rh 45 102.91 

Palladium Pd 46 106.42 

Silver Ag 47 107.87 

Cadmium Cd 48 112.41 

Indium In 49 114.82 

Tin Sn 50 118.71 

Antimony Sb 51 121.75 

Tellurium Te 52 127.60 

Iodine I 53 126.91 
Xenon Xe 54 131.29 
Cesium Cs 55 132.90 

Barium Ba 56 137.33 
Lanthanum La 57 138.91 

Cerium Ce 58 140.12 

Praseodymium Pr 59 140.91 
Neodymium Nd 60 144.24 

Promethium Pm 61 (145) 
Samarium Sm 62 150.4 

Europium Eu 63 151.97 

Gadolinium Gd 64 157.25 
Terbium Tb 65 158.92 

Dysprosium Dy 66 162.50 

Holmium Ho 67 164.93 

Erbium Er 68 167.26 

Thulium Tm 69 168.93 

Ytterbium Yb 70 173.04 

Lutetium Lu 71 174.97 
Hafnium Hf 72 178.49 
Tantalum Ta 73 180.95 

Tungsten W 74 183.84 

Rhenium Re 75 186.21 

Electronic Density (g cm 3) Crystal in 
Structure (*at 0 °C, 1 atm) Solid State 

[Ar]3rf104s2p3 5.72 Rhombohedral 

[Ar]3dl04s2p4 4.80 Hexagonal 

[Ai]3dl04s2p5 3.12 Orthorhombic 

[Ai]3dl04s2p6 3.74 FCC 

[Ki]5sl 1.53 BCC 

[Kr]5*2 2.6 FCC 

[Kr]4rf'5s2 4.5 HCP 

[Ki]4d25s2 6.50 HCP 

[Kr]4rf45s‘ 8.55 BCC 

[Kr]4rf55s' 10.2 BCC 
[Kr]4ds5s2 11.5 HCP 

[Kr]^*1 12.2 HCP 
[Kr]4rf85^1 12.4 FCC 
[Kr]4d10 12.0 FCC 

[Ki]4dl05sl 10.5 FCC 
[Kr]4J105s2 8.65 HCP 

[Kr]4£?105s2p1 7.31 FCT 

[Kr]4rf105s2p2 7.30 BCT 

[Kr]4rf105s2p3 6.68 Rhombohedral 

[Kr]4</105sy 6.24 Hexagonal 

[Kr]4dx05s2ps 4.92 Orthorhombic 

[Kr]4rf105sy 0.0059* FCC 

[Xe]6^‘ 1.87 BCC 

[Xe]6s2 3.62 BCC 

[Xe^^s2 6.15 HCP 

[Xe]4/'5dl6s2 6.77 FCC 

[Xe]4/36s2 6.77 HCP 

[Xe]4/46s2 7.00 HCP 

[Xe]4/56s2 7.26 Hexagonal 

[Xe]4/66s2 7.5 Rhombohedral 

[Xe]4/76s2 5.24 BCC 

[Xe]4/75rf‘6s2 7.90 HCP 

[Xe]4/9652 8.22 HCP 

[Xe]4/106s2 8.55 HCP 

[Xe]4/n6s2 8.80 HCP 

[Xe]4fn6s2 9.06 HCP 

[Xe]4/136^ 9.32 HCP 

[Xe]4/146s2 6.90 FCC 

[Xe]4/,45d16^2 9.84 HCP 

[Xe]4/,45rf26^2 13.3 HCP 

[Xe]4/145rf3652 16.4 BCC 

[Xe]4/145rf4652 19.3 BCC 

[Xe]4/145rfs6j2 21.0 HCP 
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Atomic 

Element Symbol z 
mass 

(g mol-1) 
Electronic 
Structure 

Density (g cm 3) 
(*at 0 °C, 1 atm) 

Crystal in 
Solid State 

Osmium Os 76 190.2 [Xe]4/145rf66s2 22.6 HCP 
Iridium Ir 77 192.22 [Xe]4/,45d76*2 22.5 FCC 
Platinum Pt 78 195.08 [Xe]4/145^6s1 21.4 FCC 
Gold Au 79 196.97 [Xe]4fu5dl06sl 19.3 FCC 
Mercury Hg 80 200.59 [Xe]4/145d106j2 13.55 Rhombohedral 
Thallium T1 81 204.38 [Xe]4fu5dl06s2pl 11.8 HCP 
Lead Pb 82 207.2 [X<s]4fu5dl06s2p2 11.34 FCC 
Bismuth Bi 83 208.98 [Xe]4fl45dl%s2p3 9.8 Rhombohedral 
Polonium Po 84 (209) [Xe]4/145dm6s2p4 9.2 SC 
Astatine At 85 (210) [Xe]4fu5d106s2p5 — — 

Radon Rn 86 (222) [Xe]4fl45dw6s2p6 0.0099* Rhombohedral 
Francium Fr 87 (223) [Rn]7s* — — 

Radium Ra 88 226.02 [Rn]7,s2 5 BCC 
Actinium Ac 89 227.02 [Rntf^s2 10.0 FCC 
Thorium Th 90 232.04 [Rn]6d27s2 11.7 FCC 
Protactinium Pa 91 (231.03) [Rn ]5f26dlls2 15.4 BCT 
Uranium U 92 (238.05) 19.07 Orthorhombic 

"I don't really start until I get my proofs back from the printers. Then I can begin serious 
writing." 

John Maynard Keynes (1883-1946) 
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E 
Constants and Useful Information 

Physical Constants 

Atomic mass unit amu 1.66054 x 10"27 kg 

Avogadro’s number Na 6.02214 x 1023 mol-1 
Bohr magneton fi 9.2740 x 10"24 JT"1 

Boltzmann constant k 1.3807 x 10"23 J K-1 = 8.6174 x 10"5 eV K"1 
Electron mass in free space me 9.10939 x 10"31 kg 
Electron charge e 1.60218 x 10"19C 
Gas constant R 8.3145 J K"1 mol-1 or m3 Pa K~* mol-1 
Gravitational constant G 6.6742 x 10“11 N m2 kg-2 

Permeability of vacuum or Ho 47r x 10~7 H m-1 (or Wb A-1 m-1) 
absolute permeability 

Permittivity of vacuum or So 8.8542 x 10-12 F m-1 

absolute permittivity 

Planck’s constant h 6.626 x 10-34 J s = 4.136 x 10"15 eV s 
Planck’s constant/2jt h 1.055 x 10"34 J s = 6.582 x 10“16 eV s 
Proton rest mass mp 1.67262 x 10“27 kg 

Rydberg constant *00 1.0974 x 107 m-1 

Speed of light C 2.9979 x 108 m s"1 
Stefan’s constant Os 5.6704 x 10"8 W m"2 K"4 

Useful Information 

Acceleration due to gravity at 8 9.81 m s“2 

45° latitude 

kT at r = 293 K (20 °C) kT 0.02525 eV 

kT at T = 300 K (27 °C) kT 0.02585 eV 
Bohr radius Q0 0.0529 nm 

1 angstrom A 10"10 m 

1 micron (xm 10"6 m 

leV= 1.6022 x 10"19J 

1 kJ mol"1 = 0.010364 eV atom"1 

1 atmosphere (pressure) 

= 1.013 x 105 Pa 
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LED Colors 

The table gives the wavelength ranges and colors as usually specified for LEDs. 

Color Blue 

Emerald 

green Green Yellow Amber Orange 

Red 

orange Red Deep red Infrared 

X (nm) A. < 500 530-564 565-579 580-587 588-594 595-606 607-615 616-632 633-700 k > 700 

Visible Spectrum 

The table gives the typical wavelength ranges and color perception by an average person. 

Color Violet Blue Green Yellow Orange Red 

A- (nm) 390-455 455-492 492-577 577-597 597-622 622-780 

Complex Numbers 

J = (-D1/2 j2 = -i 

exp(jO) = cos 0 + j sin # 

Z = a + jb = reje 

Z* = a - jb = re~je 

r = (a2 + b2)1'2 

R e(Z) = a 

Magnitude2 = |Z|2 = ZZ* = a2 + b2 

cos # = + e~je) 

tan# = — 
a 

lm(Z) = b 

Argument = # = arctan 6) 
sin# = —(eje 

V 
e~je) 

Expansions 

2\ 
ex = 1 + x + —x2 + -7-x3 + 

3! 
„ n(n — 1) , n(n — l)(n — 2) , 

(1 + x)n = 1 + nx + -V + —-£--x3 + 
2! 3! 

sin x & x Small x: (1 + x)n » 1 + nx sin x « x tan x x 

(df\ 
Small Ax in x = x0 + Ax: /(x) f(xa) + Ax 1 — J 

\dx / x0 

cos x ^ 1 



i n d 

Accelerated failure tests, 177 
Acceptors, 390,461 
Accumulation, 570 
Accumulation region, 444 
Activated state, 98 
Activation energy, 98 
Activator, 820, 841 

excitation, 822 
Active device, defined, 570 
Affinity, electron, 375, 386, 462 
Allotropy, 61-63,102 

transition temperature, 61 
Alloy, 178 

ternary. Hi—v, 545 
Amorphous semiconductors, 78-82, 

458-461 
bandgap, 460 
extended states, 458,462 
localized states, 459,463 
mobility edge, 460 
tail states, 460 

Amorphous solids, 78-82,98-99 
Ampere’s law, 693 
Angular momentum, 269 

intrinsic, 245-247 
orbital, 232 
potential energy, 249-250 
total, 252-253 

Anion, 6, 15,99 
Anisotropic magnetoresistance (AMR), 

744-748, 762 
Anisotropy, magnetocrystalline, 706-708 

shape, 725, 763 
Antibonding orbital, 286, 288 
Antiferromagnetism, 699,759 
Antireflection coating, 570, 802-803 
Arrhenius rate equation, 47 
a-Si:H, 82,459 
Aspect ratio, 175 
Atomic concentration, 55 
Atomic magnetic moments, 687-688 

Bohr magneton, 688, 759 
unfilled subshells, 688 

Atomic mass, 8 
Atomic mass number, 8 
Atomic mass units (amu), 8,99 
Atomic number, 4 

effective (Z^), 240 
Atomic packing factor (APF), 55, 99 
Atomic structure, 3-8 

orbital angular momentum quantum 
number, 4,232, 270 

principal quantum number, 4, 232, 270 
shell, 4, 239 
subshells, 4, 239 

Atomic weight. See Atomic mass 
Attenuation, 841 
Attenuation coefficient, 841 
Attenuation in optical fibers, 817-819 

graph, 818 
Rayleigh scattering limit, 819 

Avalanche breakdown, 502-504,570 
Avalanche effect, 503 

Average free time (in electron drift), 117. 
See also Mean free time 

Avogadro’s number, 8, 25, 99 

B versus 7/, 716-717 
Balmer series, 278 
Balmer-Rydberg formula, 245 
Band theory of solids, 291-299 
Bandgap (energy gap) Egy 302, 355, 357, 

375, 464 
direct band gap, 430,451 
indirect band gap, 430,452 
mobility gap, 460 
narrowing and emitter injection 

efficiency, 576 
temperature dependence, 467 

Bardeen-Cooper-Schrieffer 
photo, 731 
theory, 739 

Barkhausen effect, 715 
Basis, 50, 95,99 
BCC (body centered cubic). See Crystal 

structure 
BCS theory. See Bardeen-Cooper- 

Schrieffer 
BCT (body centered tetragonal). See 

Crystal structure 
Bednorz, J. George, 684 
Beer-Lambert law, 428 
Biaxial crystals, 828 

negative, 828 
positive, 828 

Binary eutectic phase diagrams, 90-95 
Bipolar junction transistor, 475, 506-522, 

570 
a, 509-510 
active region, 511 
amplifier, CB, 515-517 
0,510, 521 
base, 506 
base transport factor, aT, 509-510 
base-width modulation, 512, 570. See 

also Early effect 
collector, 506 
collector junction, 507, 570 
common base (CB) configuration, 

506-517 
common emitter (CE) DC characteris¬ 

tics, 517-518 
current gain a, CB, 509-510 
current transfer ratio or, 509, 514 
emitter, 506 
emitter injection efficiency, 513-514, 

575 
emitter junction, 507, 571 
emitter current, 509 
equations, pnp BJT, 574-575 
input resistance, 516, 519 
power gain, 509 
saturated operating region, 518 
small signal equivalent circuit, 572 
small signal low-frequency model, 

518-522 

transconductance, 520 
transistor action, 509 
transit time, minority carrier, 510 
voltage gain, 516, 520 

Birefrigence. See also Retarding plates 
circular, 835-837 
crystals, 827, 841 
of calcite, 832-833 
of calcite crystal, photo, 828 

BJT. See Bipolar junction transistor 
Blackbody radiation, 201-205 

Planck’s formula, 203 
Rayleigh-Jeans law, 203 
Stefan’s black body radiation law, 203 
Stefan’s constant, 203 
Wien’s law, 277 

Black’s equation, 177, 178 
Bloch wall, 706, 708-711, 759 

potential energy, 710 
thickness, 710 

Bloch wavefunctions, 450, 461,462 
Bohr magneton, 280, 688, 759 
Bohr model, 3 
Bohr radius, 233, 239 
Bohr’s correspondence principle, 217 
Boltzmann constant, 28 
Boltzmann energy distribution, 39 
Boltzmann factor, 38 
Boltzmann statistics, 312-313, 363, 

479,661 
Bond, general, 9-25 

energy, 11, 99 
length, 10 
polar, 22 
primary, 9-18, 102 
relative angle, 78 
secondary 18-22, 102 
switching, 155 
twisting, 79 

Bonding and types of solids, 9-25 
Bonding (binding) energy, 11,99 
Bonding orbital, 286, 288 
Boson particle, 740 
Bound charges, 589 
Boundary conditions 

dielectrics, 614-620, 670 
electric field, 794 
magnetic field, 794 
quantum mechanics, 210 

Bragg diffraction condition, 194, 269, 356, 
848-852 

Bragg angle, 849 
diffracted beam, 848 
diffraction angle, 849 
for cubic crystals, 851 

Bragg distributed reflector, 568 
Bragg’s law. See Bragg diffraction 

condition 
Brass, 178, 182 
Bravais lattices, 95-98 

unit cell geometry, 56,97 
Bronze, 178 
Brewster’s angle, 796, 841 
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Brillouin zones, 355, 357-361 
Buckminsterfullerene. See Carbon 
Built-in field, 570 
Built-in potential, 421-422,478-480 
Built-in voltage, 570 
Bulk modulus, 99 

Capacitance 
definition, 584 
per unit volume, 634 
temperature coefficient (TCC), 636 
volume efficiency, 634 

Capacitor 
constructions, 631-634 
dielectric materials, 631 
dielectrics table, 635,678 
electrolytic, 633 
equivalent circuits for parallel and 

series, 676 
polyester (PET), 636,677 
polymeric film, 632 
tantalum, 634 
temperature coefficient, 636 
types compared, 631,635, 678 

Carbon, 61-63 
amorphous, 63 
Buckminsterfullerene, 61-62 
diamond, 61, 62 
graphite, 61, 62 
lonsdaleite, 62 
properties (table), 63 

Carbon nanotube (CNT), 63, 336, 370 
field enhancement factor, 370 

Carrier concentration 
majority carrier, 410 
minority carrier, 410 
of extrinsic semiconductor, 388-392 
of intrinsic semiconductor, 380-387 
saturation temperature, 397 
temperature dependence of, 396-401 

extrinsic range, 398 
intrinsic range, 398 
ionization range, 397 

Cathode, 363 
Cathodoluminescence, 335, 820, 843 
Cation, 6, 15, 99 
Cauchy coefficients (table), 782 
Cauchy dispersion equation, 783, 784 
CB. See Conduction band 
Ceramic, magnets, 726 
Ceramic, materials, 22 
Chemisorption, 74 
Chip (integrated circuit), 570 
Circular birefrigence, 835-837, 841 

media, 836 
optical activity, 835 
specific rotary power, 836, 844 

Cladding, 791 
Clausius-Mossotti equation, 593-594, 

602,670 
Coaxial cable failure, 628-631 

thermal breakdown, 678-679 
Coercive field (coercivity), 715,759 
Cohesive energy, 17 
Cole-Cole plots, 611-614 
Collimated beam, 36 
Common Base (CB) BJT configuration. 

See Bipolar junction transistor 
Compensated semiconductor, 461 
Compensation doping, 392-396,461, 

465 
Complementary principle, 269 
Complex dielectric constant, 605-611, 

804-811 
loss angle, 610 
loss tangent, 607 
relaxation peak, 607 

Complex propagation constant, 805, 842 

Complex refractive index, 804-811, 842, 
845-847 

extinction coefficient, 805, 842 
for a-Si, 806 
of InP, 808 
resonance absorption, 809-811 

Complex relative permittivity. See 
Complex dielectric constant 

Compton effect, 269 
Compton scattering, 199-202 
Conduction, 114-122,416-422 

in metals, 318-320 
in semiconductors, 378-380 
in silver, 319 

Conduction band (CB), 302, 374-378, 
461 

Conduction electron concentration, 
115, 148 

Conduction electrons, 115, 155, 181,299 
Conduction in solids 

electrical, 113-148 
thermal, 149-154 
in thin films, 166-167 

Conductivity 
activation energy for, 161 
electrical, 178, 180-181 
of extrinsic semiconductor, 389 
of Fermi level electrons in metal, 318 
of intrinsic semiconductor, 380 
of ionic crystals and glasses, 159-162 
lattice-scattering-limited, 124 
of metals, 114, 350-352,367 
of nonmetals, 154-162 
of semiconductors, 155-159 
temperature dependence of, 122-125, 

404-406 
Conductivity-mixture rule, 140 
Contact potential, 320-322 
Continuity equation, 422-427 

steady state, 424-427 
time-dependent, 422-423 

Continuous random network (CRN) 
model, 79 

Cooper pairs, 740, 759 
Coordination number (CN), 12, 17 

definition, 99 
Core, 791 
Corona dischai^e, 622, 670 
Covalent bond, 99 
Covalent solids, 595-596 
Covalently bonded solids, 11-13 
Critical angle, 842 
Critical electric field, 571 
Crystal, 99 
Crystal directions and planes, 56-61,110 
Crystal lattice, 49-63 

different types, 97 
Crystal periodicity, 49 

strained around a point defect, 66 
Crystal structure, 50 

body-centered cubic (BCC), 51, 
97, 109 

body-centered tetragonal (BCT), 97,98 
close-packed, 13, 51 
CsCl, 54 
diamond cubic, 52, 109 
face-centered cubic (FCC), 14,50,55, 

97,100 
diffraction pattern (figure), 852 

hexagonal close-packed (HCP), 51 
NaCl, 51-53 
polymorphic, 61 
properties (table), 54 
study using x-ray diffraction, 849-852 

Laue technique, 850 
powder technique, 851 

types, 49-56,97 
zinc blende (ZnS), 53, 109 

Crystal surface, 73-76 
absorption, 74 
adsorption, 74 
chemisorption, 74 
dangling bonds, 74, 81 
Kossel model, 74 
passivating layer, 74 
physisorption (physical adsorption), 74 
reconstructed, 74 
terrace-ledge-kink model, 74 

Crystal symmetry, 98 
Crystal systems, 98 
Crystal types, 49-56 
Crystalline defects, 64-76 
Crystalline solid, 49 
Crystalline state, 49-63 
Crystallization, 99 

from melt, 70 
nuclei, 70 

Cubic crystals, 97 
interplanar separation, 851 

Cubic symmetry, 50 
Curie temperature, 648,650,670,703-704 

table, 704 
Curie-Weiss law, 697 
Current in plane (CIP), 747 
Czochralski growth, 76-77 

Dangling bonds, 81 
De Broglie relationship, 205-207, 269 
Debye equations, 611—614,670 

non-Debye relaxation, 614 
Debye loss peak, 612 
Debye heat capacity, 342-348 
Debye frequency, 344, 363 
Debye temperature, 344, 363 

table, 346 
Defect structures, 75-76 
Deformation, plastic (permanent), 69 
Degeneracy, 230 

three-fold, 230 
Degenerate semiconductor, 406,461 
Degree of freedom, 28 
Delocalized electrons, 13 

electron cloud or gas, 13,295 
Demagnetization, 717-719 
Density of states, 305-311, 315-316, 363, 

380-382,429 
effective density at CB edge, 382,461 
effective density at VB edge, 382 

Density of vibrational states, 364 
Deperming. See Demagnetization 
Depletion capacitance, 498-499, 564 
Depletion region. See pn junction 
Depolarizing field, 657-658 

depolarizing factor, 657 
Diamagnetism, 696-698 

deperming, 718 
Dichroism, 833 
Dielectric breakdown, 620-631 

aging effects, 621 
breakdown mechanisms compared, 628 
in coaxial cables, 628-631,678-679 
electrical tree, 626 
electrofracture, 624-625,671 
electromechanical, 624-625,671 
electron avalanche breakdown, 623 
electronic, 623-624, 671 
external discharges, 627-628,671 
in gases, 621-622 
internal discharges, 625-626, 671 
intrinsic, 623-624,671 
in liquids, 622-623 
loss, 603-611 
partial discharge, 621-622,672 
in solids, 623-631 
surface tracking, 628, 671,672 
table, 621 



868 Index 

Dielectric breakdown—Cont. 
thermal, 624, 673 
water treeing, 627 

Dielectric materials, 583-^683 
constant. See Relative permittivity 
definition, 670 
dispersion relation, 666 
loss, 603-611, 670 
loss table, 611 
low-/:, 175 
properties (table), 678 
strength, 584, 620-621, 670. See also 

Dielectric breakdown 
strength table, 621 
volume efficiency, 634 

Dielectric mirrors, 803, 842 
Dielectric mixtures, 667-669 

effective dielectric constant, 667 
Lichtenecker formula, 668 
logarithmic mixture rules, 668 
Max well-Garnett formula, 669 

Dielectric resonance, 607,662-667, 670 
frictional force, 663 
Lorentz dipole oscillator model, 664 
natural angular frequency, 664 
peak, 665 
relaxation peak, 665 
resonant angular frequency, 664 
restoring force, 663 
spring constant, 663 

Diffraction, 269, 848-852. See also Bragg 
diffraction condition 

angle, 849 
beam, 848 
patterns (figure), 193, 852 
study of crystal structure, 352-361, 

849-852 
Diffractrometer, 851 
Diffusion, 46-49, 99, 416-422,461, 571 

coefficient, 48, 99, 420 
current, 484 
current density, 416,418 
diffusion length, 424,427, 483 
mean free path, 416-417 

Diffusion capacitance, 500-502, 571 
diode action, 501 
dynamic conductance, 501 
dynamic (incremental) resistance, 

500, 571 
Diffusion coefficient, 420 
Diode. See pn Junction 

action, 501 
equation, 488 
laser, 266-269 
long, 572 
photodiodes, 564-566 
short, 486, 572 

Dipolar (orientational) polarization, 
598-600, 660-662, 670 

Langevin function, 661-662 
relaxation equation, 670 
relaxation process, 604, 670 
relaxation time, 604 

Dipole moment. See Electric dipole 
moment; Magnetic dipole moment 

Dipole relaxation, 604-607, 670 
Dipole-dipole interaction, 20-21 
Dirac, Paul Adrien Maurice, 314 
Direct recombination capture 

coefficient, 469 
Dislocations, 68-70, 99 

edge, 68, 99 
screw, 69, 102 

Dispersion relation, 364, 666, 842. See 
also Refractive index 

Dispersive medium, 785, 842 
Domains. See Ferromagnetism 
Donors, 389,461 

Doping, 388-396 
compensation, 392-394 
n-type, 384, 388-390 
/7-type, 384, 390-392 

Doppler effect, 265, 269 
Double-hetrostructure (DH) device, 547 
Drift mobility, 117,401-404 

definition, 178 
due to ionic conduction, 162 
effective, 127,403 
impurity dependence, 401-404 
impurity-scattering-limited, 127,403,462 
lattice-scattering-limited, 127,402, 463 
tables, 146, 386 
temperature dependence, 401-404 

Drift velocity, 114, 118, 121, 157, 
178,379 

Drude model, 114-122, 319 
Dulong-Petit rule, 30, 344 
Dynamic (incremental) resistance, 

500-502, 571 

Early effect, 512, 570 
Early voltage, 538 
Eddy currents and losses, 760, 766 
Effective mass, 303-305, 364, 379, 

453-455, 462 
EHP. See Electron-hole pairs 
Eigenenergy, 214 
Eigenfunction, 210 
Einstein relation, 188, 419,462 
E-k diagrams, 448^452 
Elastic modulus, 24-25, 100 
Electric dipole moment, 19, 100, 583, 

585-589, 670 
definition, 19, 100, 670 
induced, 20, 586, 779-780 
in nonuniform electric field, 674-675 
permanent, 15, 19, 598 
relaxation time, 604 

Electric displacement, 654-658 
depolarizing factor, 657 
depolarizing field, 657 

Electric susceptibility, 591, 671 
Electrical conductivity, 178, 180-181 
Electrical contacts, 143-144 
Electrical noise, 42-45, 108. See also Noise 

Johnson resistor noise equation, 44 
rms noise voltage, 44 

Electrochemical potential, 321 
Electrodeposition, 167 
Electroluminescence, 544, 820, 843 

injection, 823 
Electromechanical coupling factor, 642 
Electromigration, 172 

accelerated failure tests, 177 
of Al-Cu interconnects, 189 
barrier, 177 
definition, 178 
hillock, 177 
mean time to 50 percent failure, 177 
rate, 177 
void, 177 

Electromigration and Black’s equation, 
176-177 

Electron 
average energy in CB, 385,462 
average energy in metal, 317, 363 
concentration in CB, 382, 388-390, 392 
conduction electrons, 115, 155, 181, 299 
confined, 212-217 
crystal momentum 451, 454, 813-814 
current due to, 419 
diffraction in crystals, 352-361 
diffraction patterns, 206 
diffusion current density, 418 
effective mass, 303-305, 364, 379, 

453-455, 462 

effective speed in metals, 317 
energy in hydrogenic atom, 236-241 
energy in metals, 317 
Fermi-Dirac statistics, 123 
gas, 295 
group velocity, 454 
magnetic dipole moment, 248-252 
mean recombination time (pn junction), 

487 
mobility, 379 
momentum, 214 
motion and drift, 452-453 
in a potential box, 228-230 
spin, 245-247, 271 
spin resonance (ESR), 280 
standing wave, 353 
surface scattering, 168-172 
as a wave, 205-212, 352-354 
wavefunction in hydrogenic atom, 

231-236 
wavefunction in infinite PE well, 229 
wavelength, 207 

Electron affinity, 6, 100, 375,436,462 
Electron beam deposition, 80, 167 
Electron drift mobility. See Drift mobility 
Electron spin resonance (ESR), 280 
Electronegativity, 22, 100 
Electron-hole pairs, 376-378 

generation, 302, 376-378, 383, 410-414 
mean thermal generation time, 490 
recombination, 377-378, 412, 457-458 

Electronic impurity, 546 
Electronic (quantum) state, 234, 247 
Electro-optic effects, 837-841, 842 

field induced refractive index, 838 
Kerr effect, 838, 842 
noncentrosymmetric crystals, 838 
Pockels effect, 838, 843 

Electroresistivity, 431, 463 
Energy bands, 291-295, 305-308 
Energy density, 269, 695 
Energy gap (Eg). See Bandgap 
Energy, quantized, 214, 236-241 

ground state energy, 215 
in the crystal, 462 
infinite potential well, 230 

Energy versus crystal momentum plot. See 
E-k diagrams 

Epitaxial layer, 544,571 
Equilibrium, 100 
Equilibrium state, 41, 100 
Eutectic composition, 93, 100 
Eutectic phase diagrams, 90-95 
Eutectic point, 91 
Eutectic transformation, 92 
Evanescent wave, 798 

attenuation coefficient, 798 
penetration depth, 799 

Excess carrier concentration, 410,462, 
468-469 

Exchange integral, 702 
Exchange interaction, 700-703, 760 
Excitation 

activator, 822 
host, 822 

Excited atom, 6 
Extended states, 458, 462 
External quantum efficiency, 571 
External reflection, 798, 801-802, 846 
Extinction coefficient, 805, 842 
Extrinsic semiconductors, 388-396, 462, 

464-465 

Family of directions in a crystal, 58 
Family of planes in a crystal, 59 
Fermi energy, 294, 314, 317, 320-322, 

364, 366, 435-436, 462 
in intrinsic semiconductor, 384 



Index 869 

in a metal, 315-317 
table, 295 

Fermi surface, 359 
Fermi-Dirac statistics, 123, 312-315, 

364 
Ferrimagnetism, 700, 760 
Ferrite antenna, 767-768 
Ferrites, 723, 760, 767-768. See also 

Ferrimagnetism 
Ferroelectric crystals, 647-653, 671 

ferroelectric axis, 649 
Ferromagnetism, 699, 760 

closure domains, 706 
domain wall energy, 709-711, 760, 

764-765 
domain wall motion, 712-713 
domain walls, 706, 708-711, 760 
domains, 699, 705-706, 761 
electrostatic interaction energy, 701 
energy band model, 742-744 
magnetocrystalline anisotropy, 

706-708 
materials table, 704 
ordering, 699 
origin, 700-703 
polycrystalline materials, 713-717 

Fick’s first law, 418 
Field assisted tunneling probability, 334 
Field effect transistor, 571. See JFET; 

MOSFET 
Field emission, 332-337, 364 
Field emission tip, 335 

anode, 335 
gate, 335 
Spindt tip cathode, 335 

Field enhancement factor, 370 
Fluence 

energy, 275 
photon, 276 

Fluorescence, 820, 842 
Flux, defined, 269 

luminous, 853 
of particles, 416 
of photons, 198, 853 
photometric, 853 
radiant, 853 

Flux quantization, 758-759 
Forward bias, 487-489. See also pn 

Junction 
Fourier’s law, 150, 178 
Fowler-Nordheim 

anode current, 335 
equation, 334 
field emission current, 370 

Fraunhofer, 244-245 
Free surface charge density, 592 
Frenkel defect, 66, 100 
Fresnel’s equations, 793-803, 842 
Fresnel’s optical indicatrix, defined, 

829-832, 843 
extraordinary wave, 829 
ordinary wave, 829 

Frequency, resonant 
antiresonant, 645 
mechanical resonant, 645 
natural angular frequency, 664 
resonant angular frequency, 664 

Fuchs-Sondheimer equation, 170 

GaAs, 52, 386, 466 
Gas constant, 25 
Gas pressure (kinetic theory), 27 
Gauge factor, 434 
Gauss’s law, 614-620, 654-658, 671 
Giant magnetoresistance (GMR), 

744-748, 751, 760. See also 
Magnetoresistance 

table, 747 

Glasses, 78-82. See also Amorphous 
solids 

melt spinning, 79 
GMR. See Giant magnetoresistance 
Grain, 70, 100 
Grain boundaries, 70-73, 100 

disordered, 72 
Grain coarsening (growth), 73 
Ground state, 215, 269 

energy, 215, 237 
Group index, 784-787, 842 

definition, 785 
Group velocity, 364, 784-787, 842 

in medium, 785 
in vacuum, 785 

Gruneisen’s model of thermal expansion, 
361-363 

Gruneisen’s law, 362, 371 
Gruneisen’s parameter (table), 363 

Gyromagnetic ratio, 687 

Hall coefficient, 146, 178, 359 
for ambipolar conduction, 158 
for intrinsic Si, 158-159 

Hall devices, 145-148 
Hall effect, 145-148, 178, 185-186 

in semiconductors, 156-159, 468 
Hall field, 146 
Hall mobility, 148 
Hard disk storage, 750-752 

magnetic bit tracks, 751 
magnetoresistance sensor, 751 
thin film heads, 752 

Hard magnetic materials, 724-729, 
761 

design, 768-769 
neodymium-iron-boron, 727 
rare earth cobalt, 726-727 
single domain particles, 724, 761 
table, 724 

Harmonic oscillator, 337-342, 364 
average energy, 343 
energy, 338 
potential energy of, 338 
Schrodinger equation, 338 
zero point energy, 339, 365 

Heat, 41, 100 
Heat capacity, 28, 100 
Heat current, 153 
Heat of fusion, 84 
Heat, thermal fluctuation and noise, 

40-45 
noise in an RLC circuit, 44 
rms noise voltage, 44 
thermal equilibrium, 40 

Heisenberg’s uncertainty principle, 
217-220, 269, 277 

for energy and time, 219 
for position and momentum, 218 

Helium atom, 254-256 
Helium-neon laser, 261-264 

efficiency, 264 
Herv^-Vandamme relationship, 845 
Heterogeneous media, 667-669 

Lichtenecker formula, 668 
logarithmic mixture rules, 668 
Maxwell-Gamett formula, 669 

Heterogeneous mixture (multiphase solid), 
139-143, 178 

Heterojunction, 547, 571 
Heterostructure devices, 544, 547 

confining layers, 548 
double hetrostructure, 547 

Hexagonal crystals, 52, 97 
HF resistance of conductor, 163-166 
Hole, 155, 302, 373, 376-378,455^56 

concentration in VB, 382, 391-392 
current due to, 419 

diffusion current density, 418 
diffusion length, 483 
effective mass, 380,456 
mean recombination time (pn junction), 

487 
mobility, 380 

Homogeneous mixture, 178-179 
Homojunction, 547, 571 
Host excitation, 822 
Host matrix, 820, 843 
Human eye, 273-275 

photopic vision, 273 
scotopic vision, 273 

Hund’s rule, 256-258, 269, 281 
Hybrid orbital, 300 
Hybridization, 300 
Hydrogen bond, 19 
Hydrogenated amorphous silicon. See 

a-Si:H 
Hydrogenic atom, 231-253 

electron wavefunctions, 231-236 
line spectra, 278 

Hysteresis loop, 715-719, 761 
energy dissipated per unit volume, 

718-719 
loss, 761, 766 

Image charges theorem, 332 
Impact ionization, 503, 571 
Impurities, 64-66 
Incandescence, 820 
Inductance, 163,693-694 

of a solenoid, 763 
toroid, 694, 723, 765 

Infinite potential well, 212-217 
Insulation strength. See also Dielectric 

breakdown 
aging, 627, 671 

Integrated circuit (IC), 571 
Intensity, defined, 269 

of EM waves, 192 
of light, 192, 197-198, 799 

Interconnects, 172-176, 179, 188 
aspect ratio, 175 
effective multilevel capacitance, 174 
low-k dielectric materials, 175 
multilevel interconnect delay time, 175 
RC time constant, 173, 175-176 

Interfacial polarization. See Polarization 
Internal discharges. See Dielectric 

breakdown 
Internal reflection, 796-797, 800-801, 

846 
Interplanar separation in cubic crystals, 

851 
Interstitial site, 45, 101 

impurity, 66, 83-84 
Intrinsic angular momentum. See Angular 

momentum; Spin 
Intrinsic concentration («,), 383,462,485 
Intrinsic semiconductors, 374-387,462 
Inversion, 532-535,571. See also MOSFET 
Ion implantation, 541-543, 571 
Ionic conduction, 179 
Ionic crystals, 17 
Ionically bonded solids, 14-18, 104 

table, 21 
Ionization energy, 6, 15, 101, 237, 462 

for nth shell, 237 
of He+, 240 

Irradiance, 787-789 
average, 788, 842 
instantaneous, 788, 842 

Isoelectronic impurity, 546, 572 
Isomorphous, 101 
Isomorphous alloys, 83-88 
Isomorphous phase diagram, 84, 179 
Isotropic substance, 101 



868 Index 

Dielectric breakdown—Cont. 
thermal, 624, 673 
water treeing, 627 

Dielectric materials, 583-683 
constant. See Relative permittivity 
definition, 670 
dispersion relation, 666 
loss, 603-611,670 
loss table, 611 
low-fc, 175 
properties (table), 678 
strength, 584, 620-621, 670. See also 

Dielectric breakdown 
strength table, 621 
volume efficiency, 634 

Dielectric mirrors, 803, 842 
Dielectric mixtures, 667-669 

effective dielectric constant, 667 
Lichtenecker formula, 668 
logarithmic mixture rules, 668 
Maxwell-Gamett formula, 669 

Dielectric resonance, 607,662-667, 670 
frictional force, 663 
Lorentz dipole oscillator model, 664 
natural angular frequency, 664 
peak, 665 
relaxation peak, 665 
resonant angular frequency, 664 
restoring force, 663 
spring constant, 663 

Diffraction, 269, 848-852. See also Bragg 
diffraction condition 

angle, 849 
beam, 848 
patterns (figure), 193, 852 
study of crystal structure, 352-361, 

849-852 
Diffractrometer, 851 
Diffusion, 46-49, 99,416-422,461, 571 

coefficient, 48, 99, 420 
current, 484 
current density, 416,418 
diffusion length, 424,427,483 
mean free path, 416-417 

Diffusion capacitance, 500-502, 571 
diode action, 501 
dynamic conductance, 501 
dynamic (incremental) resistance, 

500, 571 
Diffusion coefficient, 420 
Diode. See prt Junction 

action, 501 
equation, 488 
laser, 266-269 
long, 572 
photodiodes, 564-566 
short, 486, 572 

Dipolar (orientational) polarization, 
598-600, 660-662, 670 

Langevin function, 661-662 
relaxation equation, 670 
relaxation process, 604, 670 
relaxation time, 604 

Dipole moment. See Electric dipole 
moment; Magnetic dipole moment 

Dipole relaxation, 604-607, 670 
Dipole-dipole interaction, 20-21 
Dirac, Paul Adrien Maurice, 314 
Direct recombination capture 

coefficient, 469 
Dislocations, 68-70, 99 

edge, 68, 99 
screw, 69, 102 

Dispersion relation, 364, 666, 842. See 
also Refractive index 

Dispersive medium, 785, 842 
Domains. See Ferromagnetism 
Donors, 389, 461 

Doping, 388-396 
compensation, 392-394 
/i-type, 384, 388-390 
p-type, 384, 390-392 

Doppler effect, 265, 269 
Double-hetrostructure (DH) device, 547 
Drift mobility, 117, 401-404 

definition, 178 
due to ionic conduction, 162 
effective, 127,403 
impurity dependence, 401-404 
impurity-scattering-limited, 127,403,462 
lattice-scattering-limited, 127, 402, 463 
tables, 146, 386 
temperature dependence, 401-404 

Drift velocity, 114, 118, 121, 157, 
178, 379 

Drude model, 114-122,319 
Dulong-Petit rule, 30, 344 
Dynamic (incremental) resistance, 

500-502, 571 

Early effect, 512, 570 
Early voltage, 538 
Eddy currents and losses, 760, 766 
Effective mass, 303-305, 364, 379, 

453-455,462 
EHP. See Electron-hole pairs 
Eigenenergy, 214 
Eigenfunction, 210 
Einstein relation, 188, 419,462 
E-k diagrams, 448-452 
Elastic modulus, 24-25, 100 
Electric dipole moment, 19, 100, 583, 

585-589, 670 
definition, 19, 100, 670 
induced, 20, 586, 779-780 
in nonuniform electric field, 674-675 
permanent, 15, 19, 598 
relaxation time, 604 

Electric displacement, 654-658 
depolarizing factor, 657 
depolarizing field, 657 

Electric susceptibility, 591, 671 
Electrical conductivity, 178,180-181 
Electrical contacts, 143-144 
Electrical noise, 42-45, 108. See also Noise 

Johnson resistor noise equation, 44 
rms noise voltage, 44 

Electrochemical potential, 321 
Electrodeposition, 167 
Electroluminescence, 544, 820, 843 

injection, 823 
Electromechanical coupling factor, 642 
Electromigration, 172 

accelerated failure tests, 177 
of Al-Cu interconnects, 189 
barrier, 177 
definition, 178 
hillock, 177 
mean time to 50 percent failure, 177 
rate, 177 
void, 177 

Electromigration and Black's equation, 
176-177 

Electron 
average energy in CB, 385,462 
average energy in metal, 317, 363 
concentration in CB, 382, 388-390, 392 
conduction electrons, 115, 155, 181, 299 
confined, 212-217 
crystal momentum 451, 454, 813-814 
current due to, 419 
diffraction in crystals, 352-361 
diffraction patterns, 206 
diffusion current density, 418 
effective mass, 303-305, 364, 379, 

453-455, 462 

effective speed in metals, 317 
energy in hydrogenic atom, 236-241 
energy in metals, 317 
Fermi-Dirac statistics, 123 
gas, 295 
group velocity, 454 
magnetic dipole moment, 248-252 
mean recombination time (injunction), 

487 
mobility, 379 
momentum, 214 
motion and drift, 452-453 
in a potential box, 228-230 
spin, 245-247, 271 
spin resonance (ESR), 280 
standing wave, 353 
surface scattering, 168-172 
as a wave, 205-212, 352-354 
wavefunction in hydrogenic atom, 

231-236 
wavefunction in infinite PE well, 229 
wavelength, 207 

Electron affinity, 6, 100, 375,436,462 
Electron beam deposition, 80, 167 
Electron drift mobility. See Drift mobility 
Electron spin resonance (ESR), 280 
Electronegativity, 22, 100 
Electron-hole pairs, 376-378 

generation, 302, 376-378, 383,410-414 
mean thermal generation time, 490 
recombination, 377-378,412,457-458 

Electronic impurity, 546 
Electronic (quantum) state, 234, 247 
Electro-optic effects, 837-841, 842 

field induced refractive index, 838 
Kerr effect, 838, 842 
noncentrosymmetric crystals, 838 
Pockels effect, 838, 843 

Electroresistivity, 431, 463 
Energy bands, 291-295, 305-308 
Energy density, 269, 695 
Energy gap (Eg). See Bandgap 
Energy, quantized, 214, 236-241 

ground state energy, 215 
in the crystal, 462 
infinite potential well, 230 

Energy versus crystal momentum plot. See 
E-k diagrams 

Epitaxial layer, 544, 571 
Equilibrium, 100 
Equilibrium state, 41, 100 
Eutectic composition, 93, 100 
Eutectic phase diagrams, 90-95 
Eutectic point, 91 
Eutectic transformation, 92 
Evanescent wave, 798 

attenuation coefficient, 798 
penetration depth, 799 

Excess carrier concentration, 410,462, 
468-469 

Exchange integral, 702 
Exchange interaction, 700-703, 760 
Excitation 

activator, 822 
host, 822 

Excited atom, 6 
Extended states, 458,462 
External quantum efficiency, 571 
External reflection, 798, 801-802, 846 
Extinction coefficient, 805, 842 
Extrinsic semiconductors, 388-396,462, 

464-465 

Family of directions in a crystal, 58 
Family of planes in a crystal, 59 
Fermi energy, 294, 314, 317, 320-322, 

364, 366, 435-436, 462 
in intrinsic semiconductor, 384 
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in a metal, 315-317 
table, 295 

Fermi surface, 359 
Fermi-Dirac statistics, 123, 312-315, 

364 
Ferrimagnetism, 700, 760 
Ferrite antenna, 767-768 
Ferrites, 723, 760, 767-768. See also 

Ferrimagnetism 
Ferroelectric crystals, 647-653, 671 

ferroelectric axis, 649 
Ferromagnetism, 699, 760 

closure domains, 706 
domain wall eneigy, 709-711, 760, 

764-765 
domain wall motion, 712-713 
domain walls, 706, 708-711, 760 
domains, 699, 705-706, 761 
electrostatic interaction energy, 701 
energy band model, 742-744 
magnetocrystalline anisotropy, 

706-708 
materials table, 704 
ordering, 699 
origin, 700-703 
polycrystalline materials, 713-717 

Fick’s first law, 418 
Field assisted tunneling probability, 334 
Field effect transistor, 571. See JFET; 

MOSFET 
Field emission, 332-337, 364 
Field emission tip, 335 

anode, 335 
gate, 335 
Spindt tip cathode, 335 

Field enhancement factor, 370 
Fluence 

eneigy, 275 
photon, 276 

Fluorescence, 820, 842 
Flux, defined, 269 

luminous, 853 
of particles, 416 
of photons, 198, 853 
photometric, 853 
radiant, 853 

Flux quantization, 758-759 
Forward bias, 487-489. See also pn 

Junction 
Fourier’s law, 150, 178 
Fowler-Nordheim 

anode current, 335 
equation, 334 
field emission current, 370 

Fraunhofer, 244-245 
Free surface charge density, 592 
Frenkel defect, 66, 100 
Fresnel’s equations, 793-803, 842 
Fresnel’s optical indicatrix, defined, 

829-832, 843 
extraordinary wave, 829 
ordinary wave, 829 

Frequency, resonant 
antiresonant, 645 
mechanical resonant, 645 
natural angular frequency, 664 
resonant angular frequency, 664 

Fuchs-Sondheimer equation, 170 

GaAs, 52, 386, 466 
Gas constant, 25 
Gas pressure (kinetic theory), 27 
Gauge factor, 434 
Gauss’s law, 614-620, 654-658, 671 
Giant magnetoresistance (GMR), 

744-748, 751, 760. See also 
Magnetoresistance 

table, 747 

Glasses, 78-82. See also Amorphous 
solids 

melt spinning, 79 
GMR. See Giant magnetoresistance 
Grain, 70, 100 
Grain boundaries, 70-73, 100 

disordered, 72 
Grain coarsening (growth), 73 
Ground state, 215, 269 

energy, 215, 237 
Group index, 784-787, 842 

definition, 785 
Group velocity, 364, 784-787, 842 

in medium, 785 
in vacuum, 785 

Gruneisen’s model of thermal expansion, 
361-363 

Gruneisen’s law, 362, 371 
Gruneisen’s parameter (table), 363 

Gyromagnetic ratio, 687 

Hall coefficient, 146, 178, 359 
for ambipolar conduction, 158 
for intrinsic Si, 158-159 

Hall devices, 145-148 
Hall effect, 145-148, 178, 185-186 

in semiconductors, 156-159,468 
Hall field, 146 
Hall mobility, 148 
Hard disk storage, 750-752 

magnetic bit tracks, 751 
magnetoresistance sensor, 751 
thin film heads, 752 

Hard magnetic materials, 724-729, 
761 

design, 768-769 
neodymium-iron-boron, 727 
rare earth cobalt, 726-727 
single domain particles, 724, 761 
table, 724 

Harmonic oscillator, 337-342, 364 
average energy, 343 
eneigy, 338 
potential energy of, 338 
Schrodinger equation, 338 
zero point energy, 339, 365 

Heat, 41, 100 
Heat capacity, 28, 100 
Heat current, 153 
Heat of fusion, 84 
Heat, thermal fluctuation and noise, 

40-45 
noise in an RLC circuit, 44 
rms noise voltage, 44 
thermal equilibrium, 40 

Heisenberg’s uncertainty principle, 
217-220, 269, 277 

for energy and time, 219 
for position and momentum, 218 

Helium atom, 254-256 
Helium-neon laser, 261-264 

efficiency, 264 
Herv6-Van damme relationship, 845 
Heterogeneous media, 667-669 

Lichtenecker formula, 668 
logarithmic mixture rules, 668 
Maxwell-Gamett formula, 669 

Heterogeneous mixture (multiphase solid), 
139-143, 178 

Heterojunction, 547, 571 
Heterostructure devices, 544, 547 

confining layers, 548 
double hetrostructure, 547 

Hexagonal crystals, 52, 97 
HF resistance of conductor, 163-166 
Hole, 155, 302, 373, 376-378,455-456 

concentration in VB, 382, 391-392 
current due to, 419 

diffusion current density, 418 
diffusion length, 483 
effective mass, 380,456 
mean recombination time {pn junction), 

487 
mobility, 380 

Homogeneous mixture, 178-179 
Homojunction, 547, 571 
Host excitation, 822 
Host matrix, 820, 843 
Human eye, 273-275 

photopic vision, 273 
scotopic vision, 273 

Hund’s rule, 256-258, 269, 281 
Hybrid orbital, 300 
Hybridization, 300 
Hydrogen bond, 19 
Hydrogenated amorphous silicon. See 

a-Si:H 
Hydrogenic atom, 231-253 

electron wavefunctions, 231-236 
line spectra, 278 

Hysteresis loop, 715-719, 761 
energy dissipated per unit volume, 

718-719 
loss, 761,766 

Image charges theorem, 332 
Impact ionization, 503, 571 
Impurities, 64-66 
Incandescence, 820 
Inductance, 163, 693-694 

of a solenoid, 763 
toroid, 694, 723, 765 

Infinite potential well, 212-217 
Insulation strength. See also Dielectric 

breakdown 
aging, 627, 671 

Integrated circuit (IC), 571 
Intensity, defined, 269 

of EM waves, 192 
of light, 192, 197-198, 799 

Interconnects, 172-176, 179, 188 
aspect ratio, 175 
effective multilevel capacitance, 174 
Iow-k dielectric materials, 175 
multilevel interconnect delay time, 175 
RC time constant, 173, 175-176 

Interfacial polarization. See Polarization 
Internal discharges. See Dielectric 

breakdown 
Internal reflection, 796-797, 800-801, 

846 
Interplanar separation in cubic crystals, 

851 
Interstitial site, 45, 101 

impurity, 66, 83-84 
Intrinsic angular momentum. See Angular 

momentum; Spin 
Intrinsic concentration (/i,), 383,462,485 
Intrinsic semiconductors, 374-387,462 
Inversion, 532-535,571. See also MOSFET 
Ion implantation, 541-543, 571 
Ionic conduction, 179 
Ionic crystals, 17 
Ionically bonded solids, 14-18,104 

table, 21 
Ionization energy, 6, 15, 101, 237, 462 

for nth shell, 237 
of He+, 240 

Irradiance, 787-789 
average, 788, 842 
instantaneous, 788, 842 

Isoelectronic impurity, 546, 572 
Isomorphous, 101 
Isomorphous alloys, 83-88 
Isomorphous phase diagram, 84,179 
Isotropic substance, 101 
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JFET, 522-532, 571 
amplifier, 528-532,577 
channel, 523, 570 
characteristics, 524, 528 
common source amplifier, 529 
constant current region, 528 
current saturation region, 528 
drain, 522 
drain current, 523 
field effect, 528 
gate, 522 
general principles, 522-528 
nonlinearity, 532 
pentode region, 528 
pinch-off condition, 525-526 
pinch-off voltage, 524, 572, 576-577 
quiescent point, 529 
source, 522 
transconductance, 531 
voltage gain, small-signal, 531 

Johnson resistor noise equation, 44 
Josephson effect, 756-758 

dc characteristics, 757 
definition of 1 V, 758 

Joule’s law, 179 
Junction field effect transistor. See JFET 

k. See Wavevector 
Kamerlingh Onnes, Heike, 730 
Kerr effect, 838, 842 

coefficients, table, 840 
Kilby, Jack, 474 
Kinetic (molecular) theory, 25-36, 101 

degree of freedom, 28 
equipartition of energy theorem, 28 
heat capacity, 28. See also Dulong-Petit 

rule 
mean kinetic energy, 27-28 
mean speed, 27, 30-31, 115 
thermal fluctuations, 40-45 

Kossel model, 74 
Kramers-Kroning relations, 806, 842-843 

Lamellae, 93 
Langevin function, 661-662 
Lasers, 258-267, 269-270 

cavity modes, 265 
diode, 266-269 
Doppler effect, 265 
He-Ne laser. See Helium-neon laser 
lasing emission, 261 
linewidth, 265 
long-lived states, 260 
metastable state, 260 
output spectrum, 265-267 
population inversion, 259 
pump energy level, 260 
pumping, 260, 270 
semiconductor, 475, 566-569 
single-frequency, 569 
single-mode, 569 
stimulated emission, 259, 271 
threshold current, 569 

Lattice, 50, 95, 101. See also Bravais 
lattices 

cut-off frequency, 340 
energy, 18 
parameter, 50, 56, 96, 101 
space, 95 
waves, 337-342, 347, 364 

Lattice vibrations, 339-350 
density of states, 343, 363 
heat capacity, 344 
internal energy, 343 
modes, 341-342, 364 
state, 341, 364 

Lattice-scattering-limited conductivity, 
124 

Laue technique, 850 
Law of the junction, 482-483, 572 
Lennard-Jones 6-12 potential energy 

curve, 23 
Lever rule, 144 
Lichtenecker formula, 668 
Light absorption, 804-811 

and conductivity, 808 
Light as wave, 191-194 
Light emitting diodes (LEDs), 475,543-551 

characteristics, 548-551 
electroluminescence, 544 
external efficiency, 546 
heterojunction high intensity, 547-548 
linewidth, 549,572, 579 
materials, 546 
principles, 543-546 
spectral linewidths, 550-551, 579 
substrate, 544 
turn-on (cut-in) voltage, 550, 573 

Light propagation, 804-805 
attenuated, 805 
conduction loss, 805 
lossless, 804 

Light scattering, 804, 816-817, 844 
Light waves, 774-776 
Line defects, 68-70 

strain field, 68 
Linear combination of atomic orbitals 

(LCAO), 287, 364 
Liquidus curve, 85 
Local field, 593-594,658-660,671-672 
Localized states, 459, 463 
Long range order, 49, 78 
Lonsdaleite, 62 
Lorentz dipole oscillator model, 664 
Lorentz equation, 658-660 
Lorentz field, 593-594 
Lorentz force, 145, 179 
Lorenz number, 150. See also 

Wiedemann-Franz-Lorenz’s law 
Loss angle, 610 
Loss tangent (factor), 607, 672 
Lumens, 853 
Luminescence, 820-825 

activator, 820, 841 
activator excitation, 822 
cathodoluminescence, 820, 843 
electroluminescence, 544, 820, 843 
fluorescence, 820, 842 
host excitation, 822 
host matrix, 820, 843 
phosphorescence, 821, 843 
photoluminescence, 820, 843 
radiative recombination center, 822 
Stoke’s shift, 822, 844 
X-ray, 820 

Luminescent (luminescence centers). See 
Activator 

Luminous efficacy, 854 
Luminous (photometric) flux or power, 

270,273, 853 
lumens, 853 

Lyman series, 278 

Madelung constant, 17 
Magnet, permanent, 768 

table, 768 
with yoke and air gap, 768-769 

Magnetic bit tracks, 751 
Magnetic dipole moment, 685-686,761 

atomic, 687-688 
definition, 686 
of electron, 248-252 
orbital, 249, 687 
per unit volume, 689 
potential energy, 249-250 
spin, 249, 687 

Magnetic domains. See Ferromagnetism 
Magnetic field (B), 179, 761,787-789 

in a gap, 771 
intensity, 691-692 
transverse, 793 

Magnetic field intensity (strength). See 
Magnetizing field (H) 

Magnetic flux, 693, 761 
quantization, 758-759 

Magnetic flux density. See Magnetic 
field 

Magnetic induction. See Magnetic field 
Magnetic materials classification, 

696-700 
amorphous, 722 
soft and hard materials, 719-721 
table, 697 

Magnetic moment. See Magnetic dipole 
moment 

Magnetic permeability, 179, 692-696, 
761. See also Relative permeability 

quantities table, 693 
relative, 692, 762 

Magnetic pressure, 769-770 
Magnetic quantities and units, table, 693 
Magnetic quantum number, 232, 270 
Magnetic recording, 749-756 

fringing magnetic field, 749,771 
general principles, 749-750, 770-771 
hard disk storage, 750-752 
head materials, 752-753 
inductive recording heads, 749 
longitudinal recording, 749 
magnetic bit tracks, 751 
materials tables, 754, 755 
storage media, 753-756, 770-771 
thin film heads, 752 

Magnetic susceptibility, 692-696, 762 
Magnetism and energy band diagrams, 

740-744 
Energy band model of ferromagnetism, 

742-744 
Pauli-Spin paramagnetism, 740-742 

Magnetization current, 690, 762 
Magnetization of matter, 685-696 
Magnetization vector (M), 688-690, 762 

and surface currents, 690,762 
Magnetization versus H, 713-717 

coercivity, 715, 759 
initial magnetization, 716 
remanent (residual), 715,762-763 
saturation, 703-704, 717, 763 

Magnetizing field (H), 691-692, 761 
conduction current, 691 

Magnetocrystalline anisotropy, 706-708, 
762 

easy direction, 706, 708, 760 
energy, 708, 762 
hard direction, 708, 761 

Magnetometer, 179 
Magnetoresistance, anisotropic and giant, 

744-748, 762 
current in plane (CIP), 747 
ferromagnetic layer, 745 
spacer, 745 
spin valve, 747 

Magnetostatic energy, 705, 762 
density, 696 
per unit volume, 694-696 

Magnetostriction, 711-712,762 
saturation strain, 711 

Magnetostrictive energy, 711,762 
constant, 711 

Majority carrier, 410,463 
Mass action law (semiconductors), 

383,463 
with bandgap narrowing, 576 

Mass fractions, 8-9, 88 
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Matthiessen’s rule, 125-134, 179, 181 
combined with Nordheim’s rule, 137, 

142-143 
Maxwell’s equations, 774 
Maxwell-Boltzmann distribution function, 

37-39 
Maxwell’s principle of equipartition of 

energy, 28, 42-43 
Mayadas-Shatkez formula, 168 
Mean free path 

of electron, 122, 123, 179 
in polycrystalline sample, 168 
in thin film, 169 

of gas molecules, 106-107 
Mean free time, 117, 119, 121, 179 
Mean frequency of collisions, 118 
Mean kinetic energy and temperature, 

25-31 
Mean scattering time. See Mean free 

time 
Mean speed of molecules, 39-40 
Mean square free time, 121 
Mean thermal expansion coefficient, 35 
Mechanical work, 101 
Meissner effect, 731, 762 
Melt spinning, 79 
Metallic bonding, 13,101 
Metallurgical junction (semiconductors), 

476, 572 
Metal-metal contacts, 320-322 
Metal-oxide semiconductor (MOS), 

532-535, 572. See also MOSFET 
threshold voltage, 539-541, 573 

Metal-oxide semiconductor field effect 
transistor. See MOSFET 

Metals, band theory, 352-361 
free electron model of, 315-317 
quantum theory of, 315-320 

Miller indices, 58-61, 101 
Minority carrier, 410-416,463 

diffusion, 483 
diffusion length, 463 
excess concentration of, 410-416 
injection, 407-416,475,481-483, 

572 
lifetime, 412,463 
profiles (hyperbolic), 574 
recombination time, 412, 573 

Miscibility, 101 
Mixed bonding, 22-25 
Mixture rules, 139-144, 184 
Mobility. See Drift mobility 
Mode number, 265 
Modem theory of solids, 285-371 
Molar fractions, 8 
Molar heat capacity, 28, 101,343 
Mole, 8, 101 
Molecular orbital, 286 
Molecular orbital theory of bonding, 

285-290 
hydrogen molecule, 285-289 

Molecular orbital wavefiinction, 364 
Molecular solids, 21 
Molecular speeds, distribution (Stem-type 

experiment), 36 
Molecular velocity and energy 

distribution, 36-40 
Monoclinic crystals, 97 
Moseley relation, 279 
MOSFET, 532-543, 572 

accumulation, 570 
amplifier, 577-578 
depletion layer, 532-534,571 
early voltage, 538 
enhancement, 535-539, 571 
field effect and inversion, 532-535 
inversion layer, 534 
ion implanted, 541-543 
MOST, 572 

NMOS, 572 
PMOS, 572 
silicon gate technology, 542 
threshold voltage, 539-541, 573 

Moss’s rule, 845 
Motion of a diatomic molecule, 28-29 

rotational, 28-29 
translational, 28-29 

Mott-Jones equations, 324 
Muller, K. Alex, 684 
Multilevel interconnect 

delay time, 175 
effective capacitance, 174 
RC time constant, 175 

Nanotube, carbon, 63, 336, 370 
Natural (resonance) frequency of an atom, 

780, 846 
Nearly free electron model, 449 
N6el temperature, 699 
Newton’s second law, 25 
Nichrome, 135 
NMOS. See MOSFET 
Nondegenerate semiconductor, 406-407, 

463 
Node, 215 
Noise, 40-45. See also Electrical 

noise 
Nonstoichiometry, 75-76 
Nordheim’s coefficient, 136 

table, 136 
Nordheim’s rule, 134-139, 179, 182 

combined with Matthiessen’s rule, 137, 
142-143 

Normalization condition in quantum 
mechanics, 214 

n-type doping, 388-390 
energy-band diagram, 389 

Nucleate (solidify), 84 

Ohm’s law of electrical conduction, 
118, 150 

Ohmic contacts, 443-448,463 
Optic axis, 829-830, 843 

principal, 827-828, 843 
Optical absorption, 427-431, 804—811, 

841 
absorption coefficient, 428, 813 
band-to-band (interband), 429, 

813-816 
and conductivity, 808 
free carrier, 805,847 
lattice, 811-812 
penetration depth, 429, 813 
Reststrahlen absorption, 811 
uppercut-off wavelength, 813 

Optical activity, 835, 843 
specific rotary power, 836 

Optical amplifiers, 267 
Optical anisotropy, 827-833, 841 
Optical fiber, 791, 817-819 

attenuation in, 817-819 
cladding, 791 
in communications, 791-792 
core, 791 

Optical fiber amplifiers, 267-268 
Erbium (Er3+ ion) doped, 267,282 
long-lived energy level, 267 

Optical field, 774 
Optical indicatrix. See Fresnel’s optical 

indicatrix 
Optical power. See Radiant, power 
Optical properties of materials, 773-847 
Optical pumping, 260, 270 
Optically isotropic, media, 778 

crystals, 827 
Orbital, 234, 270, 364 

magnetic moment, 249 
Orbital wavefimction, 270, 364 

Orientational polarization. See Dipolar 
polarization 

Orthorombic crystal, 97 

Parallel rule of mixtures, 140 
Paramagnetism, 698, 762 

Pauli spin, 740-742, 764 
Parity, 216 

even, 216 
odd,216 

Partial discharge, 618,621-622,672 
Particle flux, 416-420 
Particle statistics. See Statistics 
Paschen 

curves, 677 
series, 278 

Passivated Emitter Rear Locally diffused 
cells (PERL), 561-562 

Passive device, defined, 572 
Pauli exclusion principle, 115, 254-256, 

270,312-313, 701 
Pauli spin magnetization, 698,740-742,764 
Pauling scale of electronegativity, 22 
PECVD. See Plasma-enhanced chemical 

vapor deposition 
Peltier, coefficient, 447-448 

device, 444 
effect, 445, 463 
figure of merit (FOM), 471-472 
maximum cooling rate, 472 

Penetration depth, 429,813 
Periodic array of points in space. See 

Crystal structure 
PERL. See Passivated Emitter Rear 

Locally diffused cells 
Permanent magnet, (BH)max, 727-729 
Permeability, absolute, 692. See also 

Magnetic permeability; Relative 
permeability 

initial, 720-721,761 
maximum, 720-721, 762 
relative, 692, 762 

Permittivity. See Relative permittivity 
Phase, 83, 101, 179 

cored structure, 87 
diagrams, 84-88, 101 
equilibrium, 87 
eutectic, 90-95 
lever rule, 87 
liquidus curve, 85 
nonequilibrium cooling, 87 
solidus curve, 85 
tie line, 88 

Phonons, 337-352, 364, 409,463, 815 
dispersion relation, 340, 364 
energy, 340 
group velocity, 341 
lattice cut-off frequency, 340 
momentum, 340, 815 
phosphors, 820-825, 843 
table, 824 

Phosphorescence, 821, 843 
Photoconductivity, 414-416, 463 
Photodetectors, 475 
Photodiodes, 564-566 
Photoelectric effect, 194-199, 270, 276 
Photogeneration, 376,410-412,463 

carrier kinetic energy, 473 
steady state rate, 469 

Photoinjection, 463 
Photometric flux. See Luminous flux or 

power 
Photometry, 853 
Photon, 191-205, 270, 272 

efficiency, quantum, 276 
energy, 196,200 
flux, 198, 853 
momentum, 199, 200 
picture, 198 
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Photon amplification, 258-261 
Photovoltaic devices, principles, 551-559. 

See also Solar cell 
Photoresponse time, 413-414 
Physical vapor deposition (PVD), 167 
Physisorption, 74 
Piezoelectric 

antiresonant frequency, 645 
bender, 680 
coefficients, 641,681 
detectors, 681 
electromechanical coupling factor, 642 
inductance, 646 
materials, 672 
mechanical resonant frequency, 645 
poling, 643, 672 
properties table, 642 
quartz oscillators and filters, 644-647 
spark generator, 643-644 
transducer, 641,673 
voltage coefficient, 644, 680 

Piezoelectricity, 638-647 
center of symmetry, 639 
nanosymmetric, 640 

Piezoresistive strain gauge, 434-435 
Piezoresistivity, 431-435, 463,470 

Cantilever equations, 470 
diaphragm, 434 
piezoresistive coefficient, 433, 463 

pin Diodes, 564-566 
depletion layer capacitance, 564 

Pinch-off, 524-528, 537, 572, 576-577 
Planar concentration of atoms, 60, 101, 

109-110 
Planar defects, 70-73 
Planck, Max, 203 

constant, 196 
Plane of incidence, 793 
Plasma-enhanced chemical vapor 

deposition (PECVD), 82 
PLZT, 672 
PMOS. See MOSFET 
pn Junction, 476-493 

band diagram, 494-498 
built-in potential, 478-480 
depletion capacitance, 498-499, 571 
depletion region, 477, 571 
depletion region width, 479,498 
diffusion capacitance, 500-502 
diffusion current, 481—487 
forward bias, 481-487, 571 
hetrojunction, 547 
homojunction, 547 
ideal diode equation, 485 
ideality factor, 488 
incremental resistance, 500-502 
I-V characteristics, 497 
I-Vfor Ge, Si and GaAs, 486, 489 
no bias, 476-481 
recombination current, 488, 572 
reverse bias, 489-493 
reverse saturation current, 485,490, 

572 
short diode, 486 
space charge layer (SCL), 477, 571 
storage capacitance. See Diffusion 

capacitance 
temperature dependence, 574 
total current, 487-489 
total reverse current, 491 

pn Junction band diagrams 494—498 
built-in voltage from band diagrams, 

498 
forward and reverse bias, 495-498 
open circuit, 494-495 

Pockels cell phase modulator, 840, 847 
Pockels effect, 838, 843 

coefficients, table, 840 

Point defects, 64-68 
Frenkel, 66 
impurities, 64-68 
interstitial, 66 
Schottky, 66 
substitutional, 65 
thermodynamic, 64 

Poisson ratio, 186 
Polar molecules, 19 
Polarizability, 586, 588, 781. See 

Polarization 
defined, 586, 672 
dipolar (orientational), 662 
ionic, 664 
orientational, 662 
table, 588 

Polarization, 101, 583-603 
charges, 591 
definition, 585-586, 672 
dipolar, 598-600, 660-662, 670 
electronic, 585-589, 595-596, 671, 

781 
electronic bond, 671 
induced, 586, 664, 671 
interfacial, 600-601,671 
ionic, 597-598, 602, 662-667, 671, 

811 
mechanisms, 597-603 
orientational. See Polarization, dipolar 
relaxation peak, 665 
table, 602 
total, 601-603 
vector, 589-593, 672 

Polarization angle. See Brewster’s angle 
Polarization modulator, 841 

halfwave voltage, 841 
Polarization of EM wave, 796, 825-827, 

843 
circular, 826, 841 
elliptical, 827 
liner, 796, 825 
plane, 825 

Polarized molecule, 20 
Poling, 643, 672 
Polycrystalline films and grain boundary 

scattering, 167-168 
Polymorphism, 61, 102 
Polysilicon gate (poly-Si), 541-543, 572 
Population inversion, 259, 270. See also 

Lasers 
Powder technique, 851 
Poynting vector, 787-789, 843 
Primary a, 94 
Primary bonds, 18 
Principal optic axis, 827-828 
Principal refractive index, 827 
Probability. See Statistics 
Probability of electron scattering, 119 
Probability per unit energy, 39 
Proeutectic (primary a), 94 
Properties of electrons in a band, 

296-299 
Property, definition, 102 
p-type doping, 390-392 

energy-band diagram, 391 
Pumping, 260, 270 
PV work, 101 
Pyroelectric, crystals, 647-653 

coefficients, 650 
current density, 652 
current responsivity, 652 
detector, 651-652, 681-682 
electric time constant, 682 
material, 672 
table, 650 
thermal time constant, 682 
voltage responsivity, 652 

PZT, 672,681 

Q-factor, 672 
Quantization 

of angular momentum, 241-245 
of energy, 230, 236-241 
space, 241-245, 247 

Quantum leak. See Tunneling 
Quantum numbers, 214, 232 

magnetic, 232, 241, 270 
orbital angular momentum, 232, 

241-245, 270 
principal, 232, 270 
quantum state, 234 
spin magnetic, 246, 271 

Quantum physics, 191-283 
harmonic oscillator, 337-342 
tunneling, 221-228, 271,278 

Quartz oscillators and filter, 644-647 
Quartz crystal 

equivalent circuit, 646 
inductance, 647 

Quiescent point, 529 

Radial function, 233-236 
Radial probability density, 233 

function, 236 
Radiant, 270 

flux, 269, 271,853 
power, 271 

Radiant emittance, 203. See also Black- 
body radiation 

Radiation, 271 
brightness, 853-854 

Radiative recombination center, 822 
Radiometry, 853 

flux in, 269, 853 
Random motion, 416-422 
Rare earth cobalt, magnets, 726 
Rayleigh scattering, 816-817 

in silica, 819 
Rayleigh-Jeans law, 203 
Recombination, 383,407-409, 457-458, 

463,469 
capture coefficient, direct, 469 
current, 487-489, 572 
direct, 407-409,469 
indirect, 407^109,457-458 
lifetime, 469 
mean recombination time, 412,487 
and minority carrier injection, 407-416 
rate, 469 

Reflectance, 799-803, 807, 843 
infrared, 811 

Reflection of light, 793-799 
coefficient, 793-799, 807, 843 
external, 797, 801-802, 846 
internal, 796, 797, 800-801, 846 
at normal incidence, 796 
phase changes, 795 

Refracted light, 789-790, 843 
phase changes, 795 
transmission coefficients, 793-799, 

844 
Refractive index, 777-779, 844 

complex, 804-811 
definition. 111 
dispersion relation, 773, 781-782, 

842, 846 
dispersion relation in diamond, 846 
dispersion relation in GaAs, 783 
field emission, 838 
isotropic, 111 
at low frequencies, 778 
temperature coefficient, 845 
versus wavelength, 779-784 

Relative atomic mass. See Atomic mass 
Relative permeability, 692, 762 
Relative permittivity, 583, 584-585, 672, 

673,778, 781,844 
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complex, 605, 670, 804 
definition, 584, 672 
effective, 667 
loss angle, 610 
real and imaginary, 605-614 
table, 602,610 

Relaxation peak, 607 
Relaxation process, 606 
Relaxation time, 117, 179, 604, 672 
Remanence. See under Magnetization 
Remanent magnetization. See under 

Magnetization 
Residual resistivity, 128, 179 
Resistivity, effective, 140 
Resistivity index (n), 132 
Resistivity of metals (Table), 129 

due to impurities, 138 
graph, 130 

Resistivity of mixtures and porous 
materials, 139-144 

Resistivity of thin films, 167-172 
Resistivity-mixture rule, 140, 142 
Resonant frequency. See Frequency, 

resonant 
Reststrahlen absorption, 811-812 
Reststrahlen band, 811 
Retarding plates, 833-835, 844, 

847 
half-wave retarder, 834 
quarter-wave retarder, 835 
quartz retarder, 835 
relative phase shift, 834 
retardation, defined, 834 

Reverse bias, 489-493, 572. See also 
pn Junction 

RF heating, 77 
Rhombohedral crystal, 97 
Richardson-Dushman equation, 328-332, 

333 
Root mean square velocity, 40 
Rydberg constant, 245 

Saturated solution, 102 
Saturation of magnetism, 703-704 
Schottky defect, 66, 102 
Schottky effect, 332-337 
Schottky coefficient, 333 
Schottky junction, 435-443,464 

built-in electric field, 437 
built-in potential, 437 
depletion region, 437 
diode, 435-440 
energy band diagram, 436, 438, 

440 
I-V characteristic, 438 
Schottky barrier height, 437 
Schottky junction equation, 440 
solar cell, 440-443 
space charge layer (SCL), 437 

Schrodinger’s equation, 208-212, 271, 
450 

for three dimension, 209 
time dependent, 208-209 
time independent, 208-212, 271 

SCL. See Space charge layer 
Screw dislocation, 69, 102 

line, 69 
Secondary bonding, 18-22, 102 
Secondary emission, 368-369 
Seebeck effect, 322-328, 364-365 

in semiconductors, 472-473 
Mott and Jones equation, 324 
Seebeck coefficient, 322-323 

Seed, 77 
Selection rules, 242-243, 271 
Sellmeier coefficients, 782 
Sellmeier equation, 782, 845 
Semiconductor bonding, 299-302 

Semiconductor devices, 475-581 
ultimate limits to device performance, 

578 
Semiconductor optical amplifiers, 

566-569 
active layer, 567 
optical amplification, 568 

Semiconductors, 299-303, 373-473 
conduction band (CB), 302 
degenerate and non-degenerate, 

406-407 
direct and indirect bandgap, 448^458, 

814-815 
strain gauge, 434-435 
tables, 366, 386 
valance band (VB), 301 

Series rule of mixtures, 140 
Shell model, 3 
Shockley, William, 372,473 
Shockley equation, 485, 572 
Short-range order, 79 
Silicon, 80, 299-301, 374-380 

amorphous, 80-82,459. See also a-Si:H 
conduction band, 302 
crystalline, 80-82 
energy band diagram, 374 
hybrid orbitals, 300 
hydrogenated amorphous silicon 

(a-Si:H), 82,459 
properties (table), 674 
valence band, 301 
zone refining, 88-90 

Silicon gate technology. See Polysilicon 
gate 

Silicon single crystal growth, 76-77 
Skin depth for conduction, 163 
Skin effect in inductor, 166 
Skin effect: HF resistance of conductor, 

163-166, 179 
at 60 Hz, 188 

Small signal equivalent circuit, 572 
Snell’s law, 790-792, 844 
Soft magnetic materials, 721-724, 763 

table, 722 
Solar cell, 475, 551-563, 581 

antireflection coating, 551, 802-803, 
841, 846 

fill factor, 558, 571 
finger electrodes, 551 
I-V characteristics, 556-557 
load line, 557 
materials, devices and efficiencies, 

561-563 
maximum power delivered, 580 
normalized current and voltage, 580 
open circuit voltage, 552, 558-559 
operating point, 557 
passivated emitter rear locally diffused 

cells (PERL), 561-562 
photocurrent, 553, 572 
photovoltaic device principles, 551-559 
power delivered to the load, 557 
Schottky junction, 440-443 
series resistance, 559-561, 581 
short circuit current, 556 
shunt (parallel) resistance, 559-561, 

581 
total current, 556 

Solder(Pb-Sn), 90-95, 111 
Solid solution and Nordheim’s rule, 

134-139, 182 
Cu-Au, 137 
Cu-Ni, 135 

Solid solutions, 65, 83-95, 102, 179 
interstitial, 84 
isomorphous, 83 
substitutional, 65 

Solidification, nucleation, 70 

Solidus curve, 85 
Solute, 83, 102 
Solvent, 83, 102 
Solvus curve, 90 
Sound velocity, 347 
Space charge layer (SCL), 437,477. See 

also pn Junction 
Specific heat capacity, 31, 101 
Spectral irradiance, 202 
Spherical harmonic, 232 
Spin, 245-247 

of an electron (defined), 271 
magnetic moment, 280 
magnetic quantum number, 246 
paired, 255 
Stem-Gerlach experiment, 250 

Spin-orbit coupling, 280-281 
potential energy, 281 

Spontaneous emission, 259, 271 
Sputtering, 167 
SQUID, 731 
State, electronic, 234, 247, 271, 365 

ground, 215 
stationary state, 210 

Statistics, 312-315 
Boltzmann classical statistics, 312-313, 

363 
Boltzmann tail, 315 
Fermi-Dirac statistics, 123, 312-315, 364 
of donor occupation, 390, 465 
of dopant ionization, 400 

Stefan-Boltzmann law. See Blackbody 
radiation 

Stefan’s black body radiation law, 179, 
203-204 

Stefan’s constant, 203-204 
Stimulated emission, 259, 271 
Stoichiometric compounds, 75, 102 
Stoichiometry, 75-76 
Stoke’s shift, 822, 844 
Strain, 24, 102 

shear strain, 102 
volume strain, 102 

Strain gauge, 186 
Stress, 24, 102 

shear stress, 102 
Strong force, 4 
Substrate, 544, 572 
Superconducting solenoid, 737-739,771 
Superconductivity, 685, 729-740,763 

critical current, 736-739, 769 
critical magnetic field, 735, 760 
critical surface, 737 
critical temperature, 729,760 
high Tc materials, 731, 736 
Meissner effect, 729-733, 762 
Meissner state, 734 
origin, 739-740 
penetration depth, 734 
table, 736 
type I and II, 733-736, 763 
vortex state, 735 
weak link, 757 
zero resistance, 729-733 

Supercooled liquid, 78 
Surface current, 690 
Surface polarization charges, 589 

density, 590 
Surface scattering, 168 
Surface tracking, 628, 672. See also 

Dielectric breakdown 

Temperature coefficient of capacitance 
(TCC), 672, 677 

Temperature coefficient of resistivity 
(TCR ora), 125-134, 180, 182 

definition, 128 
metals (table), 129 
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Temperature dependence of resistivity in 
pure metals, 122-125 

Temperature of light bulb filament, 187 
Ternary alloys, 545 
Terrace-ledge-kink model. See Kossel 

model 
Tetragonal crystals, 97 
Thermal coefficient of linear expansion, 

33, 102, 187 
Thermal conduction, 149-154, 185 
Thermal conductivity, 149-153, 180 

Ag, 183 
due to phonons, 348 
graph (versus electrical conductivity), 

150 
of nonmetals, 348-350 
table, 152 

Thermal equilibrium, 40 
Thermal equilibrium carrier concentration, 

397,464 
Thermal evaporation, 167 
Thermal expansion, 31-36, 102 
Thermal expansion coefficient. See 

Thermal coefficient of linear 
expansion 

Thermal fluctuations, 40-45 
Thermal generation, 376 
Thermal generation current, 572-573 
Thermal radiation, 202. See also Blackbody 

radiation 
Thermal resistance, 153-154, 180, 185 
Thermal velocity, 40, 387, 401,464 
Thermalization, 427 
Thermally activated conductivity, 161, 179 
Thermally activated processes, 45-49, 161 

activated state and activation energy, 
46,161 

Arrhenius type behavior, 45 
diffusion, 46 
diffusion coefficient, 48 
jump frequency, 47 
root mean square displacement, 48 

Thermionic emission, 328-332, 365, 369 
constant, 331 

Thermocouple, 322-328 
equation, 325, 327-328, 369 

Thermoelectric cooler, 443-448 
Thermoelectric emf, 325, 327 

metals (table), 326 
Thermoelectric power, 322-323 
Thin film, 180, 188 
Thin film head, 752 
Thin metal films, 166-172 
Threshold voltage, 539-541,573 
Toroid, 693-696, 765 
Total internal reflection (TIR), 789-792, 

797, 844 
critical angle, 791, 842 
phase change in, 797 

Transducer. See Piezoelectric, transducer 
Transistor action, defined, 509, 573. See 

also Bipolar junction transistor 

Transition temperature, 61 
Transmission coefficient, 844 
Transmittance, 799-803, 844 
Transverse electric field, 793 
Transverse magnetic field, 793 
Trapping, 409 
Triclinic crystal system, 97 
Tunneling, 221-228, 271,278 

field-assisted probability, 334 
probability, 223 
reflection coefficient, 223 
scanning tunneling microscope, 

223-227 
transmission coefficient, 222-223 

Two-phase alloy resistivity, 143-144 
Ag-Ni, 143 

Two-phase solids, 83-95 

Unharmonic effect, 34 
Unharmonic oscillations, 34 
Unharmonicity, 34, 349 
Uniaxial crystals, 828 
Unipolar conductivity, 118 
Unit cell, 50, 56, 97, 102 

hexagonal, 52 
Unpolarized light, 796 
Upper cut-off (threshold) wavelength, 813 

graph, 814 
table, 813 

Vacancy, 64-68, 102, 110 
concentration in Al, 67 
concentration in semiconductor, 67-68 

Vacuum deposition, 106-107 
Vacuum level (eneigy), 292-295,464 
Vacuum tubes, 328-337 

rectifier, 329 
saturation current, 329 

Valence band (VB), 301, 374-378,464 
Valence electrons, 5, 102 
Valency of an atom, 5 
van der Waals bond, 19-20 

water (H20), 20 
van der Waals-London force, 19 
Vapor deposition, 167. See also Physical 

vapor deposition 
Varactor diodes, 499 
Varshni equation, 467 
VB. See Valence band 
Velocity density (distribution) function, 37 
Vibrational wave, 151 
Virial theorem, 6, 7, 102-103 
Vitreous silica, 78 
Volume expansion, 35 
Volume expansion coefficient, 35 
Vortex state, 735 

Wave, defined, 271-272 
dispersion relation, 364, 666, 842 
electromagnetic (EM), 191 
energy densities in an EM, 787 
equation, 272, 347 

fields in EM, 787 
group velocity, 341 
incident, 793 
lattice, 340 
light waves, 774-776 
longitudinal, 339 
matter waves, 210 
monochromatic plane EM, 774 
phase, 774, 843 
phase velocity, 776, 777, 843 
propagation constant, 774 
reflected, 793 
transmitted, 793 
transverse, 339 
traveling, 192, 774-775 
ultrasonic, 641 
vibrational, 151 

Wavefront, 774, 844 
Wavefunction, 208-210 

antisymmetric, 216 
defined, 272 
eigenfunction, 210 
matter waves, 210 
one-electron, 254 
stationary states, 210 
steady state total, 209 
symmetric, 216 

Wavenumber, 192, 774, 844. See also 
Wavevector 

Wavepacket, 784, 844 
Wavevector (*), defined, 192, 272, 776, 844 

of electron, 272,450-456 
Weak injection, 425 
Weight fractions, 8-9, 88 
White LED, 820-825 
Wiedemann-Franz-Lorenz’s law, 150 
Wien’s displacement law, 205, 277 
Work function, 196, 272, 295, 365, 

435-437,443,464 
effective, 333 
of a semiconductor, 384 
table, 295, 369,470 

X-rays, 193-194, 199-202, 272, 275-276, 
367,848 

diffraction, 849-852 
energy fluence, 275 
photon fluence, 276 
radiography, 275 
roentgen, 275 

Young’s double-slit experiment (figure), 
193, 205 

Young’s fringes, 192 
Young’s modulus, 102. See also Elastic 

modulus 

Zener breakdown, 502-506, 573 
Zener effect, 505 
Zero resistance, 729-733 
Zero-point energy, 365 
Zone refining, 88-90 

"We have a habit in writing articles published in scientific journals to make the work as 

finished as possible, to cover up all the tracks, to not worry about the blind alleys or describe 

how you had the wrong idea first, and so on. So there isn't any place to publish, in a dignified 

manner, what you actually did in order to get to do the work." 

Richard P. Feynman 

Nobel Lecture, 1966 


